xref: /linux/kernel/bpf/hashtab.c (revision b1a54551dd9ed5ef1763b97b35a0999ca002b95c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/rcupdate_wait.h>
11 #include <linux/random.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/rcupdate_trace.h>
14 #include <linux/btf_ids.h>
15 #include "percpu_freelist.h"
16 #include "bpf_lru_list.h"
17 #include "map_in_map.h"
18 #include <linux/bpf_mem_alloc.h>
19 
20 #define HTAB_CREATE_FLAG_MASK						\
21 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
22 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
23 
24 #define BATCH_OPS(_name)			\
25 	.map_lookup_batch =			\
26 	_name##_map_lookup_batch,		\
27 	.map_lookup_and_delete_batch =		\
28 	_name##_map_lookup_and_delete_batch,	\
29 	.map_update_batch =			\
30 	generic_map_update_batch,		\
31 	.map_delete_batch =			\
32 	generic_map_delete_batch
33 
34 /*
35  * The bucket lock has two protection scopes:
36  *
37  * 1) Serializing concurrent operations from BPF programs on different
38  *    CPUs
39  *
40  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
41  *
42  * BPF programs can execute in any context including perf, kprobes and
43  * tracing. As there are almost no limits where perf, kprobes and tracing
44  * can be invoked from the lock operations need to be protected against
45  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
46  * the lock held section when functions which acquire this lock are invoked
47  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
48  * variable bpf_prog_active, which prevents BPF programs attached to perf
49  * events, kprobes and tracing to be invoked before the prior invocation
50  * from one of these contexts completed. sys_bpf() uses the same mechanism
51  * by pinning the task to the current CPU and incrementing the recursion
52  * protection across the map operation.
53  *
54  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
55  * operations like memory allocations (even with GFP_ATOMIC) from atomic
56  * contexts. This is required because even with GFP_ATOMIC the memory
57  * allocator calls into code paths which acquire locks with long held lock
58  * sections. To ensure the deterministic behaviour these locks are regular
59  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
60  * true atomic contexts on an RT kernel are the low level hardware
61  * handling, scheduling, low level interrupt handling, NMIs etc. None of
62  * these contexts should ever do memory allocations.
63  *
64  * As regular device interrupt handlers and soft interrupts are forced into
65  * thread context, the existing code which does
66  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
67  * just works.
68  *
69  * In theory the BPF locks could be converted to regular spinlocks as well,
70  * but the bucket locks and percpu_freelist locks can be taken from
71  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
72  * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
73  * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
74  * because there is no memory allocation within the lock held sections. However
75  * after hash map was fully converted to use bpf_mem_alloc, there will be
76  * non-synchronous memory allocation for non-preallocated hash map, so it is
77  * safe to always use raw spinlock for bucket lock.
78  */
79 struct bucket {
80 	struct hlist_nulls_head head;
81 	raw_spinlock_t raw_lock;
82 };
83 
84 #define HASHTAB_MAP_LOCK_COUNT 8
85 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
86 
87 struct bpf_htab {
88 	struct bpf_map map;
89 	struct bpf_mem_alloc ma;
90 	struct bpf_mem_alloc pcpu_ma;
91 	struct bucket *buckets;
92 	void *elems;
93 	union {
94 		struct pcpu_freelist freelist;
95 		struct bpf_lru lru;
96 	};
97 	struct htab_elem *__percpu *extra_elems;
98 	/* number of elements in non-preallocated hashtable are kept
99 	 * in either pcount or count
100 	 */
101 	struct percpu_counter pcount;
102 	atomic_t count;
103 	bool use_percpu_counter;
104 	u32 n_buckets;	/* number of hash buckets */
105 	u32 elem_size;	/* size of each element in bytes */
106 	u32 hashrnd;
107 	struct lock_class_key lockdep_key;
108 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
109 };
110 
111 /* each htab element is struct htab_elem + key + value */
112 struct htab_elem {
113 	union {
114 		struct hlist_nulls_node hash_node;
115 		struct {
116 			void *padding;
117 			union {
118 				struct pcpu_freelist_node fnode;
119 				struct htab_elem *batch_flink;
120 			};
121 		};
122 	};
123 	union {
124 		/* pointer to per-cpu pointer */
125 		void *ptr_to_pptr;
126 		struct bpf_lru_node lru_node;
127 	};
128 	u32 hash;
129 	char key[] __aligned(8);
130 };
131 
132 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
133 {
134 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
135 }
136 
137 static void htab_init_buckets(struct bpf_htab *htab)
138 {
139 	unsigned int i;
140 
141 	for (i = 0; i < htab->n_buckets; i++) {
142 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
143 		raw_spin_lock_init(&htab->buckets[i].raw_lock);
144 		lockdep_set_class(&htab->buckets[i].raw_lock,
145 					  &htab->lockdep_key);
146 		cond_resched();
147 	}
148 }
149 
150 static inline int htab_lock_bucket(const struct bpf_htab *htab,
151 				   struct bucket *b, u32 hash,
152 				   unsigned long *pflags)
153 {
154 	unsigned long flags;
155 
156 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
157 
158 	preempt_disable();
159 	local_irq_save(flags);
160 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
161 		__this_cpu_dec(*(htab->map_locked[hash]));
162 		local_irq_restore(flags);
163 		preempt_enable();
164 		return -EBUSY;
165 	}
166 
167 	raw_spin_lock(&b->raw_lock);
168 	*pflags = flags;
169 
170 	return 0;
171 }
172 
173 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
174 				      struct bucket *b, u32 hash,
175 				      unsigned long flags)
176 {
177 	hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
178 	raw_spin_unlock(&b->raw_lock);
179 	__this_cpu_dec(*(htab->map_locked[hash]));
180 	local_irq_restore(flags);
181 	preempt_enable();
182 }
183 
184 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
185 
186 static bool htab_is_lru(const struct bpf_htab *htab)
187 {
188 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
189 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
190 }
191 
192 static bool htab_is_percpu(const struct bpf_htab *htab)
193 {
194 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
195 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
196 }
197 
198 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
199 				     void __percpu *pptr)
200 {
201 	*(void __percpu **)(l->key + key_size) = pptr;
202 }
203 
204 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
205 {
206 	return *(void __percpu **)(l->key + key_size);
207 }
208 
209 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
210 {
211 	return *(void **)(l->key + roundup(map->key_size, 8));
212 }
213 
214 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
215 {
216 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
217 }
218 
219 static bool htab_has_extra_elems(struct bpf_htab *htab)
220 {
221 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
222 }
223 
224 static void htab_free_prealloced_timers(struct bpf_htab *htab)
225 {
226 	u32 num_entries = htab->map.max_entries;
227 	int i;
228 
229 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
230 		return;
231 	if (htab_has_extra_elems(htab))
232 		num_entries += num_possible_cpus();
233 
234 	for (i = 0; i < num_entries; i++) {
235 		struct htab_elem *elem;
236 
237 		elem = get_htab_elem(htab, i);
238 		bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
239 		cond_resched();
240 	}
241 }
242 
243 static void htab_free_prealloced_fields(struct bpf_htab *htab)
244 {
245 	u32 num_entries = htab->map.max_entries;
246 	int i;
247 
248 	if (IS_ERR_OR_NULL(htab->map.record))
249 		return;
250 	if (htab_has_extra_elems(htab))
251 		num_entries += num_possible_cpus();
252 	for (i = 0; i < num_entries; i++) {
253 		struct htab_elem *elem;
254 
255 		elem = get_htab_elem(htab, i);
256 		if (htab_is_percpu(htab)) {
257 			void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
258 			int cpu;
259 
260 			for_each_possible_cpu(cpu) {
261 				bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
262 				cond_resched();
263 			}
264 		} else {
265 			bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
266 			cond_resched();
267 		}
268 		cond_resched();
269 	}
270 }
271 
272 static void htab_free_elems(struct bpf_htab *htab)
273 {
274 	int i;
275 
276 	if (!htab_is_percpu(htab))
277 		goto free_elems;
278 
279 	for (i = 0; i < htab->map.max_entries; i++) {
280 		void __percpu *pptr;
281 
282 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
283 					 htab->map.key_size);
284 		free_percpu(pptr);
285 		cond_resched();
286 	}
287 free_elems:
288 	bpf_map_area_free(htab->elems);
289 }
290 
291 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
292  * (bucket_lock). If both locks need to be acquired together, the lock
293  * order is always lru_lock -> bucket_lock and this only happens in
294  * bpf_lru_list.c logic. For example, certain code path of
295  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
296  * will acquire lru_lock first followed by acquiring bucket_lock.
297  *
298  * In hashtab.c, to avoid deadlock, lock acquisition of
299  * bucket_lock followed by lru_lock is not allowed. In such cases,
300  * bucket_lock needs to be released first before acquiring lru_lock.
