1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 156 157 preempt_disable(); 158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 159 __this_cpu_dec(*(htab->map_locked[hash])); 160 preempt_enable(); 161 return -EBUSY; 162 } 163 164 raw_spin_lock_irqsave(&b->raw_lock, flags); 165 *pflags = flags; 166 167 return 0; 168 } 169 170 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 171 struct bucket *b, u32 hash, 172 unsigned long flags) 173 { 174 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 175 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 176 __this_cpu_dec(*(htab->map_locked[hash])); 177 preempt_enable(); 178 } 179 180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 181 182 static bool htab_is_lru(const struct bpf_htab *htab) 183 { 184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 186 } 187 188 static bool htab_is_percpu(const struct bpf_htab *htab) 189 { 190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 192 } 193 194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 195 void __percpu *pptr) 196 { 197 *(void __percpu **)(l->key + key_size) = pptr; 198 } 199 200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 201 { 202 return *(void __percpu **)(l->key + key_size); 203 } 204 205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 206 { 207 return *(void **)(l->key + roundup(map->key_size, 8)); 208 } 209 210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 211 { 212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 213 } 214 215 static bool htab_has_extra_elems(struct bpf_htab *htab) 216 { 217 return !htab_is_percpu(htab) && !htab_is_lru(htab); 218 } 219 220 static void htab_free_prealloced_timers(struct bpf_htab *htab) 221 { 222 u32 num_entries = htab->map.max_entries; 223 int i; 224 225 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 226 return; 227 if (htab_has_extra_elems(htab)) 228 num_entries += num_possible_cpus(); 229 230 for (i = 0; i < num_entries; i++) { 231 struct htab_elem *elem; 232 233 elem = get_htab_elem(htab, i); 234 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 235 cond_resched(); 236 } 237 } 238 239 static void htab_free_prealloced_fields(struct bpf_htab *htab) 240 { 241 u32 num_entries = htab->map.max_entries; 242 int i; 243 244 if (IS_ERR_OR_NULL(htab->map.record)) 245 return; 246 if (htab_has_extra_elems(htab)) 247 num_entries += num_possible_cpus(); 248 for (i = 0; i < num_entries; i++) { 249 struct htab_elem *elem; 250 251 elem = get_htab_elem(htab, i); 252 if (htab_is_percpu(htab)) { 253 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 254 int cpu; 255 256 for_each_possible_cpu(cpu) { 257 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 258 cond_resched(); 259 } 260 } else { 261 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 262 cond_resched(); 263 } 264 cond_resched(); 265 } 266 } 267 268 static void htab_free_elems(struct bpf_htab *htab) 269 { 270 int i; 271 272 if (!htab_is_percpu(htab)) 273 goto free_elems; 274 275 for (i = 0; i < htab->map.max_entries; i++) { 276 void __percpu *pptr; 277 278 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 279 htab->map.key_size); 280 free_percpu(pptr); 281 cond_resched(); 282 } 283 free_elems: 284 bpf_map_area_free(htab->elems); 285 } 286 287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 288 * (bucket_lock). If both locks need to be acquired together, the lock 289 * order is always lru_lock -> bucket_lock and this only happens in 290 * bpf_lru_list.c logic. For example, certain code path of 291 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 292 * will acquire lru_lock first followed by acquiring bucket_lock. 293 * 294 * In hashtab.c, to avoid deadlock, lock acquisition of 295 * bucket_lock followed by lru_lock is not allowed. In such cases, 296 * bucket_lock needs to be released first before acquiring lru_lock. 297 */ 298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 299 u32 hash) 300 { 301 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 302 struct htab_elem *l; 303 304 if (node) { 305 l = container_of(node, struct htab_elem, lru_node); 306 memcpy(l->key, key, htab->map.key_size); 307 return l; 308 } 309 310 return NULL; 311 } 312 313 static int prealloc_init(struct bpf_htab *htab) 314 { 315 u32 num_entries = htab->map.max_entries; 316 int err = -ENOMEM, i; 317 318 if (htab_has_extra_elems(htab)) 319 num_entries += num_possible_cpus(); 320 321 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 322 htab->map.numa_node); 323 if (!htab->elems) 324 return -ENOMEM; 325 326 if (!htab_is_percpu(htab)) 327 goto skip_percpu_elems; 328 329 for (i = 0; i < num_entries; i++) { 330 u32 size = round_up(htab->map.value_size, 8); 331 void __percpu *pptr; 332 333 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 334 GFP_USER | __GFP_NOWARN); 335 if (!pptr) 336 goto free_elems; 337 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 338 pptr); 339 cond_resched(); 340 } 341 342 skip_percpu_elems: 343 if (htab_is_lru(htab)) 344 err = bpf_lru_init(&htab->lru, 345 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 346 offsetof(struct htab_elem, hash) - 347 offsetof(struct htab_elem, lru_node), 348 htab_lru_map_delete_node, 349 htab); 350 else 351 err = pcpu_freelist_init(&htab->freelist); 352 353 if (err) 354 goto free_elems; 355 356 if (htab_is_lru(htab)) 357 bpf_lru_populate(&htab->lru, htab->elems, 358 offsetof(struct htab_elem, lru_node), 359 htab->elem_size, num_entries); 360 else 361 pcpu_freelist_populate(&htab->freelist, 362 htab->elems + offsetof(struct htab_elem, fnode), 363 htab->elem_size, num_entries); 364 365 return 0; 366 367 free_elems: 368 htab_free_elems(htab); 369 return err; 370 } 371 372 static void prealloc_destroy(struct bpf_htab *htab) 373 { 374 htab_free_elems(htab); 375 376 if (htab_is_lru(htab)) 377 bpf_lru_destroy(&htab->lru); 378 else 379 pcpu_freelist_destroy(&htab->freelist); 380 } 381 382 static int alloc_extra_elems(struct bpf_htab *htab) 383 { 384 struct htab_elem *__percpu *pptr, *l_new; 385 struct pcpu_freelist_node *l; 386 int cpu; 387 388 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 389 GFP_USER | __GFP_NOWARN); 390 if (!pptr) 391 return -ENOMEM; 392 393 for_each_possible_cpu(cpu) { 394 l = pcpu_freelist_pop(&htab->freelist); 395 /* pop will succeed, since prealloc_init() 396 * preallocated extra num_possible_cpus elements 397 */ 398 l_new = container_of(l, struct htab_elem, fnode); 399 *per_cpu_ptr(pptr, cpu) = l_new; 400 } 401 htab->extra_elems = pptr; 402 return 0; 403 } 404 405 /* Called from syscall */ 406 static int htab_map_alloc_check(union bpf_attr *attr) 407 { 408 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 409 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 410 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 411 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 412 /* percpu_lru means each cpu has its own LRU list. 413 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 414 * the map's value itself is percpu. percpu_lru has 415 * nothing to do with the map's value. 416 */ 417 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 418 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 419 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 420 int numa_node = bpf_map_attr_numa_node(attr); 421 422 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 423 offsetof(struct htab_elem, hash_node.pprev)); 424 425 if (lru && !bpf_capable()) 426 /* LRU implementation is much complicated than other 427 * maps. Hence, limit to CAP_BPF. 428 */ 429 return -EPERM; 430 431 if (zero_seed && !capable(CAP_SYS_ADMIN)) 432 /* Guard against local DoS, and discourage production use. */ 433 return -EPERM; 434 435 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 436 !bpf_map_flags_access_ok(attr->map_flags)) 437 return -EINVAL; 438 439 if (!lru && percpu_lru) 440 return -EINVAL; 441 442 if (lru && !prealloc) 443 return -ENOTSUPP; 444 445 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 446 return -EINVAL; 447 448 /* check sanity of attributes. 