xref: /linux/kernel/bpf/hashtab.c (revision 864ab0616dccf14e51618a24acc7cf23ddd2b98a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16 
17 #define HTAB_CREATE_FLAG_MASK						\
18 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
19 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 
21 #define BATCH_OPS(_name)			\
22 	.map_lookup_batch =			\
23 	_name##_map_lookup_batch,		\
24 	.map_lookup_and_delete_batch =		\
25 	_name##_map_lookup_and_delete_batch,	\
26 	.map_update_batch =			\
27 	generic_map_update_batch,		\
28 	.map_delete_batch =			\
29 	generic_map_delete_batch
30 
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on differrent
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection accross the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code pathes which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82 	struct hlist_nulls_head head;
83 	union {
84 		raw_spinlock_t raw_lock;
85 		spinlock_t     lock;
86 	};
87 };
88 
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91 
92 struct bpf_htab {
93 	struct bpf_map map;
94 	struct bucket *buckets;
95 	void *elems;
96 	union {
97 		struct pcpu_freelist freelist;
98 		struct bpf_lru lru;
99 	};
100 	struct htab_elem *__percpu *extra_elems;
101 	atomic_t count;	/* number of elements in this hashtable */
102 	u32 n_buckets;	/* number of hash buckets */
103 	u32 elem_size;	/* size of each element in bytes */
104 	u32 hashrnd;
105 	struct lock_class_key lockdep_key;
106 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108 
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111 	union {
112 		struct hlist_nulls_node hash_node;
113 		struct {
114 			void *padding;
115 			union {
116 				struct bpf_htab *htab;
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		struct rcu_head rcu;
124 		struct bpf_lru_node lru_node;
125 	};
126 	u32 hash;
127 	char key[] __aligned(8);
128 };
129 
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134 
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139 
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142 	unsigned i;
143 
144 	for (i = 0; i < htab->n_buckets; i++) {
145 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146 		if (htab_use_raw_lock(htab)) {
147 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
148 			lockdep_set_class(&htab->buckets[i].raw_lock,
149 					  &htab->lockdep_key);
150 		} else {
151 			spin_lock_init(&htab->buckets[i].lock);
152 			lockdep_set_class(&htab->buckets[i].lock,
153 					  &htab->lockdep_key);
154 		}
155 	}
156 }
157 
158 static inline int htab_lock_bucket(const struct bpf_htab *htab,
159 				   struct bucket *b, u32 hash,
160 				   unsigned long *pflags)
161 {
162 	unsigned long flags;
163 
164 	hash = hash & HASHTAB_MAP_LOCK_MASK;
165 
166 	migrate_disable();
167 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
168 		__this_cpu_dec(*(htab->map_locked[hash]));
169 		migrate_enable();
170 		return -EBUSY;
171 	}
172 
173 	if (htab_use_raw_lock(htab))
174 		raw_spin_lock_irqsave(&b->raw_lock, flags);
175 	else
176 		spin_lock_irqsave(&b->lock, flags);
177 	*pflags = flags;
178 
179 	return 0;
180 }
181 
182 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
183 				      struct bucket *b, u32 hash,
184 				      unsigned long flags)
185 {
186 	hash = hash & HASHTAB_MAP_LOCK_MASK;
187 	if (htab_use_raw_lock(htab))
188 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
189 	else
190 		spin_unlock_irqrestore(&b->lock, flags);
191 	__this_cpu_dec(*(htab->map_locked[hash]));
192 	migrate_enable();
193 }
194 
195 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
196 
197 static bool htab_is_lru(const struct bpf_htab *htab)
198 {
199 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
200 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
201 }
202 
203 static bool htab_is_percpu(const struct bpf_htab *htab)
204 {
205 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
206 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
207 }
208 
209 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
210 				     void __percpu *pptr)
211 {
212 	*(void __percpu **)(l->key + key_size) = pptr;
213 }
214 
215 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
216 {
217 	return *(void __percpu **)(l->key + key_size);
218 }
219 
220 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
221 {
222 	return *(void **)(l->key + roundup(map->key_size, 8));
223 }
224 
225 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
226 {
227 	return (struct htab_elem *) (htab->elems + i * htab->elem_size);
228 }
229 
230 static void htab_free_elems(struct bpf_htab *htab)
231 {
232 	int i;
233 
234 	if (!htab_is_percpu(htab))
235 		goto free_elems;
236 
237 	for (i = 0; i < htab->map.max_entries; i++) {
238 		void __percpu *pptr;
239 
240 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
241 					 htab->map.key_size);
242 		free_percpu(pptr);
243 		cond_resched();
244 	}
245 free_elems:
246 	bpf_map_area_free(htab->elems);
247 }
248 
249 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
250  * (bucket_lock). If both locks need to be acquired together, the lock
251  * order is always lru_lock -> bucket_lock and this only happens in
252  * bpf_lru_list.c logic. For example, certain code path of
253  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
254  * will acquire lru_lock first followed by acquiring bucket_lock.
255  *
256  * In hashtab.c, to avoid deadlock, lock acquisition of
257  * bucket_lock followed by lru_lock is not allowed. In such cases,
258  * bucket_lock needs to be released first before acquiring lru_lock.