301  */
302 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
303 					  u32 hash)
304 {
305 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
306 	struct htab_elem *l;
307 
308 	if (node) {
309 		bpf_map_inc_elem_count(&htab->map);
310 		l = container_of(node, struct htab_elem, lru_node);
311 		memcpy(l->key, key, htab->map.key_size);
312 		return l;
313 	}
314 
315 	return NULL;
316 }
317 
318 static int prealloc_init(struct bpf_htab *htab)
319 {
320 	u32 num_entries = htab->map.max_entries;
321 	int err = -ENOMEM, i;
322 
323 	if (htab_has_extra_elems(htab))
324 		num_entries += num_possible_cpus();
325 
326 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
327 					 htab->map.numa_node);
328 	if (!htab->elems)
329 		return -ENOMEM;
330 
331 	if (!htab_is_percpu(htab))
332 		goto skip_percpu_elems;
333 
334 	for (i = 0; i < num_entries; i++) {
335 		u32 size = round_up(htab->map.value_size, 8);
336 		void __percpu *pptr;
337 
338 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
339 					    GFP_USER | __GFP_NOWARN);
340 		if (!pptr)
341 			goto free_elems;
342 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
343 				  pptr);
344 		cond_resched();
345 	}
346 
347 skip_percpu_elems:
348 	if (htab_is_lru(htab))
349 		err = bpf_lru_init(&htab->lru,
350 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
351 				   offsetof(struct htab_elem, hash) -
352 				   offsetof(struct htab_elem, lru_node),
353 				   htab_lru_map_delete_node,
354 				   htab);
355 	else
356 		err = pcpu_freelist_init(&htab->freelist);
357 
358 	if (err)
359 		goto free_elems;
360 
361 	if (htab_is_lru(htab))
362 		bpf_lru_populate(&htab->lru, htab->elems,
363 				 offsetof(struct htab_elem, lru_node),
364 				 htab->elem_size, num_entries);
365 	else
366 		pcpu_freelist_populate(&htab->freelist,
367 				       htab->elems + offsetof(struct htab_elem, fnode),
368 				       htab->elem_size, num_entries);
369 
370 	return 0;
371 
372 free_elems:
373 	htab_free_elems(htab);
374 	return err;
375 }
376 
377 static void prealloc_destroy(struct bpf_htab *htab)
378 {
379 	htab_free_elems(htab);
380 
381 	if (htab_is_lru(htab))
382 		bpf_lru_destroy(&htab->lru);
383 	else
384 		pcpu_freelist_destroy(&htab->freelist);
385 }
386 
387 static int alloc_extra_elems(struct bpf_htab *htab)
388 {
389 	struct htab_elem *__percpu *pptr, *l_new;
390 	struct pcpu_freelist_node *l;
391 	int cpu;
392 
393 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
394 				    GFP_USER | __GFP_NOWARN);
395 	if (!pptr)
396 		return -ENOMEM;
397 
398 	for_each_possible_cpu(cpu) {
399 		l = pcpu_freelist_pop(&htab->freelist);
400 		/* pop will succeed, since prealloc_init()
401 		 * preallocated extra num_possible_cpus elements
402 		 */
403 		l_new = container_of(l, struct htab_elem, fnode);
404 		*per_cpu_ptr(pptr, cpu) = l_new;
405 	}
406 	htab->extra_elems = pptr;
407 	return 0;
408 }
409 
410 /* Called from syscall */
411 static int htab_map_alloc_check(union bpf_attr *attr)
412 {
413 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
414 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
415 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
416 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
417 	/* percpu_lru means each cpu has its own LRU list.
418 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
419 	 * the map's value itself is percpu.  percpu_lru has
420 	 * nothing to do with the map's value.
421 	 */
422 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
423 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
424 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
425 	int numa_node = bpf_map_attr_numa_node(attr);
426 
427 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
428 		     offsetof(struct htab_elem, hash_node.pprev));
429 
430 	if (zero_seed && !capable(CAP_SYS_ADMIN))
431 		/* Guard against local DoS, and discourage production use. */
432 		return -EPERM;
433 
434 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
435 	    !bpf_map_flags_access_ok(attr->map_flags))
436 		return -EINVAL;
437 
438 	if (!lru && percpu_lru)
439 		return -EINVAL;
440 
441 	if (lru && !prealloc)
442 		return -ENOTSUPP;
443 
444 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
445 		return -EINVAL;
446 
447 	/* check sanity of attributes.
448 	 * value_size == 0 may be allowed in the future to use map as a set
449 	 */
450 	if (attr->max_entries == 0 || attr->key_size == 0 ||
451 	    attr->value_size == 0)
452 		return -EINVAL;
453 
454 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
455 	   sizeof(struct htab_elem))
456 		/* if key_size + value_size is bigger, the user space won't be
457 		 * able to access the elements via bpf syscall. This check
458 		 * also makes sure that the elem_size doesn't overflow and it's
459 		 * kmalloc-able later in htab_map_update_elem()
460 		 */
461 		return -E2BIG;
462 
463 	return 0;
464 }
465 
466 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
467 {
468 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
469 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
470 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
471 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
472 	/* percpu_lru means each cpu has its own LRU list.
473 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
474 	 * the map's value itself is percpu.  percpu_lru has
475 	 * nothing to do with the map's value.
476 	 */
477 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
478 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
479 	struct bpf_htab *htab;
480 	int err, i;
481 
482 	htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
483 	if (!htab)
484 		return ERR_PTR(-ENOMEM);
485 
486 	lockdep_register_key(&htab->lockdep_key);
487 
488 	bpf_map_init_from_attr(&htab->map, attr);
489 
490 	if (percpu_lru) {
491 		/* ensure each CPU's lru list has >=1 elements.
492 		 * since we are at it, make each lru list has the same
493 		 * number of elements.
494 		 */
495 		htab->map.max_entries = roundup(attr->max_entries,
496 						num_possible_cpus());
497 		if (htab->map.max_entries < attr->max_entries)
498 			htab->map.max_entries = rounddown(attr->max_entries,
499 							  num_possible_cpus());
500 	}
501 
502 	/* hash table size must be power of 2 */
503 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
504 
505 	htab->elem_size = sizeof(struct htab_elem) +
506 			  round_up(htab->map.key_size, 8);
507 	if (percpu)
508 		htab->elem_size += sizeof(void *);
509 	else
510 		htab->elem_size += round_up(htab->map.value_size, 8);
511 
512 	err = -E2BIG;
513 	/* prevent zero size kmalloc and check for u32 overflow */
514 	if (htab->n_buckets == 0 ||
515 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
516 		goto free_htab;
517 
518 	err = bpf_map_init_elem_count(&htab->map);
519 	if (err)
520 		goto free_htab;
521 
522 	err = -ENOMEM;
523 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
524 					   sizeof(struct bucket),
525 					   htab->map.numa_node);
526 	if (!htab->buckets)
527 		goto free_elem_count;
528 
529 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
530 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
531 							   sizeof(int),
532 							   sizeof(int),
533 							   GFP_USER);
534 		if (!htab->map_locked[i])
535 			goto free_map_locked;
536 	}
537 
538 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
539 		htab->hashrnd = 0;
540 	else
541 		htab->hashrnd = get_random_u32();
542 
543 	htab_init_buckets(htab);
544 
545 /* compute_batch_value() computes batch value as num_online_cpus() * 2
546  * and __percpu_counter_compare() needs
547  * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
548  * for percpu_counter to be faster than atomic_t. In practice the average bpf
549  * hash map size is 10k, which means that a system with 64 cpus will fill
550  * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
551  * define our own batch count as 32 then 10k hash map can be filled up to 80%:
552  * 10k - 8k > 32 _batch_ * 64 _cpus_
553  * and __percpu_counter_compare() will still be fast. At that point hash map
554  * collisions will dominate its performance anyway. Assume that hash map filled
555  * to 50+% isn't going to be O(1) and use the following formula to choose
556  * between percpu_counter and atomic_t.
557  */
558 #define PERCPU_COUNTER_BATCH 32
559 	if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
560 		htab->use_percpu_counter = true;
561 
562 	if (htab->use_percpu_counter) {
563 		err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
564 		if (err)
565 			goto free_map_locked;
566 	}
567 
568 	if (prealloc) {
569 		err = prealloc_init(htab);
570 		if (err)
571 			goto free_map_locked;
572 
573 		if (!percpu && !lru) {
574 			/* lru itself can remove the least used element, so
575 			 * there is no need for an extra elem during map_update.
576 			 */
577 			err = alloc_extra_elems(htab);
578 			if (err)
579 				goto free_prealloc;
580 		}
581 	} else {
582 		err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
583 		if (err)
584 			goto free_map_locked;
585 		if (percpu) {
586 			err = bpf_mem_alloc_init(&htab->pcpu_ma,
587 						 round_up(htab->map.value_size, 8), true);
588 			if (err)
589 				goto free_map_locked;
590 		}
591 	}
592 
593 	return &htab->map;
594 
595 free_prealloc:
596 	prealloc_destroy(htab);
597 free_map_locked:
598 	if (htab->use_percpu_counter)
599 		percpu_counter_destroy(&htab->pcount);
600 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
601 		free_percpu(htab->map_locked[i]);
602 	bpf_map_area_free(htab->buckets);
603 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
604 	bpf_mem_alloc_destroy(&htab->ma);
605 free_elem_count:
606 	bpf_map_free_elem_count(&htab->map);
607 free_htab:
608 	lockdep_unregister_key(&htab->lockdep_key);
609 	bpf_map_area_free(htab);
610 	return ERR_PTR(err);
611 }
612 
613 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
614 {
615 	if (likely(key_len % 4 == 0))
616 		return jhash2(key, key_len / 4, hashrnd);
617 	return jhash(key, key_len, hashrnd);
618 }
619 
620 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
621 {
622 	return &htab->buckets[hash & (htab->n_buckets - 1)];
623 }
624 
625 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
626 {
627 	return &__select_bucket(htab, hash)->head;
628 }
629 
630 /* this lookup function can only be called with bucket lock taken */
631 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
632 					 void *key, u32 key_size)
633 {
634 	struct hlist_nulls_node *n;
635 	struct htab_elem *l;
636 
637 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
638 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
639 			return l;
640 
641 	return NULL;
642 }
643 
644 /* can be called without bucket lock. it will repeat the loop in
645  * the unlikely event when elements moved from one bucket into another
646  * while link list is being walked
647  */
648 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
649 					       u32 hash, void *key,
650 					       u32 key_size, u32 n_buckets)
651 {
652 	struct hlist_nulls_node *n;
653 	struct htab_elem *l;
654 
655 again:
656 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
657 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
658 			return l;
659 
660 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
661 		goto again;
662 
663 	return NULL;
664 }
665 
666 /* Called from syscall or from eBPF program directly, so
667  * arguments have to match bpf_map_lookup_elem() exactly.