449 * value_size == 0 may be allowed in the future to use map as a set 450 */ 451 if (attr->max_entries == 0 || attr->key_size == 0 || 452 attr->value_size == 0) 453 return -EINVAL; 454 455 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 456 sizeof(struct htab_elem)) 457 /* if key_size + value_size is bigger, the user space won't be 458 * able to access the elements via bpf syscall. This check 459 * also makes sure that the elem_size doesn't overflow and it's 460 * kmalloc-able later in htab_map_update_elem() 461 */ 462 return -E2BIG; 463 464 return 0; 465 } 466 467 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 468 { 469 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 470 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 471 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 472 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 473 /* percpu_lru means each cpu has its own LRU list. 474 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 475 * the map's value itself is percpu. percpu_lru has 476 * nothing to do with the map's value. 477 */ 478 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 479 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 480 struct bpf_htab *htab; 481 int err, i; 482 483 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 484 if (!htab) 485 return ERR_PTR(-ENOMEM); 486 487 lockdep_register_key(&htab->lockdep_key); 488 489 bpf_map_init_from_attr(&htab->map, attr); 490 491 if (percpu_lru) { 492 /* ensure each CPU's lru list has >=1 elements. 493 * since we are at it, make each lru list has the same 494 * number of elements. 495 */ 496 htab->map.max_entries = roundup(attr->max_entries, 497 num_possible_cpus()); 498 if (htab->map.max_entries < attr->max_entries) 499 htab->map.max_entries = rounddown(attr->max_entries, 500 num_possible_cpus()); 501 } 502 503 /* hash table size must be power of 2 */ 504 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 505 506 htab->elem_size = sizeof(struct htab_elem) + 507 round_up(htab->map.key_size, 8); 508 if (percpu) 509 htab->elem_size += sizeof(void *); 510 else 511 htab->elem_size += round_up(htab->map.value_size, 8); 512 513 err = -E2BIG; 514 /* prevent zero size kmalloc and check for u32 overflow */ 515 if (htab->n_buckets == 0 || 516 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 517 goto free_htab; 518 519 err = -ENOMEM; 520 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 521 sizeof(struct bucket), 522 htab->map.numa_node); 523 if (!htab->buckets) 524 goto free_htab; 525 526 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 527 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 528 sizeof(int), 529 sizeof(int), 530 GFP_USER); 531 if (!htab->map_locked[i]) 532 goto free_map_locked; 533 } 534 535 if (htab->map.map_flags & BPF_F_ZERO_SEED) 536 htab->hashrnd = 0; 537 else 538 htab->hashrnd = get_random_u32(); 539 540 htab_init_buckets(htab); 541 542 /* compute_batch_value() computes batch value as num_online_cpus() * 2 543 * and __percpu_counter_compare() needs 544 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 545 * for percpu_counter to be faster than atomic_t. In practice the average bpf 546 * hash map size is 10k, which means that a system with 64 cpus will fill 547 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 548 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 549 * 10k - 8k > 32 _batch_ * 64 _cpus_ 550 * and __percpu_counter_compare() will still be fast. At that point hash map 551 * collisions will dominate its performance anyway. Assume that hash map filled 552 * to 50+% isn't going to be O(1) and use the following formula to choose 553 * between percpu_counter and atomic_t. 554 */ 555 #define PERCPU_COUNTER_BATCH 32 556 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 557 htab->use_percpu_counter = true; 558 559 if (htab->use_percpu_counter) { 560 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 561 if (err) 562 goto free_map_locked; 563 } 564 565 if (prealloc) { 566 err = prealloc_init(htab); 567 if (err) 568 goto free_map_locked; 569 570 if (!percpu && !lru) { 571 /* lru itself can remove the least used element, so 572 * there is no need for an extra elem during map_update. 573 */ 574 err = alloc_extra_elems(htab); 575 if (err) 576 goto free_prealloc; 577 } 578 } else { 579 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 580 if (err) 581 goto free_map_locked; 582 if (percpu) { 583 err = bpf_mem_alloc_init(&htab->pcpu_ma, 584 round_up(htab->map.value_size, 8), true); 585 if (err) 586 goto free_map_locked; 587 } 588 } 589 590 return &htab->map; 591 592 free_prealloc: 593 prealloc_destroy(htab); 594 free_map_locked: 595 if (htab->use_percpu_counter) 596 percpu_counter_destroy(&htab->pcount); 597 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 598 free_percpu(htab->map_locked[i]); 599 bpf_map_area_free(htab->buckets); 600 bpf_mem_alloc_destroy(&htab->pcpu_ma); 601 bpf_mem_alloc_destroy(&htab->ma); 602 free_htab: 603 lockdep_unregister_key(&htab->lockdep_key); 604 bpf_map_area_free(htab); 605 return ERR_PTR(err); 606 } 607 608 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 609 { 610 if (likely(key_len % 4 == 0)) 611 return jhash2(key, key_len / 4, hashrnd); 612 return jhash(key, key_len, hashrnd); 613 } 614 615 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 616 { 617 return &htab->buckets[hash & (htab->n_buckets - 1)]; 618 } 619 620 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 621 { 622 return &__select_bucket(htab, hash)->head; 623 } 624 625 /* this lookup function can only be called with bucket lock taken */ 626 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 627 void *key, u32 key_size) 628 { 629 struct hlist_nulls_node *n; 630 struct htab_elem *l; 631 632 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 633 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 634 return l; 635 636 return NULL; 637 } 638 639 /* can be called without bucket lock. it will repeat the loop in 640 * the unlikely event when elements moved from one bucket into another 641 * while link list is being walked 642 */ 643 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 644 u32 hash, void *key, 645 u32 key_size, u32 n_buckets) 646 { 647 struct hlist_nulls_node *n; 648 struct htab_elem *l; 649 650 again: 651 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 652 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 653 return l; 654 655 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 656 goto again; 657 658 return NULL; 659 } 660 661 /* Called from syscall or from eBPF program directly, so 662 * arguments have to match bpf_map_lookup_elem() exactly. 663 * The return value is adjusted by BPF instructions 664 * in htab_map_gen_lookup(). 665 */ 666 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 667 { 668 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 669 struct hlist_nulls_head *head; 670 struct htab_elem *l; 671 u32 hash, key_size; 672 673 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 674 !rcu_read_lock_bh_held()); 675 676 key_size = map->key_size; 677 678 hash = htab_map_hash(key, key_size, htab->hashrnd); 679 680 head = select_bucket(htab, hash); 681 682 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 683 684 return l; 685 } 686 687 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 688 { 689 struct htab_elem *l = __htab_map_lookup_elem(map, key); 690 691 if (l) 692 return l->key + round_up(map->key_size, 8); 693 694 return NULL; 695 } 696 697 /* inline bpf_map_lookup_elem() call. 698 * Instead of: 699 * bpf_prog 700 * bpf_map_lookup_elem 701 * map->ops->map_lookup_elem 702 * htab_map_lookup_elem 703 * __htab_map_lookup_elem 704 * do: 705 * bpf_prog 706 * __htab_map_lookup_elem 707 */ 708 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 709 { 710 struct bpf_insn *insn = insn_buf; 711 const int ret = BPF_REG_0; 712 713 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 714 (void *(*)(struct bpf_map *map, void *key))NULL)); 715 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 716 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 717 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 718 offsetof(struct htab_elem, key) + 719 round_up(map->key_size, 8)); 720 return insn - insn_buf; 721 } 722 723 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 724 void *key, const bool mark) 725 { 726 struct htab_elem *l = __htab_map_lookup_elem(map, key); 727 728 if (l) { 729 if (mark) 730 bpf_lru_node_set_ref(&l->lru_node); 731 return l->key + round_up(map->key_size, 8); 732 } 733 734 return NULL; 735 } 736 737 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 738 { 739 return __htab_lru_map_lookup_elem(map, key, true); 740 } 741 742 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 743 { 744 return __htab_lru_map_lookup_elem(map, key, false); 745 } 746 747 static int htab_lru_map_gen_lookup(struct bpf_map *map, 748 struct bpf_insn *insn_buf) 749 { 750 struct bpf_insn *insn = insn_buf; 751 const int ret = BPF_REG_0; 752 const int ref_reg = BPF_REG_1; 753 754 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 