259  */
260 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
261 					  u32 hash)
262 {
263 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
264 	struct htab_elem *l;
265 
266 	if (node) {
267 		l = container_of(node, struct htab_elem, lru_node);
268 		memcpy(l->key, key, htab->map.key_size);
269 		return l;
270 	}
271 
272 	return NULL;
273 }
274 
275 static int prealloc_init(struct bpf_htab *htab)
276 {
277 	u32 num_entries = htab->map.max_entries;
278 	int err = -ENOMEM, i;
279 
280 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
281 		num_entries += num_possible_cpus();
282 
283 	htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
284 					 htab->map.numa_node);
285 	if (!htab->elems)
286 		return -ENOMEM;
287 
288 	if (!htab_is_percpu(htab))
289 		goto skip_percpu_elems;
290 
291 	for (i = 0; i < num_entries; i++) {
292 		u32 size = round_up(htab->map.value_size, 8);
293 		void __percpu *pptr;
294 
295 		pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
296 		if (!pptr)
297 			goto free_elems;
298 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
299 				  pptr);
300 		cond_resched();
301 	}
302 
303 skip_percpu_elems:
304 	if (htab_is_lru(htab))
305 		err = bpf_lru_init(&htab->lru,
306 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
307 				   offsetof(struct htab_elem, hash) -
308 				   offsetof(struct htab_elem, lru_node),
309 				   htab_lru_map_delete_node,
310 				   htab);
311 	else
312 		err = pcpu_freelist_init(&htab->freelist);
313 
314 	if (err)
315 		goto free_elems;
316 
317 	if (htab_is_lru(htab))
318 		bpf_lru_populate(&htab->lru, htab->elems,
319 				 offsetof(struct htab_elem, lru_node),
320 				 htab->elem_size, num_entries);
321 	else
322 		pcpu_freelist_populate(&htab->freelist,
323 				       htab->elems + offsetof(struct htab_elem, fnode),
324 				       htab->elem_size, num_entries);
325 
326 	return 0;
327 
328 free_elems:
329 	htab_free_elems(htab);
330 	return err;
331 }
332 
333 static void prealloc_destroy(struct bpf_htab *htab)
334 {
335 	htab_free_elems(htab);
336 
337 	if (htab_is_lru(htab))
338 		bpf_lru_destroy(&htab->lru);
339 	else
340 		pcpu_freelist_destroy(&htab->freelist);
341 }
342 
343 static int alloc_extra_elems(struct bpf_htab *htab)
344 {
345 	struct htab_elem *__percpu *pptr, *l_new;
346 	struct pcpu_freelist_node *l;
347 	int cpu;
348 
349 	pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
350 				  GFP_USER | __GFP_NOWARN);
351 	if (!pptr)
352 		return -ENOMEM;
353 
354 	for_each_possible_cpu(cpu) {
355 		l = pcpu_freelist_pop(&htab->freelist);
356 		/* pop will succeed, since prealloc_init()
357 		 * preallocated extra num_possible_cpus elements
358 		 */
359 		l_new = container_of(l, struct htab_elem, fnode);
360 		*per_cpu_ptr(pptr, cpu) = l_new;
361 	}
362 	htab->extra_elems = pptr;
363 	return 0;
364 }
365 
366 /* Called from syscall */
367 static int htab_map_alloc_check(union bpf_attr *attr)
368 {
369 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
370 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
371 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
372 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
373 	/* percpu_lru means each cpu has its own LRU list.
374 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
375 	 * the map's value itself is percpu.  percpu_lru has
376 	 * nothing to do with the map's value.
377 	 */
378 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
379 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
380 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
381 	int numa_node = bpf_map_attr_numa_node(attr);
382 
383 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
384 		     offsetof(struct htab_elem, hash_node.pprev));
385 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
386 		     offsetof(struct htab_elem, hash_node.pprev));
387 
388 	if (lru && !bpf_capable())
389 		/* LRU implementation is much complicated than other
390 		 * maps.  Hence, limit to CAP_BPF.
391 		 */
392 		return -EPERM;
393 
394 	if (zero_seed && !capable(CAP_SYS_ADMIN))
395 		/* Guard against local DoS, and discourage production use. */
396 		return -EPERM;
397 
398 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
399 	    !bpf_map_flags_access_ok(attr->map_flags))
400 		return -EINVAL;
401 
402 	if (!lru && percpu_lru)
403 		return -EINVAL;
404 
405 	if (lru && !prealloc)
406 		return -ENOTSUPP;
407 
408 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
409 		return -EINVAL;
410 
411 	/* check sanity of attributes.
412 	 * value_size == 0 may be allowed in the future to use map as a set
413 	 */
414 	if (attr->max_entries == 0 || attr->key_size == 0 ||
415 	    attr->value_size == 0)
416 		return -EINVAL;
417 
418 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
419 	   sizeof(struct htab_elem))
420 		/* if key_size + value_size is bigger, the user space won't be
421 		 * able to access the elements via bpf syscall. This check
422 		 * also makes sure that the elem_size doesn't overflow and it's
423 		 * kmalloc-able later in htab_map_update_elem()
424 		 */
425 		return -E2BIG;
426 
427 	return 0;
428 }
429 
430 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
431 {
432 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
433 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
434 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
435 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
436 	/* percpu_lru means each cpu has its own LRU list.
437 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
438 	 * the map's value itself is percpu.  percpu_lru has
439 	 * nothing to do with the map's value.