668  * The return value is adjusted by BPF instructions
669  * in htab_map_gen_lookup().
670  */
671 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
672 {
673 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
674 	struct hlist_nulls_head *head;
675 	struct htab_elem *l;
676 	u32 hash, key_size;
677 
678 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
679 		     !rcu_read_lock_bh_held());
680 
681 	key_size = map->key_size;
682 
683 	hash = htab_map_hash(key, key_size, htab->hashrnd);
684 
685 	head = select_bucket(htab, hash);
686 
687 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
688 
689 	return l;
690 }
691 
692 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
693 {
694 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
695 
696 	if (l)
697 		return l->key + round_up(map->key_size, 8);
698 
699 	return NULL;
700 }
701 
702 /* inline bpf_map_lookup_elem() call.
703  * Instead of:
704  * bpf_prog
705  *   bpf_map_lookup_elem
706  *     map->ops->map_lookup_elem
707  *       htab_map_lookup_elem
708  *         __htab_map_lookup_elem
709  * do:
710  * bpf_prog
711  *   __htab_map_lookup_elem
712  */
713 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
714 {
715 	struct bpf_insn *insn = insn_buf;
716 	const int ret = BPF_REG_0;
717 
718 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
719 		     (void *(*)(struct bpf_map *map, void *key))NULL));
720 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
721 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
722 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
723 				offsetof(struct htab_elem, key) +
724 				round_up(map->key_size, 8));
725 	return insn - insn_buf;
726 }
727 
728 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
729 							void *key, const bool mark)
730 {
731 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
732 
733 	if (l) {
734 		if (mark)
735 			bpf_lru_node_set_ref(&l->lru_node);
736 		return l->key + round_up(map->key_size, 8);
737 	}
738 
739 	return NULL;
740 }
741 
742 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
743 {
744 	return __htab_lru_map_lookup_elem(map, key, true);
745 }
746 
747 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
748 {
749 	return __htab_lru_map_lookup_elem(map, key, false);
750 }
751 
752 static int htab_lru_map_gen_lookup(struct bpf_map *map,
753 				   struct bpf_insn *insn_buf)
754 {
755 	struct bpf_insn *insn = insn_buf;
756 	const int ret = BPF_REG_0;
757 	const int ref_reg = BPF_REG_1;
758 
759 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
760 		     (void *(*)(struct bpf_map *map, void *key))NULL));
761 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
762 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
763 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
764 			      offsetof(struct htab_elem, lru_node) +
765 			      offsetof(struct bpf_lru_node, ref));
766 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
767 	*insn++ = BPF_ST_MEM(BPF_B, ret,
768 			     offsetof(struct htab_elem, lru_node) +
769 			     offsetof(struct bpf_lru_node, ref),
770 			     1);
771 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
772 				offsetof(struct htab_elem, key) +
773 				round_up(map->key_size, 8));
774 	return insn - insn_buf;
775 }
776 
777 static void check_and_free_fields(struct bpf_htab *htab,
778 				  struct htab_elem *elem)
779 {
780 	if (htab_is_percpu(htab)) {
781 		void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
782 		int cpu;
783 
784 		for_each_possible_cpu(cpu)
785 			bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
786 	} else {
787 		void *map_value = elem->key + round_up(htab->map.key_size, 8);
788 
789 		bpf_obj_free_fields(htab->map.record, map_value);
790 	}
791 }
792 
793 /* It is called from the bpf_lru_list when the LRU needs to delete
794  * older elements from the htab.
795  */
796 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
797 {
798 	struct bpf_htab *htab = arg;
799 	struct htab_elem *l = NULL, *tgt_l;
800 	struct hlist_nulls_head *head;
801 	struct hlist_nulls_node *n;
802 	unsigned long flags;
803 	struct bucket *b;
804 	int ret;
805 
806 	tgt_l = container_of(node, struct htab_elem, lru_node);
807 	b = __select_bucket(htab, tgt_l->hash);
808 	head = &b->head;
809 
810 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
811 	if (ret)
812 		return false;
813 
814 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
815 		if (l == tgt_l) {
816 			hlist_nulls_del_rcu(&l->hash_node);
817 			check_and_free_fields(htab, l);
818 			bpf_map_dec_elem_count(&htab->map);
819 			break;
820 		}
821 
822 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
823 
824 	return l == tgt_l;
825 }
826 
827 /* Called from syscall */
828 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
829 {
830 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
831 	struct hlist_nulls_head *head;
832 	struct htab_elem *l, *next_l;
833 	u32 hash, key_size;
834 	int i = 0;
835 
836 	WARN_ON_ONCE(!rcu_read_lock_held());
837 
838 	key_size = map->key_size;
839 
840 	if (!key)
841 		goto find_first_elem;
842 
843 	hash = htab_map_hash(key, key_size, htab->hashrnd);
844 
845 	head = select_bucket(htab, hash);
846 
847 	/* lookup the key */
848 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
849 
850 	if (!l)
851 		goto find_first_elem;
852 
853 	/* key was found, get next key in the same bucket */
854 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
855 				  struct htab_elem, hash_node);
856 
857 	if (next_l) {
858 		/* if next elem in this hash list is non-zero, just return it */
859 		memcpy(next_key, next_l->key, key_size);
860 		return 0;
861 	}
862 
863 	/* no more elements in this hash list, go to the next bucket */
864 	i = hash & (htab->n_buckets - 1);
865 	i++;
866 
867 find_first_elem:
868 	/* iterate over buckets */
869 	for (; i < htab->n_buckets; i++) {
870 		head = select_bucket(htab, i);
871 
872 		/* pick first element in the bucket */
873 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
874 					  struct htab_elem, hash_node);
875 		if (next_l) {
876 			/* if it's not empty, just return it */
877 			memcpy(next_key, next_l->key, key_size);
878 			return 0;
879 		}
880 	}
881 
882 	/* iterated over all buckets and all elements */
883 	return -ENOENT;
884 }
885 
886 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
887 {
888 	check_and_free_fields(htab, l);
889 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
890 		bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
891 	bpf_mem_cache_free(&htab->ma, l);
892 }
893 
894 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
895 {
896 	struct bpf_map *map = &htab->map;
897 	void *ptr;
898 
899 	if (map->ops->map_fd_put_ptr) {
900 		ptr = fd_htab_map_get_ptr(map, l);
901 		map->ops->map_fd_put_ptr(map, ptr, true);
902 	}
903 }
904 
905 static bool is_map_full(struct bpf_htab *htab)
906 {
907 	if (htab->use_percpu_counter)
908 		return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
909 						PERCPU_COUNTER_BATCH) >= 0;
910 	return atomic_read(&htab->count) >= htab->map.max_entries;
911 }
912 
913 static void inc_elem_count(struct bpf_htab *htab)
914 {
915 	bpf_map_inc_elem_count(&htab->map);
916 
917 	if (htab->use_percpu_counter)
918 		percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
919 	else
920 		atomic_inc(&htab->count);
921 }
922 
923 static void dec_elem_count(struct bpf_htab *htab)
924 {
925 	bpf_map_dec_elem_count(&htab->map);
926 
927 	if (htab->use_percpu_counter)
928 		percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
929 	else
930 		atomic_dec(&htab->count);
931 }
932 
933 
934 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
935 {
936 	htab_put_fd_value(htab, l);
937 
938 	if (htab_is_prealloc(htab)) {
939 		bpf_map_dec_elem_count(&htab->map);
940 		check_and_free_fields(htab, l);
941 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
942 	} else {
943 		dec_elem_count(htab);
944 		htab_elem_free(htab, l);
945 	}
946 }
947 
948 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
949 			    void *value, bool onallcpus)
950 {
951 	if (!onallcpus) {
952 		/* copy true value_size bytes */
953 		copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
954 	} else {
955 		u32 size = round_up(htab->map.value_size, 8);
956 		int off = 0, cpu;
957 
958 		for_each_possible_cpu(cpu) {
959 			copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
960 			off += size;
961 		}
962 	}
963 }
964 
965 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
966 			    void *value, bool onallcpus)
967 {
968 	/* When not setting the initial value on all cpus, zero-fill element
969 	 * values for other cpus. Otherwise, bpf program has no way to ensure
970 	 * known initial values for cpus other than current one
971 	 * (onallcpus=false always when coming from bpf prog).
972 	 */
973 	if (!onallcpus) {
974 		int current_cpu = raw_smp_processor_id();
975 		int cpu;
976 
977 		for_each_possible_cpu(cpu) {
978 			if (cpu == current_cpu)
979 				copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
980 			else /* Since elem is preallocated, we cannot touch special fields */
981 				zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
982 		}
983 	} else {
984 		pcpu_copy_value(htab, pptr, value, onallcpus);
985 	}
986 }
987 
988 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
989 {
990 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
991 	       BITS_PER_LONG == 64;
992 }
993 
994 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
995 					 void *value, u32 key_size, u32 hash,
996 					 bool percpu, bool onallcpus,
997 					 struct htab_elem *old_elem)
998 {
999 	u32 size = htab->map.value_size;
1000 	bool prealloc = htab_is_prealloc(htab);
1001 	struct htab_elem *l_new, **pl_new;
1002 	void __percpu *pptr;
1003 
1004 	if (prealloc) {
1005 		if (old_elem) {
1006 			/* if we're updating the existing element,
1007 			 * use per-cpu extra elems to avoid freelist_pop/push
1008 			 */
1009 			pl_new = this_cpu_ptr(htab->extra_elems);
1010 			l_new = *pl_new;
1011 			htab_put_fd_value(htab, old_elem);
1012 			*pl_new = old_elem;
1013 		} else {
1014 			struct pcpu_freelist_node *l;
1015 
1016 			l = __pcpu_freelist_pop(&htab->freelist);
1017 			if (!l)
1018 				return ERR_PTR(-E2BIG);
1019 			l_new = container_of(l, struct htab_elem, fnode);
1020 			bpf_map_inc_elem_count(&htab->map);
1021 		}
1022 	} else {
1023 		if (is_map_full(htab))
1024 			if (!old_elem)
1025 				/* when map is full and update() is replacing
1026 				 * old element, it's ok to allocate, since
1027 				 * old element will be freed immediately.