755 (void *(*)(struct bpf_map *map, void *key))NULL)); 756 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 757 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 758 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 759 offsetof(struct htab_elem, lru_node) + 760 offsetof(struct bpf_lru_node, ref)); 761 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 762 *insn++ = BPF_ST_MEM(BPF_B, ret, 763 offsetof(struct htab_elem, lru_node) + 764 offsetof(struct bpf_lru_node, ref), 765 1); 766 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 767 offsetof(struct htab_elem, key) + 768 round_up(map->key_size, 8)); 769 return insn - insn_buf; 770 } 771 772 static void check_and_free_fields(struct bpf_htab *htab, 773 struct htab_elem *elem) 774 { 775 if (htab_is_percpu(htab)) { 776 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 777 int cpu; 778 779 for_each_possible_cpu(cpu) 780 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 781 } else { 782 void *map_value = elem->key + round_up(htab->map.key_size, 8); 783 784 bpf_obj_free_fields(htab->map.record, map_value); 785 } 786 } 787 788 /* It is called from the bpf_lru_list when the LRU needs to delete 789 * older elements from the htab. 790 */ 791 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 792 { 793 struct bpf_htab *htab = arg; 794 struct htab_elem *l = NULL, *tgt_l; 795 struct hlist_nulls_head *head; 796 struct hlist_nulls_node *n; 797 unsigned long flags; 798 struct bucket *b; 799 int ret; 800 801 tgt_l = container_of(node, struct htab_elem, lru_node); 802 b = __select_bucket(htab, tgt_l->hash); 803 head = &b->head; 804 805 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 806 if (ret) 807 return false; 808 809 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 810 if (l == tgt_l) { 811 hlist_nulls_del_rcu(&l->hash_node); 812 check_and_free_fields(htab, l); 813 break; 814 } 815 816 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 817 818 return l == tgt_l; 819 } 820 821 /* Called from syscall */ 822 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 823 { 824 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 825 struct hlist_nulls_head *head; 826 struct htab_elem *l, *next_l; 827 u32 hash, key_size; 828 int i = 0; 829 830 WARN_ON_ONCE(!rcu_read_lock_held()); 831 832 key_size = map->key_size; 833 834 if (!key) 835 goto find_first_elem; 836 837 hash = htab_map_hash(key, key_size, htab->hashrnd); 838 839 head = select_bucket(htab, hash); 840 841 /* lookup the key */ 842 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 843 844 if (!l) 845 goto find_first_elem; 846 847 /* key was found, get next key in the same bucket */ 848 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 849 struct htab_elem, hash_node); 850 851 if (next_l) { 852 /* if next elem in this hash list is non-zero, just return it */ 853 memcpy(next_key, next_l->key, key_size); 854 return 0; 855 } 856 857 /* no more elements in this hash list, go to the next bucket */ 858 i = hash & (htab->n_buckets - 1); 859 i++; 860 861 find_first_elem: 862 /* iterate over buckets */ 863 for (; i < htab->n_buckets; i++) { 864 head = select_bucket(htab, i); 865 866 /* pick first element in the bucket */ 867 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 868 struct htab_elem, hash_node); 869 if (next_l) { 870 /* if it's not empty, just return it */ 871 memcpy(next_key, next_l->key, key_size); 872 return 0; 873 } 874 } 875 876 /* iterated over all buckets and all elements */ 877 return -ENOENT; 878 } 879 880 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 881 { 882 check_and_free_fields(htab, l); 883 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 884 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 885 bpf_mem_cache_free(&htab->ma, l); 886 } 887 888 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 889 { 890 struct bpf_map *map = &htab->map; 891 void *ptr; 892 893 if (map->ops->map_fd_put_ptr) { 894 ptr = fd_htab_map_get_ptr(map, l); 895 map->ops->map_fd_put_ptr(ptr); 896 } 897 } 898 899 static bool is_map_full(struct bpf_htab *htab) 900 { 901 if (htab->use_percpu_counter) 902 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 903 PERCPU_COUNTER_BATCH) >= 0; 904 return atomic_read(&htab->count) >= htab->map.max_entries; 905 } 906 907 static void inc_elem_count(struct bpf_htab *htab) 908 { 909 if (htab->use_percpu_counter) 910 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 911 else 912 atomic_inc(&htab->count); 913 } 914 915 static void dec_elem_count(struct bpf_htab *htab) 916 { 917 if (htab->use_percpu_counter) 918 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 919 else 920 atomic_dec(&htab->count); 921 } 922 923 924 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 925 { 926 htab_put_fd_value(htab, l); 927 928 if (htab_is_prealloc(htab)) { 929 check_and_free_fields(htab, l); 930 __pcpu_freelist_push(&htab->freelist, &l->fnode); 931 } else { 932 dec_elem_count(htab); 933 htab_elem_free(htab, l); 934 } 935 } 936 937 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 938 void *value, bool onallcpus) 939 { 940 if (!onallcpus) { 941 /* copy true value_size bytes */ 942 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 943 } else { 944 u32 size = round_up(htab->map.value_size, 8); 945 int off = 0, cpu; 946 947 for_each_possible_cpu(cpu) { 948 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 949 off += size; 950 } 951 } 952 } 953 954 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 955 void *value, bool onallcpus) 956 { 957 /* When not setting the initial value on all cpus, zero-fill element 958 * values for other cpus. Otherwise, bpf program has no way to ensure 959 * known initial values for cpus other than current one 960 * (onallcpus=false always when coming from bpf prog). 961 */ 962 if (!onallcpus) { 963 int current_cpu = raw_smp_processor_id(); 964 int cpu; 965 966 for_each_possible_cpu(cpu) { 967 if (cpu == current_cpu) 968 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 969 else /* Since elem is preallocated, we cannot touch special fields */ 970 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 971 } 972 } else { 973 pcpu_copy_value(htab, pptr, value, onallcpus); 974 } 975 } 976 977 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 978 { 979 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 980 BITS_PER_LONG == 64; 981 } 982 983 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 984 void *value, u32 key_size, u32 hash, 985 bool percpu, bool onallcpus, 986 struct htab_elem *old_elem) 987 { 988 u32 size = htab->map.value_size; 989 bool prealloc = htab_is_prealloc(htab); 990 struct htab_elem *l_new, **pl_new; 991 void __percpu *pptr; 992 993 if (prealloc) { 994 if (old_elem) { 995 /* if we're updating the existing element, 996 * use per-cpu extra elems to avoid freelist_pop/push 997 */ 998 pl_new = this_cpu_ptr(htab->extra_elems); 999 l_new = *pl_new; 1000 htab_put_fd_value(htab, old_elem); 1001 *pl_new = old_elem; 1002 } else { 1003 struct pcpu_freelist_node *l; 1004 1005 l = __pcpu_freelist_pop(&htab->freelist); 1006 if (!l) 1007 return ERR_PTR(-E2BIG); 1008 l_new = container_of(l, struct htab_elem, fnode); 1009 } 1010 } else { 1011 if (is_map_full(htab)) 1012 if (!old_elem) 1013 /* when map is full and update() is replacing 1014 * old element, it's ok to allocate, since 1015 * old element will be freed immediately. 