440 	 */
441 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
442 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
443 	struct bpf_htab *htab;
444 	int err, i;
445 	u64 cost;
446 
447 	htab = kzalloc(sizeof(*htab), GFP_USER);
448 	if (!htab)
449 		return ERR_PTR(-ENOMEM);
450 
451 	lockdep_register_key(&htab->lockdep_key);
452 
453 	bpf_map_init_from_attr(&htab->map, attr);
454 
455 	if (percpu_lru) {
456 		/* ensure each CPU's lru list has >=1 elements.
457 		 * since we are at it, make each lru list has the same
458 		 * number of elements.
459 		 */
460 		htab->map.max_entries = roundup(attr->max_entries,
461 						num_possible_cpus());
462 		if (htab->map.max_entries < attr->max_entries)
463 			htab->map.max_entries = rounddown(attr->max_entries,
464 							  num_possible_cpus());
465 	}
466 
467 	/* hash table size must be power of 2 */
468 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
469 
470 	htab->elem_size = sizeof(struct htab_elem) +
471 			  round_up(htab->map.key_size, 8);
472 	if (percpu)
473 		htab->elem_size += sizeof(void *);
474 	else
475 		htab->elem_size += round_up(htab->map.value_size, 8);
476 
477 	err = -E2BIG;
478 	/* prevent zero size kmalloc and check for u32 overflow */
479 	if (htab->n_buckets == 0 ||
480 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
481 		goto free_htab;
482 
483 	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
484 	       (u64) htab->elem_size * htab->map.max_entries;
485 
486 	if (percpu)
487 		cost += (u64) round_up(htab->map.value_size, 8) *
488 			num_possible_cpus() * htab->map.max_entries;
489 	else
490 	       cost += (u64) htab->elem_size * num_possible_cpus();
491 
492 	/* if map size is larger than memlock limit, reject it */
493 	err = bpf_map_charge_init(&htab->map.memory, cost);
494 	if (err)
495 		goto free_htab;
496 
497 	err = -ENOMEM;
498 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
499 					   sizeof(struct bucket),
500 					   htab->map.numa_node);
501 	if (!htab->buckets)
502 		goto free_charge;
503 
504 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
505 		htab->map_locked[i] = __alloc_percpu_gfp(sizeof(int),
506 							 sizeof(int), GFP_USER);
507 		if (!htab->map_locked[i])
508 			goto free_map_locked;
509 	}
510 
511 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
512 		htab->hashrnd = 0;
513 	else
514 		htab->hashrnd = get_random_int();
515 
516 	htab_init_buckets(htab);
517 
518 	if (prealloc) {
519 		err = prealloc_init(htab);
520 		if (err)
521 			goto free_map_locked;
522 
523 		if (!percpu && !lru) {
524 			/* lru itself can remove the least used element, so
525 			 * there is no need for an extra elem during map_update.
526 			 */
527 			err = alloc_extra_elems(htab);
528 			if (err)
529 				goto free_prealloc;
530 		}
531 	}
532 
533 	return &htab->map;
534 
535 free_prealloc:
536 	prealloc_destroy(htab);
537 free_map_locked:
538 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
539 		free_percpu(htab->map_locked[i]);
540 	bpf_map_area_free(htab->buckets);
541 free_charge:
542 	bpf_map_charge_finish(&htab->map.memory);
543 free_htab:
544 	lockdep_unregister_key(&htab->lockdep_key);
545 	kfree(htab);
546 	return ERR_PTR(err);
547 }
548 
549 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
550 {
551 	return jhash(key, key_len, hashrnd);
552 }
553 
554 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
555 {
556 	return &htab->buckets[hash & (htab->n_buckets - 1)];
557 }
558 
559 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
560 {
561 	return &__select_bucket(htab, hash)->head;
562 }
563 
564 /* this lookup function can only be called with bucket lock taken */
565 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
566 					 void *key, u32 key_size)
567 {
568 	struct hlist_nulls_node *n;
569 	struct htab_elem *l;
570 
571 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
572 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
573 			return l;
574 
575 	return NULL;
576 }
577 
578 /* can be called without bucket lock. it will repeat the loop in
579  * the unlikely event when elements moved from one bucket into another
580  * while link list is being walked
581  */
582 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
583 					       u32 hash, void *key,
584 					       u32 key_size, u32 n_buckets)
585 {
586 	struct hlist_nulls_node *n;
587 	struct htab_elem *l;
588 
589 again:
590 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
591 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
592 			return l;
593 
594 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
595 		goto again;
596 
597 	return NULL;
598 }
599 
600 /* Called from syscall or from eBPF program directly, so
601  * arguments have to match bpf_map_lookup_elem() exactly.
602  * The return value is adjusted by BPF instructions
603  * in htab_map_gen_lookup().
604  */
605 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
606 {
607 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
608 	struct hlist_nulls_head *head;
609 	struct htab_elem *l;
610 	u32 hash, key_size;
611 
612 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
613 
614 	key_size = map->key_size;
615 
616 	hash = htab_map_hash(key, key_size, htab->hashrnd);
617 
618 	head = select_bucket(htab, hash);
619 
620 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
621 
622 	return l;
623 }
624 
625 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
626 {
627 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
628 
629 	if (l)
630 		return l->key + round_up(map->key_size, 8);
631 
632 	return NULL;
633 }
634 
635 /* inline bpf_map_lookup_elem() call.