1028 				 * Otherwise return an error
1029 				 */
1030 				return ERR_PTR(-E2BIG);
1031 		inc_elem_count(htab);
1032 		l_new = bpf_mem_cache_alloc(&htab->ma);
1033 		if (!l_new) {
1034 			l_new = ERR_PTR(-ENOMEM);
1035 			goto dec_count;
1036 		}
1037 	}
1038 
1039 	memcpy(l_new->key, key, key_size);
1040 	if (percpu) {
1041 		if (prealloc) {
1042 			pptr = htab_elem_get_ptr(l_new, key_size);
1043 		} else {
1044 			/* alloc_percpu zero-fills */
1045 			pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1046 			if (!pptr) {
1047 				bpf_mem_cache_free(&htab->ma, l_new);
1048 				l_new = ERR_PTR(-ENOMEM);
1049 				goto dec_count;
1050 			}
1051 			l_new->ptr_to_pptr = pptr;
1052 			pptr = *(void **)pptr;
1053 		}
1054 
1055 		pcpu_init_value(htab, pptr, value, onallcpus);
1056 
1057 		if (!prealloc)
1058 			htab_elem_set_ptr(l_new, key_size, pptr);
1059 	} else if (fd_htab_map_needs_adjust(htab)) {
1060 		size = round_up(size, 8);
1061 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1062 	} else {
1063 		copy_map_value(&htab->map,
1064 			       l_new->key + round_up(key_size, 8),
1065 			       value);
1066 	}
1067 
1068 	l_new->hash = hash;
1069 	return l_new;
1070 dec_count:
1071 	dec_elem_count(htab);
1072 	return l_new;
1073 }
1074 
1075 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1076 		       u64 map_flags)
1077 {
1078 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1079 		/* elem already exists */
1080 		return -EEXIST;
1081 
1082 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1083 		/* elem doesn't exist, cannot update it */
1084 		return -ENOENT;
1085 
1086 	return 0;
1087 }
1088 
1089 /* Called from syscall or from eBPF program */
1090 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1091 				 u64 map_flags)
1092 {
1093 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1094 	struct htab_elem *l_new = NULL, *l_old;
1095 	struct hlist_nulls_head *head;
1096 	unsigned long flags;
1097 	struct bucket *b;
1098 	u32 key_size, hash;
1099 	int ret;
1100 
1101 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1102 		/* unknown flags */
1103 		return -EINVAL;
1104 
1105 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1106 		     !rcu_read_lock_bh_held());
1107 
1108 	key_size = map->key_size;
1109 
1110 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1111 
1112 	b = __select_bucket(htab, hash);
1113 	head = &b->head;
1114 
1115 	if (unlikely(map_flags & BPF_F_LOCK)) {
1116 		if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1117 			return -EINVAL;
1118 		/* find an element without taking the bucket lock */
1119 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1120 					      htab->n_buckets);
1121 		ret = check_flags(htab, l_old, map_flags);
1122 		if (ret)
1123 			return ret;
1124 		if (l_old) {
1125 			/* grab the element lock and update value in place */
1126 			copy_map_value_locked(map,
1127 					      l_old->key + round_up(key_size, 8),
1128 					      value, false);
1129 			return 0;
1130 		}
1131 		/* fall through, grab the bucket lock and lookup again.
1132 		 * 99.9% chance that the element won't be found,
1133 		 * but second lookup under lock has to be done.
1134 		 */
1135 	}
1136 
1137 	ret = htab_lock_bucket(htab, b, hash, &flags);
1138 	if (ret)
1139 		return ret;
1140 
1141 	l_old = lookup_elem_raw(head, hash, key, key_size);
1142 
1143 	ret = check_flags(htab, l_old, map_flags);
1144 	if (ret)
1145 		goto err;
1146 
1147 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1148 		/* first lookup without the bucket lock didn't find the element,
1149 		 * but second lookup with the bucket lock found it.
1150 		 * This case is highly unlikely, but has to be dealt with:
1151 		 * grab the element lock in addition to the bucket lock
1152 		 * and update element in place
1153 		 */
1154 		copy_map_value_locked(map,
1155 				      l_old->key + round_up(key_size, 8),
1156 				      value, false);
1157 		ret = 0;
1158 		goto err;
1159 	}
1160 
1161 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1162 				l_old);
1163 	if (IS_ERR(l_new)) {
1164 		/* all pre-allocated elements are in use or memory exhausted */
1165 		ret = PTR_ERR(l_new);
1166 		goto err;
1167 	}
1168 
1169 	/* add new element to the head of the list, so that
1170 	 * concurrent search will find it before old elem
1171 	 */
1172 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1173 	if (l_old) {
1174 		hlist_nulls_del_rcu(&l_old->hash_node);
1175 		if (!htab_is_prealloc(htab))
1176 			free_htab_elem(htab, l_old);
1177 		else
1178 			check_and_free_fields(htab, l_old);
1179 	}
1180 	ret = 0;
1181 err:
1182 	htab_unlock_bucket(htab, b, hash, flags);
1183 	return ret;
1184 }
1185 
1186 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1187 {
1188 	check_and_free_fields(htab, elem);
1189 	bpf_map_dec_elem_count(&htab->map);
1190 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1191 }
1192 
1193 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1194 				     u64 map_flags)
1195 {
1196 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1197 	struct htab_elem *l_new, *l_old = NULL;
1198 	struct hlist_nulls_head *head;
1199 	unsigned long flags;
1200 	struct bucket *b;
1201 	u32 key_size, hash;
1202 	int ret;
1203 
1204 	if (unlikely(map_flags > BPF_EXIST))
1205 		/* unknown flags */
1206 		return -EINVAL;
1207 
1208 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1209 		     !rcu_read_lock_bh_held());
1210 
1211 	key_size = map->key_size;
1212 
1213 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1214 
1215 	b = __select_bucket(htab, hash);
1216 	head = &b->head;
1217 
1218 	/* For LRU, we need to alloc before taking bucket's
1219 	 * spinlock because getting free nodes from LRU may need
1220 	 * to remove older elements from htab and this removal
1221 	 * operation will need a bucket lock.
1222 	 */
1223 	l_new = prealloc_lru_pop(htab, key, hash);
1224 	if (!l_new)
1225 		return -ENOMEM;
1226 	copy_map_value(&htab->map,
1227 		       l_new->key + round_up(map->key_size, 8), value);
1228 
1229 	ret = htab_lock_bucket(htab, b, hash, &flags);
1230 	if (ret)
1231 		goto err_lock_bucket;
1232 
1233 	l_old = lookup_elem_raw(head, hash, key, key_size);
1234 
1235 	ret = check_flags(htab, l_old, map_flags);
1236 	if (ret)
1237 		goto err;
1238 
1239 	/* add new element to the head of the list, so that
1240 	 * concurrent search will find it before old elem
1241 	 */
1242 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1243 	if (l_old) {
1244 		bpf_lru_node_set_ref(&l_new->lru_node);
1245 		hlist_nulls_del_rcu(&l_old->hash_node);
1246 	}
1247 	ret = 0;
1248 
1249 err:
1250 	htab_unlock_bucket(htab, b, hash, flags);
1251 
1252 err_lock_bucket:
1253 	if (ret)
1254 		htab_lru_push_free(htab, l_new);
1255 	else if (l_old)
1256 		htab_lru_push_free(htab, l_old);
1257 
1258 	return ret;
1259 }
1260 
1261 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1262 					  void *value, u64 map_flags,
1263 					  bool onallcpus)
1264 {
1265 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1266 	struct htab_elem *l_new = NULL, *l_old;
1267 	struct hlist_nulls_head *head;
1268 	unsigned long flags;
1269 	struct bucket *b;
1270 	u32 key_size, hash;
1271 	int ret;
1272 
1273 	if (unlikely(map_flags > BPF_EXIST))
1274 		/* unknown flags */
1275 		return -EINVAL;
1276 
1277 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1278 		     !rcu_read_lock_bh_held());
1279 
1280 	key_size = map->key_size;
1281 
1282 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1283 
1284 	b = __select_bucket(htab, hash);
1285 	head = &b->head;
1286 
1287 	ret = htab_lock_bucket(htab, b, hash, &flags);
1288 	if (ret)
1289 		return ret;
1290 
1291 	l_old = lookup_elem_raw(head, hash, key, key_size);
1292 
1293 	ret = check_flags(htab, l_old, map_flags);
1294 	if (ret)
1295 		goto err;
1296 
1297 	if (l_old) {
1298 		/* per-cpu hash map can update value in-place */
1299 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1300 				value, onallcpus);
1301 	} else {
1302 		l_new = alloc_htab_elem(htab, key, value, key_size,
1303 					hash, true, onallcpus, NULL);
1304 		if (IS_ERR(l_new)) {
1305 			ret = PTR_ERR(l_new);
1306 			goto err;
1307 		}
1308 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1309 	}
1310 	ret = 0;
1311 err:
1312 	htab_unlock_bucket(htab, b, hash, flags);
1313 	return ret;
1314 }
1315 
1316 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1317 					      void *value, u64 map_flags,
1318 					      bool onallcpus)
1319 {
1320 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1321 	struct htab_elem *l_new = NULL, *l_old;
1322 	struct hlist_nulls_head *head;
1323 	unsigned long flags;
1324 	struct bucket *b;
1325 	u32 key_size, hash;
1326 	int ret;
1327 
1328 	if (unlikely(map_flags > BPF_EXIST))
1329 		/* unknown flags */
1330 		return -EINVAL;
1331 
1332 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1333 		     !rcu_read_lock_bh_held());
1334 
1335 	key_size = map->key_size;
1336 
1337 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1338 
1339 	b = __select_bucket(htab, hash);
1340 	head = &b->head;
1341 
1342 	/* For LRU, we need to alloc before taking bucket's
1343 	 * spinlock because LRU's elem alloc may need
1344 	 * to remove older elem from htab and this removal
1345 	 * operation will need a bucket lock.