1016 * Otherwise return an error 1017 */ 1018 return ERR_PTR(-E2BIG); 1019 inc_elem_count(htab); 1020 l_new = bpf_mem_cache_alloc(&htab->ma); 1021 if (!l_new) { 1022 l_new = ERR_PTR(-ENOMEM); 1023 goto dec_count; 1024 } 1025 } 1026 1027 memcpy(l_new->key, key, key_size); 1028 if (percpu) { 1029 if (prealloc) { 1030 pptr = htab_elem_get_ptr(l_new, key_size); 1031 } else { 1032 /* alloc_percpu zero-fills */ 1033 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1034 if (!pptr) { 1035 bpf_mem_cache_free(&htab->ma, l_new); 1036 l_new = ERR_PTR(-ENOMEM); 1037 goto dec_count; 1038 } 1039 l_new->ptr_to_pptr = pptr; 1040 pptr = *(void **)pptr; 1041 } 1042 1043 pcpu_init_value(htab, pptr, value, onallcpus); 1044 1045 if (!prealloc) 1046 htab_elem_set_ptr(l_new, key_size, pptr); 1047 } else if (fd_htab_map_needs_adjust(htab)) { 1048 size = round_up(size, 8); 1049 memcpy(l_new->key + round_up(key_size, 8), value, size); 1050 } else { 1051 copy_map_value(&htab->map, 1052 l_new->key + round_up(key_size, 8), 1053 value); 1054 } 1055 1056 l_new->hash = hash; 1057 return l_new; 1058 dec_count: 1059 dec_elem_count(htab); 1060 return l_new; 1061 } 1062 1063 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1064 u64 map_flags) 1065 { 1066 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1067 /* elem already exists */ 1068 return -EEXIST; 1069 1070 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1071 /* elem doesn't exist, cannot update it */ 1072 return -ENOENT; 1073 1074 return 0; 1075 } 1076 1077 /* Called from syscall or from eBPF program */ 1078 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1079 u64 map_flags) 1080 { 1081 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1082 struct htab_elem *l_new = NULL, *l_old; 1083 struct hlist_nulls_head *head; 1084 unsigned long flags; 1085 struct bucket *b; 1086 u32 key_size, hash; 1087 int ret; 1088 1089 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1090 /* unknown flags */ 1091 return -EINVAL; 1092 1093 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1094 !rcu_read_lock_bh_held()); 1095 1096 key_size = map->key_size; 1097 1098 hash = htab_map_hash(key, key_size, htab->hashrnd); 1099 1100 b = __select_bucket(htab, hash); 1101 head = &b->head; 1102 1103 if (unlikely(map_flags & BPF_F_LOCK)) { 1104 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1105 return -EINVAL; 1106 /* find an element without taking the bucket lock */ 1107 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1108 htab->n_buckets); 1109 ret = check_flags(htab, l_old, map_flags); 1110 if (ret) 1111 return ret; 1112 if (l_old) { 1113 /* grab the element lock and update value in place */ 1114 copy_map_value_locked(map, 1115 l_old->key + round_up(key_size, 8), 1116 value, false); 1117 return 0; 1118 } 1119 /* fall through, grab the bucket lock and lookup again. 1120 * 99.9% chance that the element won't be found, 1121 * but second lookup under lock has to be done. 1122 */ 1123 } 1124 1125 ret = htab_lock_bucket(htab, b, hash, &flags); 1126 if (ret) 1127 return ret; 1128 1129 l_old = lookup_elem_raw(head, hash, key, key_size); 1130 1131 ret = check_flags(htab, l_old, map_flags); 1132 if (ret) 1133 goto err; 1134 1135 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1136 /* first lookup without the bucket lock didn't find the element, 1137 * but second lookup with the bucket lock found it. 1138 * This case is highly unlikely, but has to be dealt with: 1139 * grab the element lock in addition to the bucket lock 1140 * and update element in place 1141 */ 1142 copy_map_value_locked(map, 1143 l_old->key + round_up(key_size, 8), 1144 value, false); 1145 ret = 0; 1146 goto err; 1147 } 1148 1149 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1150 l_old); 1151 if (IS_ERR(l_new)) { 1152 /* all pre-allocated elements are in use or memory exhausted */ 1153 ret = PTR_ERR(l_new); 1154 goto err; 1155 } 1156 1157 /* add new element to the head of the list, so that 1158 * concurrent search will find it before old elem 1159 */ 1160 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1161 if (l_old) { 1162 hlist_nulls_del_rcu(&l_old->hash_node); 1163 if (!htab_is_prealloc(htab)) 1164 free_htab_elem(htab, l_old); 1165 else 1166 check_and_free_fields(htab, l_old); 1167 } 1168 ret = 0; 1169 err: 1170 htab_unlock_bucket(htab, b, hash, flags); 1171 return ret; 1172 } 1173 1174 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1175 { 1176 check_and_free_fields(htab, elem); 1177 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1178 } 1179 1180 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1181 u64 map_flags) 1182 { 1183 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1184 struct htab_elem *l_new, *l_old = NULL; 1185 struct hlist_nulls_head *head; 1186 unsigned long flags; 1187 struct bucket *b; 1188 u32 key_size, hash; 1189 int ret; 1190 1191 if (unlikely(map_flags > BPF_EXIST)) 1192 /* unknown flags */ 1193 return -EINVAL; 1194 1195 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1196 !rcu_read_lock_bh_held()); 1197 1198 key_size = map->key_size; 1199 1200 hash = htab_map_hash(key, key_size, htab->hashrnd); 1201 1202 b = __select_bucket(htab, hash); 1203 head = &b->head; 1204 1205 /* For LRU, we need to alloc before taking bucket's 1206 * spinlock because getting free nodes from LRU may need 1207 * to remove older elements from htab and this removal 1208 * operation will need a bucket lock. 1209 */ 1210 l_new = prealloc_lru_pop(htab, key, hash); 1211 if (!l_new) 1212 return -ENOMEM; 1213 copy_map_value(&htab->map, 1214 l_new->key + round_up(map->key_size, 8), value); 1215 1216 ret = htab_lock_bucket(htab, b, hash, &flags); 1217 if (ret) 1218 return ret; 1219 1220 l_old = lookup_elem_raw(head, hash, key, key_size); 1221 1222 ret = check_flags(htab, l_old, map_flags); 1223 if (ret) 1224 goto err; 1225 1226 /* add new element to the head of the list, so that 1227 * concurrent search will find it before old elem 1228 */ 1229 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1230 if (l_old) { 1231 bpf_lru_node_set_ref(&l_new->lru_node); 1232 hlist_nulls_del_rcu(&l_old->hash_node); 1233 } 1234 ret = 0; 1235 1236 err: 1237 htab_unlock_bucket(htab, b, hash, flags); 1238 1239 if (ret) 1240 htab_lru_push_free(htab, l_new); 1241 else if (l_old) 1242 htab_lru_push_free(htab, l_old); 1243 1244 return ret; 1245 } 1246 1247 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1248 void *value, u64 map_flags, 1249 bool onallcpus) 1250 { 1251 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1252 struct htab_elem *l_new = NULL, *l_old; 1253 struct hlist_nulls_head *head; 1254 unsigned long flags; 1255 struct bucket *b; 1256 u32 key_size, hash; 1257 int ret; 1258 1259 if (unlikely(map_flags > BPF_EXIST)) 1260 /* unknown flags */ 1261 return -EINVAL; 1262 1263 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1264 !rcu_read_lock_bh_held()); 1265 1266 key_size = map->key_size; 1267 1268 hash = htab_map_hash(key, key_size, htab->hashrnd); 1269 1270 b = __select_bucket(htab, hash); 1271 head = &b->head; 1272 1273 ret = htab_lock_bucket(htab, b, hash, &flags); 1274 if (ret) 1275 return ret; 1276 1277 l_old = lookup_elem_raw(head, hash, key, key_size); 1278 1279 ret = check_flags(htab, l_old, map_flags); 1280 if (ret) 1281 goto err; 1282 1283 if (l_old) { 1284 /* per-cpu hash map can update value in-place */ 1285 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1286 value, onallcpus); 1287 } else { 1288 l_new = alloc_htab_elem(htab, key, value, key_size, 1289 hash, true, onallcpus, NULL); 1290 if (IS_ERR(l_new)) { 1291 ret = PTR_ERR(l_new); 1292 goto err; 1293 } 1294 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1295 } 1296 ret = 0; 1297 err: 1298 htab_unlock_bucket(htab, b, hash, flags); 1299 return ret; 1300 } 1301 1302 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1303 void *value, u64 map_flags, 1304 bool onallcpus) 1305 { 1306 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1307 struct htab_elem *l_new = NULL, *l_old; 1308 struct hlist_nulls_head *head; 1309 unsigned long flags; 1310 struct bucket *b; 1311 u32 key_size, hash; 1312 int ret; 1313 1314 if (unlikely(map_flags > BPF_EXIST)) 1315 /* unknown flags */ 1316 return -EINVAL; 1317 1318 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1319 !rcu_read_lock_bh_held()); 1320 1321 key_size = map->key_size; 1322 1323 hash = htab_map_hash(key, key_size, htab->hashrnd); 1324 1325 b = __select_bucket(htab, hash); 1326 head = &b->head; 1327 1328 /* For LRU, we need to alloc before taking bucket's 1329 * spinlock because LRU's elem alloc may need 1330 * to remove older elem from htab and this removal 1331 * operation will need a bucket lock. 1332 */ 1333 if (map_flags != BPF_EXIST) { 1334 l_new = prealloc_lru_pop(htab, key, hash); 1335 if (!l_new) 1336 return -ENOMEM; 1337 } 1338 1339 ret = htab_lock_bucket(htab, b, hash, &flags); 1340 if (ret) 1341 return ret; 1342 1343 l_old = lookup_elem_raw(head, hash, key, key_size); 1344 1345 ret = check_flags(htab, l_old, map_flags); 1346 if (ret) 1347 goto err; 1348 1349 if (l_old) { 1350 bpf_lru_node_set_ref(&l_old->lru_node); 1351 1352 /* per-cpu hash map can update value in-place */ 1353 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1354 value, onallcpus); 1355 } else { 1356 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1357 value, onallcpus); 1358 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1359 l_new = NULL; 1360 } 1361 ret = 0; 1362 err: 1363 htab_unlock_bucket(htab, b, hash, flags); 1364 if (l_new) 1365 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1366 return ret; 1367 } 1368 1369 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1370 void *value, u64 map_flags) 