636  * Instead of:
637  * bpf_prog
638  *   bpf_map_lookup_elem
639  *     map->ops->map_lookup_elem
640  *       htab_map_lookup_elem
641  *         __htab_map_lookup_elem
642  * do:
643  * bpf_prog
644  *   __htab_map_lookup_elem
645  */
646 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
647 {
648 	struct bpf_insn *insn = insn_buf;
649 	const int ret = BPF_REG_0;
650 
651 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
652 		     (void *(*)(struct bpf_map *map, void *key))NULL));
653 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
654 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
655 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
656 				offsetof(struct htab_elem, key) +
657 				round_up(map->key_size, 8));
658 	return insn - insn_buf;
659 }
660 
661 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
662 							void *key, const bool mark)
663 {
664 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
665 
666 	if (l) {
667 		if (mark)
668 			bpf_lru_node_set_ref(&l->lru_node);
669 		return l->key + round_up(map->key_size, 8);
670 	}
671 
672 	return NULL;
673 }
674 
675 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
676 {
677 	return __htab_lru_map_lookup_elem(map, key, true);
678 }
679 
680 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
681 {
682 	return __htab_lru_map_lookup_elem(map, key, false);
683 }
684 
685 static int htab_lru_map_gen_lookup(struct bpf_map *map,
686 				   struct bpf_insn *insn_buf)
687 {
688 	struct bpf_insn *insn = insn_buf;
689 	const int ret = BPF_REG_0;
690 	const int ref_reg = BPF_REG_1;
691 
692 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
693 		     (void *(*)(struct bpf_map *map, void *key))NULL));
694 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
695 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
696 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
697 			      offsetof(struct htab_elem, lru_node) +
698 			      offsetof(struct bpf_lru_node, ref));
699 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
700 	*insn++ = BPF_ST_MEM(BPF_B, ret,
701 			     offsetof(struct htab_elem, lru_node) +
702 			     offsetof(struct bpf_lru_node, ref),
703 			     1);
704 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
705 				offsetof(struct htab_elem, key) +
706 				round_up(map->key_size, 8));
707 	return insn - insn_buf;
708 }
709 
710 /* It is called from the bpf_lru_list when the LRU needs to delete
711  * older elements from the htab.
712  */
713 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
714 {
715 	struct bpf_htab *htab = (struct bpf_htab *)arg;
716 	struct htab_elem *l = NULL, *tgt_l;
717 	struct hlist_nulls_head *head;
718 	struct hlist_nulls_node *n;
719 	unsigned long flags;
720 	struct bucket *b;
721 	int ret;
722 
723 	tgt_l = container_of(node, struct htab_elem, lru_node);
724 	b = __select_bucket(htab, tgt_l->hash);
725 	head = &b->head;
726 
727 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
728 	if (ret)
729 		return false;
730 
731 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
732 		if (l == tgt_l) {
733 			hlist_nulls_del_rcu(&l->hash_node);
734 			break;
735 		}
736 
737 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
738 
739 	return l == tgt_l;
740 }
741 
742 /* Called from syscall */
743 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
744 {
745 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
746 	struct hlist_nulls_head *head;
747 	struct htab_elem *l, *next_l;
748 	u32 hash, key_size;
749 	int i = 0;
750 
751 	WARN_ON_ONCE(!rcu_read_lock_held());
752 
753 	key_size = map->key_size;
754 
755 	if (!key)
756 		goto find_first_elem;
757 
758 	hash = htab_map_hash(key, key_size, htab->hashrnd);
759 
760 	head = select_bucket(htab, hash);
761 
762 	/* lookup the key */
763 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
764 
765 	if (!l)
766 		goto find_first_elem;
767 
768 	/* key was found, get next key in the same bucket */
769 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
770 				  struct htab_elem, hash_node);
771 
772 	if (next_l) {
773 		/* if next elem in this hash list is non-zero, just return it */
774 		memcpy(next_key, next_l->key, key_size);
775 		return 0;
776 	}
777 
778 	/* no more elements in this hash list, go to the next bucket */
779 	i = hash & (htab->n_buckets - 1);
780 	i++;
781 
782 find_first_elem:
783 	/* iterate over buckets */
784 	for (; i < htab->n_buckets; i++) {
785 		head = select_bucket(htab, i);
786 
787 		/* pick first element in the bucket */
788 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
789 					  struct htab_elem, hash_node);
790 		if (next_l) {
791 			/* if it's not empty, just return it */
792 			memcpy(next_key, next_l->key, key_size);
793 			return 0;
794 		}
795 	}
796 
797 	/* iterated over all buckets and all elements */
798 	return -ENOENT;
799 }
800 
801 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
802 {
803 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
804 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
805 	kfree(l);
806 }
807 
808 static void htab_elem_free_rcu(struct rcu_head *head)
809 {
810 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
811 	struct bpf_htab *htab = l->htab;
812 
813 	htab_elem_free(htab, l);
814 }
815 
816 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