1346 	 */
1347 	if (map_flags != BPF_EXIST) {
1348 		l_new = prealloc_lru_pop(htab, key, hash);
1349 		if (!l_new)
1350 			return -ENOMEM;
1351 	}
1352 
1353 	ret = htab_lock_bucket(htab, b, hash, &flags);
1354 	if (ret)
1355 		goto err_lock_bucket;
1356 
1357 	l_old = lookup_elem_raw(head, hash, key, key_size);
1358 
1359 	ret = check_flags(htab, l_old, map_flags);
1360 	if (ret)
1361 		goto err;
1362 
1363 	if (l_old) {
1364 		bpf_lru_node_set_ref(&l_old->lru_node);
1365 
1366 		/* per-cpu hash map can update value in-place */
1367 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1368 				value, onallcpus);
1369 	} else {
1370 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1371 				value, onallcpus);
1372 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1373 		l_new = NULL;
1374 	}
1375 	ret = 0;
1376 err:
1377 	htab_unlock_bucket(htab, b, hash, flags);
1378 err_lock_bucket:
1379 	if (l_new) {
1380 		bpf_map_dec_elem_count(&htab->map);
1381 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1382 	}
1383 	return ret;
1384 }
1385 
1386 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1387 					void *value, u64 map_flags)
1388 {
1389 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1390 }
1391 
1392 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1393 					    void *value, u64 map_flags)
1394 {
1395 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1396 						 false);
1397 }
1398 
1399 /* Called from syscall or from eBPF program */
1400 static long htab_map_delete_elem(struct bpf_map *map, void *key)
1401 {
1402 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1403 	struct hlist_nulls_head *head;
1404 	struct bucket *b;
1405 	struct htab_elem *l;
1406 	unsigned long flags;
1407 	u32 hash, key_size;
1408 	int ret;
1409 
1410 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1411 		     !rcu_read_lock_bh_held());
1412 
1413 	key_size = map->key_size;
1414 
1415 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1416 	b = __select_bucket(htab, hash);
1417 	head = &b->head;
1418 
1419 	ret = htab_lock_bucket(htab, b, hash, &flags);
1420 	if (ret)
1421 		return ret;
1422 
1423 	l = lookup_elem_raw(head, hash, key, key_size);
1424 
1425 	if (l) {
1426 		hlist_nulls_del_rcu(&l->hash_node);
1427 		free_htab_elem(htab, l);
1428 	} else {
1429 		ret = -ENOENT;
1430 	}
1431 
1432 	htab_unlock_bucket(htab, b, hash, flags);
1433 	return ret;
1434 }
1435 
1436 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1437 {
1438 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1439 	struct hlist_nulls_head *head;
1440 	struct bucket *b;
1441 	struct htab_elem *l;
1442 	unsigned long flags;
1443 	u32 hash, key_size;
1444 	int ret;
1445 
1446 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1447 		     !rcu_read_lock_bh_held());
1448 
1449 	key_size = map->key_size;
1450 
1451 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1452 	b = __select_bucket(htab, hash);
1453 	head = &b->head;
1454 
1455 	ret = htab_lock_bucket(htab, b, hash, &flags);
1456 	if (ret)
1457 		return ret;
1458 
1459 	l = lookup_elem_raw(head, hash, key, key_size);
1460 
1461 	if (l)
1462 		hlist_nulls_del_rcu(&l->hash_node);
1463 	else
1464 		ret = -ENOENT;
1465 
1466 	htab_unlock_bucket(htab, b, hash, flags);
1467 	if (l)
1468 		htab_lru_push_free(htab, l);
1469 	return ret;
1470 }
1471 
1472 static void delete_all_elements(struct bpf_htab *htab)
1473 {
1474 	int i;
1475 
1476 	/* It's called from a worker thread, so disable migration here,
1477 	 * since bpf_mem_cache_free() relies on that.
1478 	 */
1479 	migrate_disable();
1480 	for (i = 0; i < htab->n_buckets; i++) {
1481 		struct hlist_nulls_head *head = select_bucket(htab, i);
1482 		struct hlist_nulls_node *n;
1483 		struct htab_elem *l;
1484 
1485 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1486 			hlist_nulls_del_rcu(&l->hash_node);
1487 			htab_elem_free(htab, l);
1488 		}
1489 	}
1490 	migrate_enable();
1491 }
1492 
1493 static void htab_free_malloced_timers(struct bpf_htab *htab)
1494 {
1495 	int i;
1496 
1497 	rcu_read_lock();
1498 	for (i = 0; i < htab->n_buckets; i++) {
1499 		struct hlist_nulls_head *head = select_bucket(htab, i);
1500 		struct hlist_nulls_node *n;
1501 		struct htab_elem *l;
1502 
1503 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1504 			/* We only free timer on uref dropping to zero */
1505 			bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1506 		}
1507 		cond_resched_rcu();
1508 	}
1509 	rcu_read_unlock();
1510 }
1511 
1512 static void htab_map_free_timers(struct bpf_map *map)
1513 {
1514 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1515 
1516 	/* We only free timer on uref dropping to zero */
1517 	if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1518 		return;
1519 	if (!htab_is_prealloc(htab))
1520 		htab_free_malloced_timers(htab);
1521 	else
1522 		htab_free_prealloced_timers(htab);
1523 }
1524 
1525 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1526 static void htab_map_free(struct bpf_map *map)
1527 {
1528 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1529 	int i;
1530 
1531 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1532 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1533 	 * There is no need to synchronize_rcu() here to protect map elements.
1534 	 */
1535 
1536 	/* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1537 	 * underneath and is reponsible for waiting for callbacks to finish
1538 	 * during bpf_mem_alloc_destroy().
1539 	 */
1540 	if (!htab_is_prealloc(htab)) {
1541 		delete_all_elements(htab);
1542 	} else {
1543 		htab_free_prealloced_fields(htab);
1544 		prealloc_destroy(htab);
1545 	}
1546 
1547 	bpf_map_free_elem_count(map);
1548 	free_percpu(htab->extra_elems);
1549 	bpf_map_area_free(htab->buckets);
1550 	bpf_mem_alloc_destroy(&htab->pcpu_ma);
1551 	bpf_mem_alloc_destroy(&htab->ma);
1552 	if (htab->use_percpu_counter)
1553 		percpu_counter_destroy(&htab->pcount);
1554 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1555 		free_percpu(htab->map_locked[i]);
1556 	lockdep_unregister_key(&htab->lockdep_key);
1557 	bpf_map_area_free(htab);
1558 }
1559 
1560 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1561 				   struct seq_file *m)
1562 {
1563 	void *value;
1564 
1565 	rcu_read_lock();
1566 
1567 	value = htab_map_lookup_elem(map, key);
1568 	if (!value) {
1569 		rcu_read_unlock();
1570 		return;
1571 	}
1572 
1573 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1574 	seq_puts(m, ": ");
1575 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1576 	seq_puts(m, "\n");
1577 
1578 	rcu_read_unlock();
1579 }
1580 
1581 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1582 					     void *value, bool is_lru_map,
1583 					     bool is_percpu, u64 flags)
1584 {
1585 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1586 	struct hlist_nulls_head *head;
1587 	unsigned long bflags;
1588 	struct htab_elem *l;
1589 	u32 hash, key_size;
1590 	struct bucket *b;
1591 	int ret;
1592 
1593 	key_size = map->key_size;
1594 
1595 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1596 	b = __select_bucket(htab, hash);
1597 	head = &b->head;
1598 
1599 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1600 	if (ret)
1601 		return ret;
1602 
1603 	l = lookup_elem_raw(head, hash, key, key_size);
1604 	if (!l) {
1605 		ret = -ENOENT;
1606 	} else {
1607 		if (is_percpu) {
1608 			u32 roundup_value_size = round_up(map->value_size, 8);
1609 			void __percpu *pptr;
1610 			int off = 0, cpu;
1611 
1612 			pptr = htab_elem_get_ptr(l, key_size);
1613 			for_each_possible_cpu(cpu) {
1614 				copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
1615 				check_and_init_map_value(&htab->map, value + off);
1616 				off += roundup_value_size;
1617 			}
1618 		} else {
1619 			u32 roundup_key_size = round_up(map->key_size, 8);
1620 
1621 			if (flags & BPF_F_LOCK)
1622 				copy_map_value_locked(map, value, l->key +
1623 						      roundup_key_size,
1624 						      true);
1625 			else
1626 				copy_map_value(map, value, l->key +
1627 					       roundup_key_size);
1628 			/* Zeroing special fields in the temp buffer */
1629 			check_and_init_map_value(map, value);
1630 		}
1631 
1632 		hlist_nulls_del_rcu(&l->hash_node);
1633 		if (!is_lru_map)
1634 			free_htab_elem(htab, l);
1635 	}
1636 
1637 	htab_unlock_bucket(htab, b, hash, bflags);
1638 
1639 	if (is_lru_map && l)
1640 		htab_lru_push_free(htab, l);
1641 
1642 	return ret;
1643 }
1644 
1645 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1646 					   void *value, u64 flags)
1647 {
1648 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1649 						 flags);
1650 }
1651 
1652 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1653 						  void *key, void *value,
1654 						  u64 flags)
1655 {
1656 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1657 						 flags);
1658 }
1659 
1660 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1661 					       void *value, u64 flags)
1662 {
1663 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1664 						 flags);
1665 }
1666 
1667 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1668 						      void *key, void *value,
1669 						      u64 flags)
1670 {
1671 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1672 						 flags);
1673 }
1674 
1675 static int
1676 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1677 				   const union bpf_attr *attr,
1678 				   union bpf_attr __user *uattr,
1679 				   bool do_delete, bool is_lru_map,
1680 				   bool is_percpu)
1681 {
1682 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1683 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1684 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1685 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1686 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1687 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1688 	u32 batch, max_count, size, bucket_size, map_id;
1689 	struct htab_elem *node_to_free = NULL;
1690 	u64 elem_map_flags, map_flags;
1691 	struct hlist_nulls_head *head;
1692 	struct hlist_nulls_node *n;
1693 	unsigned long flags = 0;
1694 	bool locked = false;
1695 	struct htab_elem *l;
1696 	struct bucket *b;
1697 	int ret = 0;
1698 
1699 	elem_map_flags = attr->batch.elem_flags;
1700 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1701 	    ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1702 		return -EINVAL;
1703 
1704 	map_flags = attr->batch.flags;
1705 	if (map_flags)
1706 		return -EINVAL;
1707 
1708 	max_count = attr->batch.count;
1709 	if (!max_count)
1710 		return 0;
1711 
1712 	if (put_user(0, &uattr->batch.count))
1713 		return -EFAULT;
1714 
1715 	batch = 0;
1716 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1717 		return -EFAULT;
1718 
1719 	if (batch >= htab->n_buckets)
1720 		return -ENOENT;
1721 
1722 	key_size = htab->map.key_size;
1723 	roundup_key_size = round_up(htab->map.key_size, 8);
1724 	value_size = htab->map.value_size;
1725 	size = round_up(value_size, 8);
1726 	if (is_percpu)
1727 		value_size = size * num_possible_cpus();
1728 	total = 0;
1729 	/* while experimenting with hash tables with sizes ranging from 10 to
1730 	 * 1000, it was observed that a bucket can have up to 5 entries.