1371 { 1372 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1373 } 1374 1375 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1376 void *value, u64 map_flags) 1377 { 1378 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1379 false); 1380 } 1381 1382 /* Called from syscall or from eBPF program */ 1383 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1384 { 1385 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1386 struct hlist_nulls_head *head; 1387 struct bucket *b; 1388 struct htab_elem *l; 1389 unsigned long flags; 1390 u32 hash, key_size; 1391 int ret; 1392 1393 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1394 !rcu_read_lock_bh_held()); 1395 1396 key_size = map->key_size; 1397 1398 hash = htab_map_hash(key, key_size, htab->hashrnd); 1399 b = __select_bucket(htab, hash); 1400 head = &b->head; 1401 1402 ret = htab_lock_bucket(htab, b, hash, &flags); 1403 if (ret) 1404 return ret; 1405 1406 l = lookup_elem_raw(head, hash, key, key_size); 1407 1408 if (l) { 1409 hlist_nulls_del_rcu(&l->hash_node); 1410 free_htab_elem(htab, l); 1411 } else { 1412 ret = -ENOENT; 1413 } 1414 1415 htab_unlock_bucket(htab, b, hash, flags); 1416 return ret; 1417 } 1418 1419 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1420 { 1421 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1422 struct hlist_nulls_head *head; 1423 struct bucket *b; 1424 struct htab_elem *l; 1425 unsigned long flags; 1426 u32 hash, key_size; 1427 int ret; 1428 1429 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1430 !rcu_read_lock_bh_held()); 1431 1432 key_size = map->key_size; 1433 1434 hash = htab_map_hash(key, key_size, htab->hashrnd); 1435 b = __select_bucket(htab, hash); 1436 head = &b->head; 1437 1438 ret = htab_lock_bucket(htab, b, hash, &flags); 1439 if (ret) 1440 return ret; 1441 1442 l = lookup_elem_raw(head, hash, key, key_size); 1443 1444 if (l) 1445 hlist_nulls_del_rcu(&l->hash_node); 1446 else 1447 ret = -ENOENT; 1448 1449 htab_unlock_bucket(htab, b, hash, flags); 1450 if (l) 1451 htab_lru_push_free(htab, l); 1452 return ret; 1453 } 1454 1455 static void delete_all_elements(struct bpf_htab *htab) 1456 { 1457 int i; 1458 1459 /* It's called from a worker thread, so disable migration here, 1460 * since bpf_mem_cache_free() relies on that. 1461 */ 1462 migrate_disable(); 1463 for (i = 0; i < htab->n_buckets; i++) { 1464 struct hlist_nulls_head *head = select_bucket(htab, i); 1465 struct hlist_nulls_node *n; 1466 struct htab_elem *l; 1467 1468 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1469 hlist_nulls_del_rcu(&l->hash_node); 1470 htab_elem_free(htab, l); 1471 } 1472 } 1473 migrate_enable(); 1474 } 1475 1476 static void htab_free_malloced_timers(struct bpf_htab *htab) 1477 { 1478 int i; 1479 1480 rcu_read_lock(); 1481 for (i = 0; i < htab->n_buckets; i++) { 1482 struct hlist_nulls_head *head = select_bucket(htab, i); 1483 struct hlist_nulls_node *n; 1484 struct htab_elem *l; 1485 1486 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1487 /* We only free timer on uref dropping to zero */ 1488 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); 1489 } 1490 cond_resched_rcu(); 1491 } 1492 rcu_read_unlock(); 1493 } 1494 1495 static void htab_map_free_timers(struct bpf_map *map) 1496 { 1497 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1498 1499 /* We only free timer on uref dropping to zero */ 1500 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 1501 return; 1502 if (!htab_is_prealloc(htab)) 1503 htab_free_malloced_timers(htab); 1504 else 1505 htab_free_prealloced_timers(htab); 1506 } 1507 1508 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1509 static void htab_map_free(struct bpf_map *map) 1510 { 1511 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1512 int i; 1513 1514 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1515 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1516 * There is no need to synchronize_rcu() here to protect map elements. 1517 */ 1518 1519 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1520 * underneath and is reponsible for waiting for callbacks to finish 1521 * during bpf_mem_alloc_destroy(). 1522 */ 1523 if (!htab_is_prealloc(htab)) { 1524 delete_all_elements(htab); 1525 } else { 1526 htab_free_prealloced_fields(htab); 1527 prealloc_destroy(htab); 1528 } 1529 1530 free_percpu(htab->extra_elems); 1531 bpf_map_area_free(htab->buckets); 1532 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1533 bpf_mem_alloc_destroy(&htab->ma); 1534 if (htab->use_percpu_counter) 1535 percpu_counter_destroy(&htab->pcount); 1536 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1537 free_percpu(htab->map_locked[i]); 1538 lockdep_unregister_key(&htab->lockdep_key); 1539 bpf_map_area_free(htab); 1540 } 1541 1542 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1543 struct seq_file *m) 1544 { 1545 void *value; 1546 1547 rcu_read_lock(); 1548 1549 value = htab_map_lookup_elem(map, key); 1550 if (!value) { 1551 rcu_read_unlock(); 1552 return; 1553 } 1554 1555 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1556 seq_puts(m, ": "); 1557 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1558 seq_puts(m, "\n"); 1559 1560 rcu_read_unlock(); 1561 } 1562 1563 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1564 void *value, bool is_lru_map, 1565 bool is_percpu, u64 flags) 1566 { 1567 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1568 struct hlist_nulls_head *head; 1569 unsigned long bflags; 1570 struct htab_elem *l; 1571 u32 hash, key_size; 1572 struct bucket *b; 1573 int ret; 1574 1575 key_size = map->key_size; 1576 1577 hash = htab_map_hash(key, key_size, htab->hashrnd); 1578 b = __select_bucket(htab, hash); 1579 head = &b->head; 1580 1581 ret = htab_lock_bucket(htab, b, hash, &bflags); 1582 if (ret) 1583 return ret; 1584 1585 l = lookup_elem_raw(head, hash, key, key_size); 1586 if (!l) { 1587 ret = -ENOENT; 1588 } else { 1589 if (is_percpu) { 1590 u32 roundup_value_size = round_up(map->value_size, 8); 1591 void __percpu *pptr; 1592 int off = 0, cpu; 1593 1594 pptr = htab_elem_get_ptr(l, key_size); 1595 for_each_possible_cpu(cpu) { 1596 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1597 check_and_init_map_value(&htab->map, value + off); 1598 off += roundup_value_size; 1599 } 1600 } else { 1601 u32 roundup_key_size = round_up(map->key_size, 8); 1602 1603 if (flags & BPF_F_LOCK) 1604 copy_map_value_locked(map, value, l->key + 1605 roundup_key_size, 1606 true); 1607 else 1608 copy_map_value(map, value, l->key + 1609 roundup_key_size); 1610 /* Zeroing special fields in the temp buffer */ 1611 check_and_init_map_value(map, value); 1612 } 1613 1614 hlist_nulls_del_rcu(&l->hash_node); 1615 if (!is_lru_map) 1616 free_htab_elem(htab, l); 1617 } 1618 1619 htab_unlock_bucket(htab, b, hash, bflags); 1620 1621 if (is_lru_map && l) 1622 htab_lru_push_free(htab, l); 1623 1624 return ret; 1625 } 1626 1627 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1628 void *value, u64 flags) 1629 { 1630 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1631 flags); 1632 } 1633 1634 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1635 void *key, void *value, 1636 u64 flags) 1637 { 1638 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1639 flags); 1640 } 1641 1642 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1643 void *value, u64 flags) 1644 { 1645 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1646 flags); 1647 } 1648 1649 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1650 void *key, void *value, 1651 u64 flags) 1652 { 1653 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1654 flags); 1655 } 1656 1657 static int 1658 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1659 const union bpf_attr *attr, 1660 union bpf_attr __user *uattr, 1661 bool do_delete, bool is_lru_map, 1662 bool is_percpu) 1663 { 1664 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1665 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1666 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1667 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1668 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1669 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1670 u32 batch, max_count, size, bucket_size, map_id; 1671 struct htab_elem *node_to_free = NULL; 1672 u64 elem_map_flags, map_flags; 1673 struct hlist_nulls_head *head; 1674 struct hlist_nulls_node *n; 1675 unsigned long flags = 0; 1676 bool locked = false; 1677 struct htab_elem *l; 1678 struct bucket *b; 1679 int ret = 0; 1680 1681 elem_map_flags = attr->batch.elem_flags; 1682 if ((elem_map_flags & ~BPF_F_LOCK) || 1683 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1684 return -EINVAL; 1685 1686 map_flags = attr->batch.flags; 1687 if (map_flags) 1688 return -EINVAL; 1689 1690 max_count = attr->batch.count; 1691 if (!max_count) 1692 return 0; 1693 1694 if (put_user(0, &uattr->batch.count)) 1695 return -EFAULT; 1696 1697 batch = 0; 1698 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1699 return -EFAULT; 1700 1701 if (batch >= htab->n_buckets) 1702 return -ENOENT; 1703 1704 key_size = htab->map.key_size; 1705 roundup_key_size = round_up(htab->map.key_size, 8); 1706 value_size = htab->map.value_size; 1707 size = round_up(value_size, 8); 1708 if (is_percpu) 1709 value_size = size * num_possible_cpus(); 1710 total = 0; 1711 /* while experimenting with hash tables with sizes ranging from 10 to 1712 * 1000, it was observed that a bucket can have up to 5 entries. 