817 {
818 	struct bpf_map *map = &htab->map;
819 	void *ptr;
820 
821 	if (map->ops->map_fd_put_ptr) {
822 		ptr = fd_htab_map_get_ptr(map, l);
823 		map->ops->map_fd_put_ptr(ptr);
824 	}
825 }
826 
827 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
828 {
829 	htab_put_fd_value(htab, l);
830 
831 	if (htab_is_prealloc(htab)) {
832 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
833 	} else {
834 		atomic_dec(&htab->count);
835 		l->htab = htab;
836 		call_rcu(&l->rcu, htab_elem_free_rcu);
837 	}
838 }
839 
840 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
841 			    void *value, bool onallcpus)
842 {
843 	if (!onallcpus) {
844 		/* copy true value_size bytes */
845 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
846 	} else {
847 		u32 size = round_up(htab->map.value_size, 8);
848 		int off = 0, cpu;
849 
850 		for_each_possible_cpu(cpu) {
851 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
852 					value + off, size);
853 			off += size;
854 		}
855 	}
856 }
857 
858 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
859 {
860 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
861 	       BITS_PER_LONG == 64;
862 }
863 
864 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
865 					 void *value, u32 key_size, u32 hash,
866 					 bool percpu, bool onallcpus,
867 					 struct htab_elem *old_elem)
868 {
869 	u32 size = htab->map.value_size;
870 	bool prealloc = htab_is_prealloc(htab);
871 	struct htab_elem *l_new, **pl_new;
872 	void __percpu *pptr;
873 
874 	if (prealloc) {
875 		if (old_elem) {
876 			/* if we're updating the existing element,
877 			 * use per-cpu extra elems to avoid freelist_pop/push
878 			 */
879 			pl_new = this_cpu_ptr(htab->extra_elems);
880 			l_new = *pl_new;
881 			htab_put_fd_value(htab, old_elem);
882 			*pl_new = old_elem;
883 		} else {
884 			struct pcpu_freelist_node *l;
885 
886 			l = __pcpu_freelist_pop(&htab->freelist);
887 			if (!l)
888 				return ERR_PTR(-E2BIG);
889 			l_new = container_of(l, struct htab_elem, fnode);
890 		}
891 	} else {
892 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
893 			if (!old_elem) {
894 				/* when map is full and update() is replacing
895 				 * old element, it's ok to allocate, since
896 				 * old element will be freed immediately.
897 				 * Otherwise return an error
898 				 */
899 				l_new = ERR_PTR(-E2BIG);
900 				goto dec_count;
901 			}
902 		l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
903 				     htab->map.numa_node);
904 		if (!l_new) {
905 			l_new = ERR_PTR(-ENOMEM);
906 			goto dec_count;
907 		}
908 		check_and_init_map_lock(&htab->map,
909 					l_new->key + round_up(key_size, 8));
910 	}
911 
912 	memcpy(l_new->key, key, key_size);
913 	if (percpu) {
914 		size = round_up(size, 8);
915 		if (prealloc) {
916 			pptr = htab_elem_get_ptr(l_new, key_size);
917 		} else {
918 			/* alloc_percpu zero-fills */
919 			pptr = __alloc_percpu_gfp(size, 8,
920 						  GFP_ATOMIC | __GFP_NOWARN);
921 			if (!pptr) {
922 				kfree(l_new);
923 				l_new = ERR_PTR(-ENOMEM);
924 				goto dec_count;
925 			}
926 		}
927 
928 		pcpu_copy_value(htab, pptr, value, onallcpus);
929 
930 		if (!prealloc)
931 			htab_elem_set_ptr(l_new, key_size, pptr);
932 	} else if (fd_htab_map_needs_adjust(htab)) {
933 		size = round_up(size, 8);
934 		memcpy(l_new->key + round_up(key_size, 8), value, size);
935 	} else {
936 		copy_map_value(&htab->map,
937 			       l_new->key + round_up(key_size, 8),
938 			       value);
939 	}
940 
941 	l_new->hash = hash;
942 	return l_new;
943 dec_count:
944 	atomic_dec(&htab->count);
945 	return l_new;
946 }
947 
948 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
949 		       u64 map_flags)
950 {
951 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
952 		/* elem already exists */
953 		return -EEXIST;
954 
955 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
956 		/* elem doesn't exist, cannot update it */
957 		return -ENOENT;
958 
959 	return 0;
960 }
961 
962 /* Called from syscall or from eBPF program */
963 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
964 				u64 map_flags)
965 {
966 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
967 	struct htab_elem *l_new = NULL, *l_old;
968 	struct hlist_nulls_head *head;
969 	unsigned long flags;
970 	struct bucket *b;
971 	u32 key_size, hash;
972 	int ret;
973 
974 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
975 		/* unknown flags */
976 		return -EINVAL;
977 
978 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
979 
980 	key_size = map->key_size;
981 
982 	hash = htab_map_hash(key, key_size, htab->hashrnd);
983 
984 	b = __select_bucket(htab, hash);
985 	head = &b->head;
986 
987 	if (unlikely(map_flags & BPF_F_LOCK)) {
988 		if (unlikely(!map_value_has_spin_lock(map)))
989 			return -EINVAL;
990 		/* find an element without taking the bucket lock */
991 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
992 					      htab->n_buckets);
993 		ret = check_flags(htab, l_old, map_flags);
994 		if (ret)
995 			return ret;
996 		if (l_old) {
997 			/* grab the element lock and update value in place */
998 			copy_map_value_locked(map,
999 					      l_old->key + round_up(key_size, 8),
1000 					      value, false);
1001 			return 0;
1002 		}
1003 		/* fall through, grab the bucket lock and lookup again.