1731 	 */
1732 	bucket_size = 5;
1733 
1734 alloc:
1735 	/* We cannot do copy_from_user or copy_to_user inside
1736 	 * the rcu_read_lock. Allocate enough space here.
1737 	 */
1738 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1739 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1740 	if (!keys || !values) {
1741 		ret = -ENOMEM;
1742 		goto after_loop;
1743 	}
1744 
1745 again:
1746 	bpf_disable_instrumentation();
1747 	rcu_read_lock();
1748 again_nocopy:
1749 	dst_key = keys;
1750 	dst_val = values;
1751 	b = &htab->buckets[batch];
1752 	head = &b->head;
1753 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1754 	if (locked) {
1755 		ret = htab_lock_bucket(htab, b, batch, &flags);
1756 		if (ret) {
1757 			rcu_read_unlock();
1758 			bpf_enable_instrumentation();
1759 			goto after_loop;
1760 		}
1761 	}
1762 
1763 	bucket_cnt = 0;
1764 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1765 		bucket_cnt++;
1766 
1767 	if (bucket_cnt && !locked) {
1768 		locked = true;
1769 		goto again_nocopy;
1770 	}
1771 
1772 	if (bucket_cnt > (max_count - total)) {
1773 		if (total == 0)
1774 			ret = -ENOSPC;
1775 		/* Note that since bucket_cnt > 0 here, it is implicit
1776 		 * that the locked was grabbed, so release it.
1777 		 */
1778 		htab_unlock_bucket(htab, b, batch, flags);
1779 		rcu_read_unlock();
1780 		bpf_enable_instrumentation();
1781 		goto after_loop;
1782 	}
1783 
1784 	if (bucket_cnt > bucket_size) {
1785 		bucket_size = bucket_cnt;
1786 		/* Note that since bucket_cnt > 0 here, it is implicit
1787 		 * that the locked was grabbed, so release it.
1788 		 */
1789 		htab_unlock_bucket(htab, b, batch, flags);
1790 		rcu_read_unlock();
1791 		bpf_enable_instrumentation();
1792 		kvfree(keys);
1793 		kvfree(values);
1794 		goto alloc;
1795 	}
1796 
1797 	/* Next block is only safe to run if you have grabbed the lock */
1798 	if (!locked)
1799 		goto next_batch;
1800 
1801 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1802 		memcpy(dst_key, l->key, key_size);
1803 
1804 		if (is_percpu) {
1805 			int off = 0, cpu;
1806 			void __percpu *pptr;
1807 
1808 			pptr = htab_elem_get_ptr(l, map->key_size);
1809 			for_each_possible_cpu(cpu) {
1810 				copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
1811 				check_and_init_map_value(&htab->map, dst_val + off);
1812 				off += size;
1813 			}
1814 		} else {
1815 			value = l->key + roundup_key_size;
1816 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1817 				struct bpf_map **inner_map = value;
1818 
1819 				 /* Actual value is the id of the inner map */
1820 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1821 				value = &map_id;
1822 			}
1823 
1824 			if (elem_map_flags & BPF_F_LOCK)
1825 				copy_map_value_locked(map, dst_val, value,
1826 						      true);
1827 			else
1828 				copy_map_value(map, dst_val, value);
1829 			/* Zeroing special fields in the temp buffer */
1830 			check_and_init_map_value(map, dst_val);
1831 		}
1832 		if (do_delete) {
1833 			hlist_nulls_del_rcu(&l->hash_node);
1834 
1835 			/* bpf_lru_push_free() will acquire lru_lock, which
1836 			 * may cause deadlock. See comments in function
1837 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1838 			 * after releasing the bucket lock.
1839 			 */
1840 			if (is_lru_map) {
1841 				l->batch_flink = node_to_free;
1842 				node_to_free = l;
1843 			} else {
1844 				free_htab_elem(htab, l);
1845 			}
1846 		}
1847 		dst_key += key_size;
1848 		dst_val += value_size;
1849 	}
1850 
1851 	htab_unlock_bucket(htab, b, batch, flags);
1852 	locked = false;
1853 
1854 	while (node_to_free) {
1855 		l = node_to_free;
1856 		node_to_free = node_to_free->batch_flink;
1857 		htab_lru_push_free(htab, l);
1858 	}
1859 
1860 next_batch:
1861 	/* If we are not copying data, we can go to next bucket and avoid
1862 	 * unlocking the rcu.
1863 	 */
1864 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1865 		batch++;
1866 		goto again_nocopy;
1867 	}
1868 
1869 	rcu_read_unlock();
1870 	bpf_enable_instrumentation();
1871 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1872 	    key_size * bucket_cnt) ||
1873 	    copy_to_user(uvalues + total * value_size, values,
1874 	    value_size * bucket_cnt))) {
1875 		ret = -EFAULT;
1876 		goto after_loop;
1877 	}
1878 
1879 	total += bucket_cnt;
1880 	batch++;
1881 	if (batch >= htab->n_buckets) {
1882 		ret = -ENOENT;
1883 		goto after_loop;
1884 	}
1885 	goto again;
1886 
1887 after_loop:
1888 	if (ret == -EFAULT)
1889 		goto out;
1890 
1891 	/* copy # of entries and next batch */
1892 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1893 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1894 	    put_user(total, &uattr->batch.count))
1895 		ret = -EFAULT;
1896 
1897 out:
1898 	kvfree(keys);
1899 	kvfree(values);
1900 	return ret;
1901 }
1902 
1903 static int
1904 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1905 			     union bpf_attr __user *uattr)
1906 {
1907 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1908 						  false, true);
1909 }
1910 
1911 static int
1912 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1913 					const union bpf_attr *attr,
1914 					union bpf_attr __user *uattr)
1915 {
1916 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1917 						  false, true);
1918 }
1919 
1920 static int
1921 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1922 		      union bpf_attr __user *uattr)
1923 {
1924 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1925 						  false, false);
1926 }
1927 
1928 static int
1929 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1930 				 const union bpf_attr *attr,
1931 				 union bpf_attr __user *uattr)
1932 {
1933 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1934 						  false, false);
1935 }
1936 
1937 static int
1938 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1939 				 const union bpf_attr *attr,
1940 				 union bpf_attr __user *uattr)
1941 {
1942 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1943 						  true, true);
1944 }
1945 
1946 static int
1947 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1948 					    const union bpf_attr *attr,
1949 					    union bpf_attr __user *uattr)
1950 {
1951 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1952 						  true, true);
1953 }
1954 
1955 static int
1956 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1957 			  union bpf_attr __user *uattr)
1958 {
1959 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1960 						  true, false);
1961 }
1962 
1963 static int
1964 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1965 				     const union bpf_attr *attr,
1966 				     union bpf_attr __user *uattr)
1967 {
1968 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1969 						  true, false);
1970 }
1971 
1972 struct bpf_iter_seq_hash_map_info {
1973 	struct bpf_map *map;
1974 	struct bpf_htab *htab;
1975 	void *percpu_value_buf; // non-zero means percpu hash
1976 	u32 bucket_id;
1977 	u32 skip_elems;
1978 };
1979 
1980 static struct htab_elem *
1981 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1982 			   struct htab_elem *prev_elem)
1983 {
1984 	const struct bpf_htab *htab = info->htab;
1985 	u32 skip_elems = info->skip_elems;
1986 	u32 bucket_id = info->bucket_id;
1987 	struct hlist_nulls_head *head;
1988 	struct hlist_nulls_node *n;
1989 	struct htab_elem *elem;
1990 	struct bucket *b;
1991 	u32 i, count;
1992 
1993 	if (bucket_id >= htab->n_buckets)
1994 		return NULL;
1995 
1996 	/* try to find next elem in the same bucket */
1997 	if (prev_elem) {
1998 		/* no update/deletion on this bucket, prev_elem should be still valid
1999 		 * and we won't skip elements.