1713 */ 1714 bucket_size = 5; 1715 1716 alloc: 1717 /* We cannot do copy_from_user or copy_to_user inside 1718 * the rcu_read_lock. Allocate enough space here. 1719 */ 1720 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1721 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1722 if (!keys || !values) { 1723 ret = -ENOMEM; 1724 goto after_loop; 1725 } 1726 1727 again: 1728 bpf_disable_instrumentation(); 1729 rcu_read_lock(); 1730 again_nocopy: 1731 dst_key = keys; 1732 dst_val = values; 1733 b = &htab->buckets[batch]; 1734 head = &b->head; 1735 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1736 if (locked) { 1737 ret = htab_lock_bucket(htab, b, batch, &flags); 1738 if (ret) { 1739 rcu_read_unlock(); 1740 bpf_enable_instrumentation(); 1741 goto after_loop; 1742 } 1743 } 1744 1745 bucket_cnt = 0; 1746 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1747 bucket_cnt++; 1748 1749 if (bucket_cnt && !locked) { 1750 locked = true; 1751 goto again_nocopy; 1752 } 1753 1754 if (bucket_cnt > (max_count - total)) { 1755 if (total == 0) 1756 ret = -ENOSPC; 1757 /* Note that since bucket_cnt > 0 here, it is implicit 1758 * that the locked was grabbed, so release it. 1759 */ 1760 htab_unlock_bucket(htab, b, batch, flags); 1761 rcu_read_unlock(); 1762 bpf_enable_instrumentation(); 1763 goto after_loop; 1764 } 1765 1766 if (bucket_cnt > bucket_size) { 1767 bucket_size = bucket_cnt; 1768 /* Note that since bucket_cnt > 0 here, it is implicit 1769 * that the locked was grabbed, so release it. 1770 */ 1771 htab_unlock_bucket(htab, b, batch, flags); 1772 rcu_read_unlock(); 1773 bpf_enable_instrumentation(); 1774 kvfree(keys); 1775 kvfree(values); 1776 goto alloc; 1777 } 1778 1779 /* Next block is only safe to run if you have grabbed the lock */ 1780 if (!locked) 1781 goto next_batch; 1782 1783 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1784 memcpy(dst_key, l->key, key_size); 1785 1786 if (is_percpu) { 1787 int off = 0, cpu; 1788 void __percpu *pptr; 1789 1790 pptr = htab_elem_get_ptr(l, map->key_size); 1791 for_each_possible_cpu(cpu) { 1792 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1793 check_and_init_map_value(&htab->map, dst_val + off); 1794 off += size; 1795 } 1796 } else { 1797 value = l->key + roundup_key_size; 1798 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1799 struct bpf_map **inner_map = value; 1800 1801 /* Actual value is the id of the inner map */ 1802 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1803 value = &map_id; 1804 } 1805 1806 if (elem_map_flags & BPF_F_LOCK) 1807 copy_map_value_locked(map, dst_val, value, 1808 true); 1809 else 1810 copy_map_value(map, dst_val, value); 1811 /* Zeroing special fields in the temp buffer */ 1812 check_and_init_map_value(map, dst_val); 1813 } 1814 if (do_delete) { 1815 hlist_nulls_del_rcu(&l->hash_node); 1816 1817 /* bpf_lru_push_free() will acquire lru_lock, which 1818 * may cause deadlock. See comments in function 1819 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1820 * after releasing the bucket lock. 1821 */ 1822 if (is_lru_map) { 1823 l->batch_flink = node_to_free; 1824 node_to_free = l; 1825 } else { 1826 free_htab_elem(htab, l); 1827 } 1828 } 1829 dst_key += key_size; 1830 dst_val += value_size; 1831 } 1832 1833 htab_unlock_bucket(htab, b, batch, flags); 1834 locked = false; 1835 1836 while (node_to_free) { 1837 l = node_to_free; 1838 node_to_free = node_to_free->batch_flink; 1839 htab_lru_push_free(htab, l); 1840 } 1841 1842 next_batch: 1843 /* If we are not copying data, we can go to next bucket and avoid 1844 * unlocking the rcu. 1845 */ 1846 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1847 batch++; 1848 goto again_nocopy; 1849 } 1850 1851 rcu_read_unlock(); 1852 bpf_enable_instrumentation(); 1853 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1854 key_size * bucket_cnt) || 1855 copy_to_user(uvalues + total * value_size, values, 1856 value_size * bucket_cnt))) { 1857 ret = -EFAULT; 1858 goto after_loop; 1859 } 1860 1861 total += bucket_cnt; 1862 batch++; 1863 if (batch >= htab->n_buckets) { 1864 ret = -ENOENT; 1865 goto after_loop; 1866 } 1867 goto again; 1868 1869 after_loop: 1870 if (ret == -EFAULT) 1871 goto out; 1872 1873 /* copy # of entries and next batch */ 1874 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1875 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1876 put_user(total, &uattr->batch.count)) 1877 ret = -EFAULT; 1878 1879 out: 1880 kvfree(keys); 1881 kvfree(values); 1882 return ret; 1883 } 1884 1885 static int 1886 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1887 union bpf_attr __user *uattr) 1888 { 1889 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1890 false, true); 1891 } 1892 1893 static int 1894 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1895 const union bpf_attr *attr, 1896 union bpf_attr __user *uattr) 1897 { 1898 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1899 false, true); 1900 } 1901 1902 static int 1903 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1904 union bpf_attr __user *uattr) 1905 { 1906 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1907 false, false); 1908 } 1909 1910 static int 1911 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1912 const union bpf_attr *attr, 1913 union bpf_attr __user *uattr) 1914 { 1915 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1916 false, false); 1917 } 1918 1919 static int 1920 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1921 const union bpf_attr *attr, 1922 union bpf_attr __user *uattr) 1923 { 1924 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1925 true, true); 1926 } 1927 1928 static int 1929 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1930 const union bpf_attr *attr, 1931 union bpf_attr __user *uattr) 1932 { 1933 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1934 true, true); 1935 } 1936 1937 static int 1938 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1939 union bpf_attr __user *uattr) 1940 { 1941 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1942 true, false); 1943 } 1944 1945 static int 1946 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1947 const union bpf_attr *attr, 1948 union bpf_attr __user *uattr) 1949 { 1950 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1951 true, false); 1952 } 1953 1954 struct bpf_iter_seq_hash_map_info { 1955 struct bpf_map *map; 1956 struct bpf_htab *htab; 1957 void *percpu_value_buf; // non-zero means percpu hash 1958 u32 bucket_id; 1959 u32 skip_elems; 1960 }; 1961 1962 static struct htab_elem * 1963 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1964 struct htab_elem *prev_elem) 1965 { 1966 const struct bpf_htab *htab = info->htab; 1967 u32 skip_elems = info->skip_elems; 1968 u32 bucket_id = info->bucket_id; 1969 struct hlist_nulls_head *head; 1970 struct hlist_nulls_node *n; 1971 struct htab_elem *elem; 1972 struct bucket *b; 1973 u32 i, count; 1974 1975 if (bucket_id >= htab->n_buckets) 1976 return NULL; 1977 1978 /* try to find next elem in the same bucket */ 1979 if (prev_elem) { 1980 /* no update/deletion on this bucket, prev_elem should be still valid 1981 * and we won't skip elements. 