1004 		 * 99.9% chance that the element won't be found,
1005 		 * but second lookup under lock has to be done.
1006 		 */
1007 	}
1008 
1009 	ret = htab_lock_bucket(htab, b, hash, &flags);
1010 	if (ret)
1011 		return ret;
1012 
1013 	l_old = lookup_elem_raw(head, hash, key, key_size);
1014 
1015 	ret = check_flags(htab, l_old, map_flags);
1016 	if (ret)
1017 		goto err;
1018 
1019 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1020 		/* first lookup without the bucket lock didn't find the element,
1021 		 * but second lookup with the bucket lock found it.
1022 		 * This case is highly unlikely, but has to be dealt with:
1023 		 * grab the element lock in addition to the bucket lock
1024 		 * and update element in place
1025 		 */
1026 		copy_map_value_locked(map,
1027 				      l_old->key + round_up(key_size, 8),
1028 				      value, false);
1029 		ret = 0;
1030 		goto err;
1031 	}
1032 
1033 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1034 				l_old);
1035 	if (IS_ERR(l_new)) {
1036 		/* all pre-allocated elements are in use or memory exhausted */
1037 		ret = PTR_ERR(l_new);
1038 		goto err;
1039 	}
1040 
1041 	/* add new element to the head of the list, so that
1042 	 * concurrent search will find it before old elem
1043 	 */
1044 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1045 	if (l_old) {
1046 		hlist_nulls_del_rcu(&l_old->hash_node);
1047 		if (!htab_is_prealloc(htab))
1048 			free_htab_elem(htab, l_old);
1049 	}
1050 	ret = 0;
1051 err:
1052 	htab_unlock_bucket(htab, b, hash, flags);
1053 	return ret;
1054 }
1055 
1056 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1057 				    u64 map_flags)
1058 {
1059 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1060 	struct htab_elem *l_new, *l_old = NULL;
1061 	struct hlist_nulls_head *head;
1062 	unsigned long flags;
1063 	struct bucket *b;
1064 	u32 key_size, hash;
1065 	int ret;
1066 
1067 	if (unlikely(map_flags > BPF_EXIST))
1068 		/* unknown flags */
1069 		return -EINVAL;
1070 
1071 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1072 
1073 	key_size = map->key_size;
1074 
1075 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1076 
1077 	b = __select_bucket(htab, hash);
1078 	head = &b->head;
1079 
1080 	/* For LRU, we need to alloc before taking bucket's
1081 	 * spinlock because getting free nodes from LRU may need
1082 	 * to remove older elements from htab and this removal
1083 	 * operation will need a bucket lock.
1084 	 */
1085 	l_new = prealloc_lru_pop(htab, key, hash);
1086 	if (!l_new)
1087 		return -ENOMEM;
1088 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1089 
1090 	ret = htab_lock_bucket(htab, b, hash, &flags);
1091 	if (ret)
1092 		return ret;
1093 
1094 	l_old = lookup_elem_raw(head, hash, key, key_size);
1095 
1096 	ret = check_flags(htab, l_old, map_flags);
1097 	if (ret)
1098 		goto err;
1099 
1100 	/* add new element to the head of the list, so that
1101 	 * concurrent search will find it before old elem
1102 	 */
1103 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1104 	if (l_old) {
1105 		bpf_lru_node_set_ref(&l_new->lru_node);
1106 		hlist_nulls_del_rcu(&l_old->hash_node);
1107 	}
1108 	ret = 0;
1109 
1110 err:
1111 	htab_unlock_bucket(htab, b, hash, flags);
1112 
1113 	if (ret)
1114 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1115 	else if (l_old)
1116 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1117 
1118 	return ret;
1119 }
1120 
1121 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1122 					 void *value, u64 map_flags,
1123 					 bool onallcpus)
1124 {
1125 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1126 	struct htab_elem *l_new = NULL, *l_old;
1127 	struct hlist_nulls_head *head;
1128 	unsigned long flags;
1129 	struct bucket *b;
1130 	u32 key_size, hash;
1131 	int ret;
1132 
1133 	if (unlikely(map_flags > BPF_EXIST))
1134 		/* unknown flags */
1135 		return -EINVAL;
1136 
1137 	WARN_ON_ONCE(!rcu_read_lock_held());
1138 
1139 	key_size = map->key_size;
1140 
1141 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1142 
1143 	b = __select_bucket(htab, hash);
1144 	head = &b->head;
1145 
1146 	ret = htab_lock_bucket(htab, b, hash, &flags);
1147 	if (ret)
1148 		return ret;
1149 
1150 	l_old = lookup_elem_raw(head, hash, key, key_size);
1151 
1152 	ret = check_flags(htab, l_old, map_flags);
1153 	if (ret)
1154 		goto err;
1155 
1156 	if (l_old) {
1157 		/* per-cpu hash map can update value in-place */
1158 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1159 				value, onallcpus);
1160 	} else {
1161 		l_new = alloc_htab_elem(htab, key, value, key_size,
1162 					hash, true, onallcpus, NULL);
1163 		if (IS_ERR(l_new)) {
1164 			ret = PTR_ERR(l_new);
1165 			goto err;
1166 		}
1167 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1168 	}
1169 	ret = 0;
1170 err:
1171 	htab_unlock_bucket(htab, b, hash, flags);
1172 	return ret;
1173 }
1174 
1175 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1176 					     void *value, u64 map_flags,
1177 					     bool onallcpus)
1178 {
1179 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1180 	struct htab_elem *l_new = NULL, *l_old;
1181 	struct hlist_nulls_head *head;
1182 	unsigned long flags;
1183 	struct bucket *b;
1184 	u32 key_size, hash;
1185 	int ret;
1186 
1187 	if (unlikely(map_flags > BPF_EXIST))
1188 		/* unknown flags */
1189 		return -EINVAL;
1190 
1191 	WARN_ON_ONCE(!rcu_read_lock_held());
1192 
1193 	key_size = map->key_size;
1194 
1195 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1196 
1197 	b = __select_bucket(htab, hash);
1198 	head = &b->head;
1199 
1200 	/* For LRU, we need to alloc before taking bucket's
1201 	 * spinlock because LRU's elem alloc may need
1202 	 * to remove older elem from htab and this removal
1203 	 * operation will need a bucket lock.