2000 		 */
2001 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
2002 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
2003 		if (elem)
2004 			return elem;
2005 
2006 		/* not found, unlock and go to the next bucket */
2007 		b = &htab->buckets[bucket_id++];
2008 		rcu_read_unlock();
2009 		skip_elems = 0;
2010 	}
2011 
2012 	for (i = bucket_id; i < htab->n_buckets; i++) {
2013 		b = &htab->buckets[i];
2014 		rcu_read_lock();
2015 
2016 		count = 0;
2017 		head = &b->head;
2018 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2019 			if (count >= skip_elems) {
2020 				info->bucket_id = i;
2021 				info->skip_elems = count;
2022 				return elem;
2023 			}
2024 			count++;
2025 		}
2026 
2027 		rcu_read_unlock();
2028 		skip_elems = 0;
2029 	}
2030 
2031 	info->bucket_id = i;
2032 	info->skip_elems = 0;
2033 	return NULL;
2034 }
2035 
2036 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2037 {
2038 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2039 	struct htab_elem *elem;
2040 
2041 	elem = bpf_hash_map_seq_find_next(info, NULL);
2042 	if (!elem)
2043 		return NULL;
2044 
2045 	if (*pos == 0)
2046 		++*pos;
2047 	return elem;
2048 }
2049 
2050 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2051 {
2052 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2053 
2054 	++*pos;
2055 	++info->skip_elems;
2056 	return bpf_hash_map_seq_find_next(info, v);
2057 }
2058 
2059 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2060 {
2061 	struct bpf_iter_seq_hash_map_info *info = seq->private;
2062 	u32 roundup_key_size, roundup_value_size;
2063 	struct bpf_iter__bpf_map_elem ctx = {};
2064 	struct bpf_map *map = info->map;
2065 	struct bpf_iter_meta meta;
2066 	int ret = 0, off = 0, cpu;
2067 	struct bpf_prog *prog;
2068 	void __percpu *pptr;
2069 
2070 	meta.seq = seq;
2071 	prog = bpf_iter_get_info(&meta, elem == NULL);
2072 	if (prog) {
2073 		ctx.meta = &meta;
2074 		ctx.map = info->map;
2075 		if (elem) {
2076 			roundup_key_size = round_up(map->key_size, 8);
2077 			ctx.key = elem->key;
2078 			if (!info->percpu_value_buf) {
2079 				ctx.value = elem->key + roundup_key_size;
2080 			} else {
2081 				roundup_value_size = round_up(map->value_size, 8);
2082 				pptr = htab_elem_get_ptr(elem, map->key_size);
2083 				for_each_possible_cpu(cpu) {
2084 					copy_map_value_long(map, info->percpu_value_buf + off,
2085 							    per_cpu_ptr(pptr, cpu));
2086 					check_and_init_map_value(map, info->percpu_value_buf + off);
2087 					off += roundup_value_size;
2088 				}
2089 				ctx.value = info->percpu_value_buf;
2090 			}
2091 		}
2092 		ret = bpf_iter_run_prog(prog, &ctx);
2093 	}
2094 
2095 	return ret;
2096 }
2097 
2098 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2099 {
2100 	return __bpf_hash_map_seq_show(seq, v);
2101 }
2102 
2103 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2104 {
2105 	if (!v)
2106 		(void)__bpf_hash_map_seq_show(seq, NULL);
2107 	else
2108 		rcu_read_unlock();
2109 }
2110 
2111 static int bpf_iter_init_hash_map(void *priv_data,
2112 				  struct bpf_iter_aux_info *aux)
2113 {
2114 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2115 	struct bpf_map *map = aux->map;
2116 	void *value_buf;
2117 	u32 buf_size;
2118 
2119 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2120 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2121 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2122 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2123 		if (!value_buf)
2124 			return -ENOMEM;
2125 
2126 		seq_info->percpu_value_buf = value_buf;
2127 	}
2128 
2129 	bpf_map_inc_with_uref(map);
2130 	seq_info->map = map;
2131 	seq_info->htab = container_of(map, struct bpf_htab, map);
2132 	return 0;
2133 }
2134 
2135 static void bpf_iter_fini_hash_map(void *priv_data)
2136 {
2137 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2138 
2139 	bpf_map_put_with_uref(seq_info->map);
2140 	kfree(seq_info->percpu_value_buf);
2141 }
2142 
2143 static const struct seq_operations bpf_hash_map_seq_ops = {
2144 	.start	= bpf_hash_map_seq_start,
2145 	.next	= bpf_hash_map_seq_next,
2146 	.stop	= bpf_hash_map_seq_stop,
2147 	.show	= bpf_hash_map_seq_show,
2148 };
2149 
2150 static const struct bpf_iter_seq_info iter_seq_info = {
2151 	.seq_ops		= &bpf_hash_map_seq_ops,
2152 	.init_seq_private	= bpf_iter_init_hash_map,
2153 	.fini_seq_private	= bpf_iter_fini_hash_map,
2154 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2155 };
2156 
2157 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2158 				   void *callback_ctx, u64 flags)
2159 {
2160 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2161 	struct hlist_nulls_head *head;
2162 	struct hlist_nulls_node *n;
2163 	struct htab_elem *elem;
2164 	u32 roundup_key_size;
2165 	int i, num_elems = 0;
2166 	void __percpu *pptr;
2167 	struct bucket *b;
2168 	void *key, *val;
2169 	bool is_percpu;
2170 	u64 ret = 0;
2171 
2172 	if (flags != 0)
2173 		return -EINVAL;
2174 
2175 	is_percpu = htab_is_percpu(htab);
2176 
2177 	roundup_key_size = round_up(map->key_size, 8);
2178 	/* disable migration so percpu value prepared here will be the
2179 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2180 	 */
2181 	if (is_percpu)
2182 		migrate_disable();
2183 	for (i = 0; i < htab->n_buckets; i++) {
2184 		b = &htab->buckets[i];
2185 		rcu_read_lock();
2186 		head = &b->head;
2187 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2188 			key = elem->key;
2189 			if (is_percpu) {
2190 				/* current cpu value for percpu map */
2191 				pptr = htab_elem_get_ptr(elem, map->key_size);
2192 				val = this_cpu_ptr(pptr);
2193 			} else {
2194 				val = elem->key + roundup_key_size;
2195 			}
2196 			num_elems++;
2197 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2198 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2199 			/* return value: 0 - continue, 1 - stop and return */
2200 			if (ret) {
2201 				rcu_read_unlock();
2202 				goto out;
2203 			}
2204 		}
2205 		rcu_read_unlock();
2206 	}
2207 out:
2208 	if (is_percpu)
2209 		migrate_enable();
2210 	return num_elems;
2211 }
2212 
2213 static u64 htab_map_mem_usage(const struct bpf_map *map)
2214 {
2215 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2216 	u32 value_size = round_up(htab->map.value_size, 8);
2217 	bool prealloc = htab_is_prealloc(htab);
2218 	bool percpu = htab_is_percpu(htab);
2219 	bool lru = htab_is_lru(htab);
2220 	u64 num_entries;
2221 	u64 usage = sizeof(struct bpf_htab);
2222 
2223 	usage += sizeof(struct bucket) * htab->n_buckets;
2224 	usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2225 	if (prealloc) {
2226 		num_entries = map->max_entries;
2227 		if (htab_has_extra_elems(htab))
2228 			num_entries += num_possible_cpus();
2229 
2230 		usage += htab->elem_size * num_entries;
2231 
2232 		if (percpu)
2233 			usage += value_size * num_possible_cpus() * num_entries;
2234 		else if (!lru)
2235 			usage += sizeof(struct htab_elem *) * num_possible_cpus();
2236 	} else {
2237 #define LLIST_NODE_SZ sizeof(struct llist_node)
2238 
2239 		num_entries = htab->use_percpu_counter ?