1982 */ 1983 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1984 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1985 if (elem) 1986 return elem; 1987 1988 /* not found, unlock and go to the next bucket */ 1989 b = &htab->buckets[bucket_id++]; 1990 rcu_read_unlock(); 1991 skip_elems = 0; 1992 } 1993 1994 for (i = bucket_id; i < htab->n_buckets; i++) { 1995 b = &htab->buckets[i]; 1996 rcu_read_lock(); 1997 1998 count = 0; 1999 head = &b->head; 2000 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2001 if (count >= skip_elems) { 2002 info->bucket_id = i; 2003 info->skip_elems = count; 2004 return elem; 2005 } 2006 count++; 2007 } 2008 2009 rcu_read_unlock(); 2010 skip_elems = 0; 2011 } 2012 2013 info->bucket_id = i; 2014 info->skip_elems = 0; 2015 return NULL; 2016 } 2017 2018 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2019 { 2020 struct bpf_iter_seq_hash_map_info *info = seq->private; 2021 struct htab_elem *elem; 2022 2023 elem = bpf_hash_map_seq_find_next(info, NULL); 2024 if (!elem) 2025 return NULL; 2026 2027 if (*pos == 0) 2028 ++*pos; 2029 return elem; 2030 } 2031 2032 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2033 { 2034 struct bpf_iter_seq_hash_map_info *info = seq->private; 2035 2036 ++*pos; 2037 ++info->skip_elems; 2038 return bpf_hash_map_seq_find_next(info, v); 2039 } 2040 2041 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2042 { 2043 struct bpf_iter_seq_hash_map_info *info = seq->private; 2044 u32 roundup_key_size, roundup_value_size; 2045 struct bpf_iter__bpf_map_elem ctx = {}; 2046 struct bpf_map *map = info->map; 2047 struct bpf_iter_meta meta; 2048 int ret = 0, off = 0, cpu; 2049 struct bpf_prog *prog; 2050 void __percpu *pptr; 2051 2052 meta.seq = seq; 2053 prog = bpf_iter_get_info(&meta, elem == NULL); 2054 if (prog) { 2055 ctx.meta = &meta; 2056 ctx.map = info->map; 2057 if (elem) { 2058 roundup_key_size = round_up(map->key_size, 8); 2059 ctx.key = elem->key; 2060 if (!info->percpu_value_buf) { 2061 ctx.value = elem->key + roundup_key_size; 2062 } else { 2063 roundup_value_size = round_up(map->value_size, 8); 2064 pptr = htab_elem_get_ptr(elem, map->key_size); 2065 for_each_possible_cpu(cpu) { 2066 copy_map_value_long(map, info->percpu_value_buf + off, 2067 per_cpu_ptr(pptr, cpu)); 2068 check_and_init_map_value(map, info->percpu_value_buf + off); 2069 off += roundup_value_size; 2070 } 2071 ctx.value = info->percpu_value_buf; 2072 } 2073 } 2074 ret = bpf_iter_run_prog(prog, &ctx); 2075 } 2076 2077 return ret; 2078 } 2079 2080 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2081 { 2082 return __bpf_hash_map_seq_show(seq, v); 2083 } 2084 2085 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2086 { 2087 if (!v) 2088 (void)__bpf_hash_map_seq_show(seq, NULL); 2089 else 2090 rcu_read_unlock(); 2091 } 2092 2093 static int bpf_iter_init_hash_map(void *priv_data, 2094 struct bpf_iter_aux_info *aux) 2095 { 2096 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2097 struct bpf_map *map = aux->map; 2098 void *value_buf; 2099 u32 buf_size; 2100 2101 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2102 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2103 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2104 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2105 if (!value_buf) 2106 return -ENOMEM; 2107 2108 seq_info->percpu_value_buf = value_buf; 2109 } 2110 2111 bpf_map_inc_with_uref(map); 2112 seq_info->map = map; 2113 seq_info->htab = container_of(map, struct bpf_htab, map); 2114 return 0; 2115 } 2116 2117 static void bpf_iter_fini_hash_map(void *priv_data) 2118 { 2119 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2120 2121 bpf_map_put_with_uref(seq_info->map); 2122 kfree(seq_info->percpu_value_buf); 2123 } 2124 2125 static const struct seq_operations bpf_hash_map_seq_ops = { 2126 .start = bpf_hash_map_seq_start, 2127 .next = bpf_hash_map_seq_next, 2128 .stop = bpf_hash_map_seq_stop, 2129 .show = bpf_hash_map_seq_show, 2130 }; 2131 2132 static const struct bpf_iter_seq_info iter_seq_info = { 2133 .seq_ops = &bpf_hash_map_seq_ops, 2134 .init_seq_private = bpf_iter_init_hash_map, 2135 .fini_seq_private = bpf_iter_fini_hash_map, 2136 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2137 }; 2138 2139 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2140 void *callback_ctx, u64 flags) 2141 { 2142 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2143 struct hlist_nulls_head *head; 2144 struct hlist_nulls_node *n; 2145 struct htab_elem *elem; 2146 u32 roundup_key_size; 2147 int i, num_elems = 0; 2148 void __percpu *pptr; 2149 struct bucket *b; 2150 void *key, *val; 2151 bool is_percpu; 2152 u64 ret = 0; 2153 2154 if (flags != 0) 2155 return -EINVAL; 2156 2157 is_percpu = htab_is_percpu(htab); 2158 2159 roundup_key_size = round_up(map->key_size, 8); 2160 /* disable migration so percpu value prepared here will be the 2161 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2162 */ 2163 if (is_percpu) 2164 migrate_disable(); 2165 for (i = 0; i < htab->n_buckets; i++) { 2166 b = &htab->buckets[i]; 2167 rcu_read_lock(); 2168 head = &b->head; 2169 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2170 key = elem->key; 2171 if (is_percpu) { 2172 /* current cpu value for percpu map */ 2173 pptr = htab_elem_get_ptr(elem, map->key_size); 2174 val = this_cpu_ptr(pptr); 2175 } else { 2176 val = elem->key + roundup_key_size; 2177 } 2178 num_elems++; 2179 ret = callback_fn((u64)(long)map, (u64)(long)key, 2180 (u64)(long)val, (u64)(long)callback_ctx, 0); 2181 /* return value: 0 - continue, 1 - stop and return */ 2182 if (ret) { 2183 rcu_read_unlock(); 2184 goto out; 2185 } 2186 } 2187 rcu_read_unlock(); 2188 } 2189 out: 2190 if (is_percpu) 2191 migrate_enable(); 2192 return num_elems; 2193 } 2194 2195 static u64 htab_map_mem_usage(const struct bpf_map *map) 2196 { 2197 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2198 u32 value_size = round_up(htab->map.value_size, 8); 2199 bool prealloc = htab_is_prealloc(htab); 2200 bool percpu = htab_is_percpu(htab); 2201 bool lru = htab_is_lru(htab); 2202 u64 num_entries; 2203 u64 usage = sizeof(struct bpf_htab); 2204 2205 usage += sizeof(struct bucket) * htab->n_buckets; 2206 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2207 if (prealloc) { 2208 num_entries = map->max_entries; 2209 if (htab_has_extra_elems(htab)) 2210 num_entries += num_possible_cpus(); 2211 2212 usage += htab->elem_size * num_entries; 2213 2214 if (percpu) 2215 usage += value_size * num_possible_cpus() * num_entries; 2216 else if (!lru) 2217 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2218 } else { 2219 #define LLIST_NODE_SZ sizeof(struct llist_node) 2220 2221 num_entries = htab->use_percpu_counter ? 2222 percpu_counter_sum(&htab->pcount) : 2223 atomic_read(&htab->count); 2224 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2225 if (percpu) { 2226 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2227 usage += value_size * num_possible_cpus() * num_entries; 2228 } 2229 } 2230 return usage; 2231 } 2232 2233 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2234 const struct bpf_map_ops htab_map_ops = { 2235 .map_meta_equal = bpf_map_meta_equal, 2236 .map_alloc_check = htab_map_alloc_check, 2237 .map_alloc = htab_map_alloc, 2238 .map_free = htab_map_free, 2239 .map_get_next_key = htab_map_get_next_key, 2240 .map_release_uref = htab_map_free_timers, 2241 .map_lookup_elem = htab_map_lookup_elem, 2242 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2243 .map_update_elem = htab_map_update_elem, 2244 .map_delete_elem = htab_map_delete_elem, 2245 .map_gen_lookup = htab_map_gen_lookup, 2246 .map_seq_show_elem = htab_map_seq_show_elem, 2247 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2248 .map_for_each_callback = bpf_for_each_hash_elem, 2249 .map_mem_usage = htab_map_mem_usage, 2250 BATCH_OPS(htab), 2251 .map_btf_id = &htab_map_btf_ids[0], 2252 .iter_seq_info = &iter_seq_info, 2253 }; 2254 2255 const struct bpf_map_ops htab_lru_map_ops = { 2256 .map_meta_equal = bpf_map_meta_equal, 2257 .map_alloc_check = htab_map_alloc_check, 2258 .map_alloc = htab_map_alloc, 2259 .map_free = htab_map_free, 2260 .map_get_next_key = htab_map_get_next_key, 2261 .map_release_uref = htab_map_free_timers, 2262 .map_lookup_elem = htab_lru_map_lookup_elem, 2263 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2264 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2265 .map_update_elem = htab_lru_map_update_elem, 2266 .map_delete_elem = htab_lru_map_delete_elem, 2267 .map_gen_lookup = htab_lru_map_gen_lookup, 2268 .map_seq_show_elem = htab_map_seq_show_elem, 2269 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2270 .map_for_each_callback = bpf_for_each_hash_elem, 2271 .map_mem_usage = htab_map_mem_usage, 2272 BATCH_OPS(htab_lru), 2273 .map_btf_id = &htab_map_btf_ids[0], 2274 .iter_seq_info = &iter_seq_info, 2275 }; 2276 2277 /* Called from eBPF program */ 2278 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2279 { 2280 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2281 