1204 	 */
1205 	if (map_flags != BPF_EXIST) {
1206 		l_new = prealloc_lru_pop(htab, key, hash);
1207 		if (!l_new)
1208 			return -ENOMEM;
1209 	}
1210 
1211 	ret = htab_lock_bucket(htab, b, hash, &flags);
1212 	if (ret)
1213 		return ret;
1214 
1215 	l_old = lookup_elem_raw(head, hash, key, key_size);
1216 
1217 	ret = check_flags(htab, l_old, map_flags);
1218 	if (ret)
1219 		goto err;
1220 
1221 	if (l_old) {
1222 		bpf_lru_node_set_ref(&l_old->lru_node);
1223 
1224 		/* per-cpu hash map can update value in-place */
1225 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1226 				value, onallcpus);
1227 	} else {
1228 		pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
1229 				value, onallcpus);
1230 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1231 		l_new = NULL;
1232 	}
1233 	ret = 0;
1234 err:
1235 	htab_unlock_bucket(htab, b, hash, flags);
1236 	if (l_new)
1237 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1238 	return ret;
1239 }
1240 
1241 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1242 				       void *value, u64 map_flags)
1243 {
1244 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1245 }
1246 
1247 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1248 					   void *value, u64 map_flags)
1249 {
1250 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1251 						 false);
1252 }
1253 
1254 /* Called from syscall or from eBPF program */
1255 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1256 {
1257 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1258 	struct hlist_nulls_head *head;
1259 	struct bucket *b;
1260 	struct htab_elem *l;
1261 	unsigned long flags;
1262 	u32 hash, key_size;
1263 	int ret;
1264 
1265 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1266 
1267 	key_size = map->key_size;
1268 
1269 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1270 	b = __select_bucket(htab, hash);
1271 	head = &b->head;
1272 
1273 	ret = htab_lock_bucket(htab, b, hash, &flags);
1274 	if (ret)
1275 		return ret;
1276 
1277 	l = lookup_elem_raw(head, hash, key, key_size);
1278 
1279 	if (l) {
1280 		hlist_nulls_del_rcu(&l->hash_node);
1281 		free_htab_elem(htab, l);
1282 	} else {
1283 		ret = -ENOENT;
1284 	}
1285 
1286 	htab_unlock_bucket(htab, b, hash, flags);
1287 	return ret;
1288 }
1289 
1290 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1291 {
1292 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1293 	struct hlist_nulls_head *head;
1294 	struct bucket *b;
1295 	struct htab_elem *l;
1296 	unsigned long flags;
1297 	u32 hash, key_size;
1298 	int ret;
1299 
1300 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1301 
1302 	key_size = map->key_size;
1303 
1304 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1305 	b = __select_bucket(htab, hash);
1306 	head = &b->head;
1307 
1308 	ret = htab_lock_bucket(htab, b, hash, &flags);
1309 	if (ret)
1310 		return ret;
1311 
1312 	l = lookup_elem_raw(head, hash, key, key_size);
1313 
1314 	if (l)
1315 		hlist_nulls_del_rcu(&l->hash_node);
1316 	else
1317 		ret = -ENOENT;
1318 
1319 	htab_unlock_bucket(htab, b, hash, flags);
1320 	if (l)
1321 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1322 	return ret;
1323 }
1324 
1325 static void delete_all_elements(struct bpf_htab *htab)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < htab->n_buckets; i++) {
1330 		struct hlist_nulls_head *head = select_bucket(htab, i);
1331 		struct hlist_nulls_node *n;
1332 		struct htab_elem *l;
1333 
1334 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1335 			hlist_nulls_del_rcu(&l->hash_node);
1336 			htab_elem_free(htab, l);
1337 		}
1338 	}
1339 }
1340 
1341 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1342 static void htab_map_free(struct bpf_map *map)
1343 {
1344 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1345 	int i;
1346 
1347 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1348 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1349 	 * There is no need to synchronize_rcu() here to protect map elements.
1350 	 */
1351 
1352 	/* some of free_htab_elem() callbacks for elements of this map may
1353 	 * not have executed. Wait for them.