2240 					  percpu_counter_sum(&htab->pcount) :
2241 					  atomic_read(&htab->count);
2242 		usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2243 		if (percpu) {
2244 			usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2245 			usage += value_size * num_possible_cpus() * num_entries;
2246 		}
2247 	}
2248 	return usage;
2249 }
2250 
2251 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2252 const struct bpf_map_ops htab_map_ops = {
2253 	.map_meta_equal = bpf_map_meta_equal,
2254 	.map_alloc_check = htab_map_alloc_check,
2255 	.map_alloc = htab_map_alloc,
2256 	.map_free = htab_map_free,
2257 	.map_get_next_key = htab_map_get_next_key,
2258 	.map_release_uref = htab_map_free_timers,
2259 	.map_lookup_elem = htab_map_lookup_elem,
2260 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2261 	.map_update_elem = htab_map_update_elem,
2262 	.map_delete_elem = htab_map_delete_elem,
2263 	.map_gen_lookup = htab_map_gen_lookup,
2264 	.map_seq_show_elem = htab_map_seq_show_elem,
2265 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2266 	.map_for_each_callback = bpf_for_each_hash_elem,
2267 	.map_mem_usage = htab_map_mem_usage,
2268 	BATCH_OPS(htab),
2269 	.map_btf_id = &htab_map_btf_ids[0],
2270 	.iter_seq_info = &iter_seq_info,
2271 };
2272 
2273 const struct bpf_map_ops htab_lru_map_ops = {
2274 	.map_meta_equal = bpf_map_meta_equal,
2275 	.map_alloc_check = htab_map_alloc_check,
2276 	.map_alloc = htab_map_alloc,
2277 	.map_free = htab_map_free,
2278 	.map_get_next_key = htab_map_get_next_key,
2279 	.map_release_uref = htab_map_free_timers,
2280 	.map_lookup_elem = htab_lru_map_lookup_elem,
2281 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2282 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2283 	.map_update_elem = htab_lru_map_update_elem,
2284 	.map_delete_elem = htab_lru_map_delete_elem,
2285 	.map_gen_lookup = htab_lru_map_gen_lookup,
2286 	.map_seq_show_elem = htab_map_seq_show_elem,
2287 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2288 	.map_for_each_callback = bpf_for_each_hash_elem,
2289 	.map_mem_usage = htab_map_mem_usage,
2290 	BATCH_OPS(htab_lru),
2291 	.map_btf_id = &htab_map_btf_ids[0],
2292 	.iter_seq_info = &iter_seq_info,
2293 };
2294 
2295 /* Called from eBPF program */
2296 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2297 {
2298 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2299 
2300 	if (l)
2301 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2302 	else
2303 		return NULL;
2304 }
2305 
2306 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2307 {
2308 	struct htab_elem *l;
2309 
2310 	if (cpu >= nr_cpu_ids)
2311 		return NULL;
2312 
2313 	l = __htab_map_lookup_elem(map, key);
2314 	if (l)
2315 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2316 	else
2317 		return NULL;
2318 }
2319 
2320 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2321 {
2322 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2323 
2324 	if (l) {
2325 		bpf_lru_node_set_ref(&l->lru_node);
2326 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2327 	}
2328 
2329 	return NULL;
2330 }
2331 
2332 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2333 {
2334 	struct htab_elem *l;
2335 
2336 	if (cpu >= nr_cpu_ids)
2337 		return NULL;
2338 
2339 	l = __htab_map_lookup_elem(map, key);
2340 	if (l) {
2341 		bpf_lru_node_set_ref(&l->lru_node);
2342 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2343 	}
2344 
2345 	return NULL;
2346 }
2347 
2348 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2349 {
2350 	struct htab_elem *l;
2351 	void __percpu *pptr;
2352 	int ret = -ENOENT;
2353 	int cpu, off = 0;
2354 	u32 size;
2355 
2356 	/* per_cpu areas are zero-filled and bpf programs can only
2357 	 * access 'value_size' of them, so copying rounded areas
2358 	 * will not leak any kernel data
2359 	 */
2360 	size = round_up(map->value_size, 8);
2361 	rcu_read_lock();
2362 	l = __htab_map_lookup_elem(map, key);
2363 	if (!l)
2364 		goto out;
2365 	/* We do not mark LRU map element here in order to not mess up
2366 	 * eviction heuristics when user space does a map walk.
2367 	 */
2368 	pptr = htab_elem_get_ptr(l, map->key_size);
2369 	for_each_possible_cpu(cpu) {
2370 		copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
2371 		check_and_init_map_value(map, value + off);
2372 		off += size;
2373 	}
2374 	ret = 0;
2375 out:
2376 	rcu_read_unlock();
2377 	return ret;
2378 }
2379 
2380 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2381 			   u64 map_flags)
2382 {
2383 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2384 	int ret;
2385 
2386 	rcu_read_lock();
2387 	if (htab_is_lru(htab))
2388 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2389 							map_flags, true);
2390 	else
2391 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2392 						    true);
2393 	rcu_read_unlock();
2394 
2395 	return ret;
2396 }
2397 
2398 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2399 					  struct seq_file *m)
2400 {
2401 	struct htab_elem *l;
2402 	void __percpu *pptr;
2403 	int cpu;
2404 
2405 	rcu_read_lock();
2406 
2407 	l = __htab_map_lookup_elem(map, key);
2408 	if (!l) {
2409 		rcu_read_unlock();
2410 		return;
2411 	}
2412 
2413 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2414 	seq_puts(m, ": {\n");
2415 	pptr = htab_elem_get_ptr(l, map->key_size);
2416 	for_each_possible_cpu(cpu) {
2417 		seq_printf(m, "\tcpu%d: ", cpu);
2418 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2419 				  per_cpu_ptr(pptr, cpu), m);
2420 		seq_puts(m, "\n");
2421 	}
2422 	seq_puts(m, "}\n");
2423 
2424 	rcu_read_unlock();
2425 }
2426 
2427 const struct bpf_map_ops htab_percpu_map_ops = {
2428 	.map_meta_equal = bpf_map_meta_equal,
2429 	.map_alloc_check = htab_map_alloc_check,
2430 	.map_alloc = htab_map_alloc,
2431 	.map_free = htab_map_free,
2432 	.map_get_next_key = htab_map_get_next_key,
2433 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2434 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2435 	.map_update_elem = htab_percpu_map_update_elem,
2436 	.map_delete_elem = htab_map_delete_elem,
2437 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2438 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2439 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2440 	.map_for_each_callback = bpf_for_each_hash_elem,
2441 	.map_mem_usage = htab_map_mem_usage,
2442 	BATCH_OPS(htab_percpu),
2443 	.map_btf_id = &htab_map_btf_ids[0],
2444 	.iter_seq_info = &iter_seq_info,
2445 };
2446 
2447 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2448 	.map_meta_equal = bpf_map_meta_equal,
2449 	.map_alloc_check = htab_map_alloc_check,
2450 	.map_alloc = htab_map_alloc,
2451 	.map_free = htab_map_free,
2452 	.map_get_next_key = htab_map_get_next_key,
2453 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2454 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2455 	.map_update_elem = htab_lru_percpu_map_update_elem,
2456 	.map_delete_elem = htab_lru_map_delete_elem,
2457 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2458 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2459 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2460 	.map_for_each_callback = bpf_for_each_hash_elem,
2461 	.map_mem_usage = htab_map_mem_usage,
2462 	BATCH_OPS(htab_lru_percpu),
2463 	.map_btf_id = &htab_map_btf_ids[0],
2464 	.iter_seq_info = &iter_seq_info,
2465 };
2466 
2467 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2468 {
2469 	if (attr->value_size != sizeof(u32))
2470 		return -EINVAL;
2471 	return htab_map_alloc_check(attr);
2472 }
2473 
2474 static void fd_htab_map_free(struct bpf_map *map)
2475 {
2476 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2477 	struct hlist_nulls_node *n;
2478 	struct hlist_nulls_head *head;
2479 	struct htab_elem *l;
2480 	int i;
2481 
2482 	for (i = 0; i < htab->n_buckets; i++) {
2483 		head = select_bucket(htab, i);
2484 
2485 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2486 			void *ptr = fd_htab_map_get_ptr(map, l);
2487 
2488 			map->ops->map_fd_put_ptr(map, ptr, false);
2489 		}
2490 	}
2491 
2492 	htab_map_free(map);
2493 }
2494 
2495 /* only called from syscall */
2496 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2497 {
2498 	void **ptr;
2499 	int ret = 0;
2500 
2501 	if (!map->ops->map_fd_sys_lookup_elem)
2502 		return -ENOTSUPP;
2503 
2504 	rcu_read_lock();
2505 	ptr = htab_map_lookup_elem(map, key);
2506 	if (ptr)
2507 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2508 	else
2509 		ret = -ENOENT;
2510 	rcu_read_unlock();
2511 
2512 	return ret;
2513 }
2514 
2515 /* only called from syscall */
2516 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2517 				void *key, void *value, u64 map_flags)
2518 {
2519 	void *ptr;
2520 	int ret;
2521 	u32 ufd = *(u32 *)value;
2522 
2523 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2524 	if (IS_ERR(ptr))
2525 		return PTR_ERR(ptr);
2526 
2527 	/* The htab bucket lock is always held during update operations in fd
2528 	 * htab map, and the following rcu_read_lock() is only used to avoid
2529 	 * the WARN_ON_ONCE in htab_map_update_elem().
2530 	 */
2531 	rcu_read_lock();
2532 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2533 	rcu_read_unlock();
2534 	if (ret)
2535 		map->ops->map_fd_put_ptr(map, ptr, false);
2536 
2537 	return ret;
2538 }
2539 
2540 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2541 {
2542 	struct bpf_map *map, *inner_map_meta;
2543 
2544 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2545 	if (IS_ERR(inner_map_meta))
2546 		return inner_map_meta;
2547 
2548 	map = htab_map_alloc(attr);
2549 	if (IS_ERR(map)) {
2550 		bpf_map_meta_free(inner_map_meta);
2551 		return map;
2552 	}
2553 
2554 	map->inner_map_meta = inner_map_meta;
2555 
2556 	return map;
2557 }
2558 
2559 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2560 {
2561 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2562 
2563 	if (!inner_map)
2564 		return NULL;
2565 
2566 	return READ_ONCE(*inner_map);
2567 }
2568 
2569 static int htab_of_map_gen_lookup(struct bpf_map *map,
2570 				  struct bpf_insn *insn_buf)
2571 {
2572 	struct bpf_insn *insn = insn_buf;
2573 	const int ret = BPF_REG_0;
2574 
2575 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2576 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2577 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2578 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2579 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2580 				offsetof(struct htab_elem, key) +
2581 				round_up(map->key_size, 8));
2582 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2583 
2584 	return insn - insn_buf;
2585 }
2586 
2587 static void htab_of_map_free(struct bpf_map *map)
2588 {
2589 	bpf_map_meta_free(map->inner_map_meta);
2590 	fd_htab_map_free(map);
2591 }
2592 
2593 const struct bpf_map_ops htab_of_maps_map_ops = {
2594 	.map_alloc_check = fd_htab_map_alloc_check,
2595 	.map_alloc = htab_of_map_alloc,
2596 	.map_free = htab_of_map_free,
2597 	.map_get_next_key = htab_map_get_next_key,
2598 	.map_lookup_elem = htab_of_map_lookup_elem,
2599 	.map_delete_elem = htab_map_delete_elem,
2600 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2601 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2602 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2603 	.map_gen_lookup = htab_of_map_gen_lookup,
2604 	.map_check_btf = map_check_no_btf,
2605 	.map_mem_usage = htab_map_mem_usage,
2606 	BATCH_OPS(htab),
2607 	.map_btf_id = &htab_map_btf_ids[0],
2608 };
2609