2282 if (l) 2283 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2284 else 2285 return NULL; 2286 } 2287 2288 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2289 { 2290 struct htab_elem *l; 2291 2292 if (cpu >= nr_cpu_ids) 2293 return NULL; 2294 2295 l = __htab_map_lookup_elem(map, key); 2296 if (l) 2297 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2298 else 2299 return NULL; 2300 } 2301 2302 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2303 { 2304 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2305 2306 if (l) { 2307 bpf_lru_node_set_ref(&l->lru_node); 2308 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2309 } 2310 2311 return NULL; 2312 } 2313 2314 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2315 { 2316 struct htab_elem *l; 2317 2318 if (cpu >= nr_cpu_ids) 2319 return NULL; 2320 2321 l = __htab_map_lookup_elem(map, key); 2322 if (l) { 2323 bpf_lru_node_set_ref(&l->lru_node); 2324 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2325 } 2326 2327 return NULL; 2328 } 2329 2330 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2331 { 2332 struct htab_elem *l; 2333 void __percpu *pptr; 2334 int ret = -ENOENT; 2335 int cpu, off = 0; 2336 u32 size; 2337 2338 /* per_cpu areas are zero-filled and bpf programs can only 2339 * access 'value_size' of them, so copying rounded areas 2340 * will not leak any kernel data 2341 */ 2342 size = round_up(map->value_size, 8); 2343 rcu_read_lock(); 2344 l = __htab_map_lookup_elem(map, key); 2345 if (!l) 2346 goto out; 2347 /* We do not mark LRU map element here in order to not mess up 2348 * eviction heuristics when user space does a map walk. 2349 */ 2350 pptr = htab_elem_get_ptr(l, map->key_size); 2351 for_each_possible_cpu(cpu) { 2352 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2353 check_and_init_map_value(map, value + off); 2354 off += size; 2355 } 2356 ret = 0; 2357 out: 2358 rcu_read_unlock(); 2359 return ret; 2360 } 2361 2362 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2363 u64 map_flags) 2364 { 2365 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2366 int ret; 2367 2368 rcu_read_lock(); 2369 if (htab_is_lru(htab)) 2370 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2371 map_flags, true); 2372 else 2373 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2374 true); 2375 rcu_read_unlock(); 2376 2377 return ret; 2378 } 2379 2380 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2381 struct seq_file *m) 2382 { 2383 struct htab_elem *l; 2384 void __percpu *pptr; 2385 int cpu; 2386 2387 rcu_read_lock(); 2388 2389 l = __htab_map_lookup_elem(map, key); 2390 if (!l) { 2391 rcu_read_unlock(); 2392 return; 2393 } 2394 2395 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2396 seq_puts(m, ": {\n"); 2397 pptr = htab_elem_get_ptr(l, map->key_size); 2398 for_each_possible_cpu(cpu) { 2399 seq_printf(m, "\tcpu%d: ", cpu); 2400 btf_type_seq_show(map->btf, map->btf_value_type_id, 2401 per_cpu_ptr(pptr, cpu), m); 2402 seq_puts(m, "\n"); 2403 } 2404 seq_puts(m, "}\n"); 2405 2406 rcu_read_unlock(); 2407 } 2408 2409 const struct bpf_map_ops htab_percpu_map_ops = { 2410 .map_meta_equal = bpf_map_meta_equal, 2411 .map_alloc_check = htab_map_alloc_check, 2412 .map_alloc = htab_map_alloc, 2413 .map_free = htab_map_free, 2414 .map_get_next_key = htab_map_get_next_key, 2415 .map_lookup_elem = htab_percpu_map_lookup_elem, 2416 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2417 .map_update_elem = htab_percpu_map_update_elem, 2418 .map_delete_elem = htab_map_delete_elem, 2419 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2420 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2421 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2422 .map_for_each_callback = bpf_for_each_hash_elem, 2423 .map_mem_usage = htab_map_mem_usage, 2424 BATCH_OPS(htab_percpu), 2425 .map_btf_id = &htab_map_btf_ids[0], 2426 .iter_seq_info = &iter_seq_info, 2427 }; 2428 2429 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2430 .map_meta_equal = bpf_map_meta_equal, 2431 .map_alloc_check = htab_map_alloc_check, 2432 .map_alloc = htab_map_alloc, 2433 .map_free = htab_map_free, 2434 .map_get_next_key = htab_map_get_next_key, 2435 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2436 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2437 .map_update_elem = htab_lru_percpu_map_update_elem, 2438 .map_delete_elem = htab_lru_map_delete_elem, 2439 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2440 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2441 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2442 .map_for_each_callback = bpf_for_each_hash_elem, 2443 .map_mem_usage = htab_map_mem_usage, 2444 BATCH_OPS(htab_lru_percpu), 2445 .map_btf_id = &htab_map_btf_ids[0], 2446 .iter_seq_info = &iter_seq_info, 2447 }; 2448 2449 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2450 { 2451 if (attr->value_size != sizeof(u32)) 2452 return -EINVAL; 2453 return htab_map_alloc_check(attr); 2454 } 2455 2456 static void fd_htab_map_free(struct bpf_map *map) 2457 { 2458 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2459 struct hlist_nulls_node *n; 2460 struct hlist_nulls_head *head; 2461 struct htab_elem *l; 2462 int i; 2463 2464 for (i = 0; i < htab->n_buckets; i++) { 2465 head = select_bucket(htab, i); 2466 2467 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2468 void *ptr = fd_htab_map_get_ptr(map, l); 2469 2470 map->ops->map_fd_put_ptr(ptr); 2471 } 2472 } 2473 2474 htab_map_free(map); 2475 } 2476 2477 /* only called from syscall */ 2478 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2479 { 2480 void **ptr; 2481 int ret = 0; 2482 2483 if (!map->ops->map_fd_sys_lookup_elem) 2484 return -ENOTSUPP; 2485 2486 rcu_read_lock(); 2487 ptr = htab_map_lookup_elem(map, key); 2488 if (ptr) 2489 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2490 else 2491 ret = -ENOENT; 2492 rcu_read_unlock(); 2493 2494 return ret; 2495 } 2496 2497 /* only called from syscall */ 2498 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2499 void *key, void *value, u64 map_flags) 2500 { 2501 void *ptr; 2502 int ret; 2503 u32 ufd = *(u32 *)value; 2504 2505 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2506 if (IS_ERR(ptr)) 2507 return PTR_ERR(ptr); 2508 2509 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2510 if (ret) 2511 map->ops->map_fd_put_ptr(ptr); 2512 2513 return ret; 2514 } 2515 2516 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2517 { 2518 struct bpf_map *map, *inner_map_meta; 2519 2520 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2521 if (IS_ERR(inner_map_meta)) 2522 return inner_map_meta; 2523 2524 map = htab_map_alloc(attr); 2525 if (IS_ERR(map)) { 2526 bpf_map_meta_free(inner_map_meta); 2527 return map; 2528 } 2529 2530 map->inner_map_meta = inner_map_meta; 2531 2532 return map; 2533 } 2534 2535 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2536 { 2537 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2538 2539 if (!inner_map) 2540 return NULL; 2541 2542 return READ_ONCE(*inner_map); 2543 } 2544 2545 static int htab_of_map_gen_lookup(struct bpf_map *map, 2546 struct bpf_insn *insn_buf) 2547 { 2548 struct bpf_insn *insn = insn_buf; 2549 const int ret = BPF_REG_0; 2550 2551 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2552 (void *(*)(struct bpf_map *map, void *key))NULL)); 2553 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2554 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2555 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2556 offsetof(struct htab_elem, key) + 2557 round_up(map->key_size, 8)); 2558 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2559 2560 return insn - insn_buf; 2561 } 2562 2563 static void htab_of_map_free(struct bpf_map *map) 2564 { 2565 bpf_map_meta_free(map->inner_map_meta); 2566 fd_htab_map_free(map); 2567 } 2568 2569 const struct bpf_map_ops htab_of_maps_map_ops = { 2570 .map_alloc_check = fd_htab_map_alloc_check, 2571 .map_alloc = htab_of_map_alloc, 2572 .map_free = htab_of_map_free, 2573 .map_get_next_key = htab_map_get_next_key, 2574 .map_lookup_elem = htab_of_map_lookup_elem, 2575 .map_delete_elem = htab_map_delete_elem, 2576 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2577 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2578 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2579 .map_gen_lookup = htab_of_map_gen_lookup, 2580 .map_check_btf = map_check_no_btf, 2581 .map_mem_usage = htab_map_mem_usage, 2582 BATCH_OPS(htab), 2583 .map_btf_id = &htab_map_btf_ids[0], 2584 }; 2585