1354 	 */
1355 	rcu_barrier();
1356 	if (!htab_is_prealloc(htab))
1357 		delete_all_elements(htab);
1358 	else
1359 		prealloc_destroy(htab);
1360 
1361 	free_percpu(htab->extra_elems);
1362 	bpf_map_area_free(htab->buckets);
1363 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1364 		free_percpu(htab->map_locked[i]);
1365 	lockdep_unregister_key(&htab->lockdep_key);
1366 	kfree(htab);
1367 }
1368 
1369 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1370 				   struct seq_file *m)
1371 {
1372 	void *value;
1373 
1374 	rcu_read_lock();
1375 
1376 	value = htab_map_lookup_elem(map, key);
1377 	if (!value) {
1378 		rcu_read_unlock();
1379 		return;
1380 	}
1381 
1382 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1383 	seq_puts(m, ": ");
1384 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1385 	seq_puts(m, "\n");
1386 
1387 	rcu_read_unlock();
1388 }
1389 
1390 static int
1391 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1392 				   const union bpf_attr *attr,
1393 				   union bpf_attr __user *uattr,
1394 				   bool do_delete, bool is_lru_map,
1395 				   bool is_percpu)
1396 {
1397 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1398 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1399 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1400 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1401 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1402 	void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1403 	u32 batch, max_count, size, bucket_size;
1404 	struct htab_elem *node_to_free = NULL;
1405 	u64 elem_map_flags, map_flags;
1406 	struct hlist_nulls_head *head;
1407 	struct hlist_nulls_node *n;
1408 	unsigned long flags = 0;
1409 	bool locked = false;
1410 	struct htab_elem *l;
1411 	struct bucket *b;
1412 	int ret = 0;
1413 
1414 	elem_map_flags = attr->batch.elem_flags;
1415 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1416 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1417 		return -EINVAL;
1418 
1419 	map_flags = attr->batch.flags;
1420 	if (map_flags)
1421 		return -EINVAL;
1422 
1423 	max_count = attr->batch.count;
1424 	if (!max_count)
1425 		return 0;
1426 
1427 	if (put_user(0, &uattr->batch.count))
1428 		return -EFAULT;
1429 
1430 	batch = 0;
1431 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1432 		return -EFAULT;
1433 
1434 	if (batch >= htab->n_buckets)
1435 		return -ENOENT;
1436 
1437 	key_size = htab->map.key_size;
1438 	roundup_key_size = round_up(htab->map.key_size, 8);
1439 	value_size = htab->map.value_size;
1440 	size = round_up(value_size, 8);
1441 	if (is_percpu)
1442 		value_size = size * num_possible_cpus();
1443 	total = 0;
1444 	/* while experimenting with hash tables with sizes ranging from 10 to
1445 	 * 1000, it was observed that a bucket can have upto 5 entries.
1446 	 */
1447 	bucket_size = 5;
1448 
1449 alloc:
1450 	/* We cannot do copy_from_user or copy_to_user inside
1451 	 * the rcu_read_lock. Allocate enough space here.
1452 	 */
1453 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1454 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1455 	if (!keys || !values) {
1456 		ret = -ENOMEM;
1457 		goto after_loop;
1458 	}
1459 
1460 again:
1461 	bpf_disable_instrumentation();
1462 	rcu_read_lock();
1463 again_nocopy:
1464 	dst_key = keys;
1465 	dst_val = values;
1466 	b = &htab->buckets[batch];
1467 	head = &b->head;
1468 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1469 	if (locked) {
1470 		ret = htab_lock_bucket(htab, b, batch, &flags);
1471 		if (ret)
1472 			goto next_batch;
1473 	}
1474 
1475 	bucket_cnt = 0;
1476 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1477 		bucket_cnt++;
1478 
1479 	if (bucket_cnt && !locked) {
1480 		locked = true;
1481 		goto again_nocopy;
1482 	}
1483 
1484 	if (bucket_cnt > (max_count - total)) {
1485 		if (total == 0)
1486 			ret = -ENOSPC;
1487 		/* Note that since bucket_cnt > 0 here, it is implicit
1488 		 * that the locked was grabbed, so release it.
1489 		 */
1490 		htab_unlock_bucket(htab, b, batch, flags);
1491 		rcu_read_unlock();
1492 		bpf_enable_instrumentation();
1493 		goto after_loop;
1494 	}
1495 
1496 	if (bucket_cnt > bucket_size) {
1497 		bucket_size = bucket_cnt;
1498 		/* Note that since bucket_cnt > 0 here, it is implicit
1499 		 * that the locked was grabbed, so release it.
1500 		 */
1501 		htab_unlock_bucket(htab, b, batch, flags);
1502 		rcu_read_unlock();
1503 		bpf_enable_instrumentation();
1504 		kvfree(keys);
1505 		kvfree(values);
1506 		goto alloc;
1507 	}
1508 
1509 	/* Next block is only safe to run if you have grabbed the lock */
1510 	if (!locked)
1511 		goto next_batch;
1512 
1513 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1514 		memcpy(dst_key, l->key, key_size);
1515 
1516 		if (is_percpu) {
1517 			int off = 0, cpu;
1518 			void __percpu *pptr;
1519 
1520 			pptr = htab_elem_get_ptr(l, map->key_size);
1521 			for_each_possible_cpu(cpu) {
1522 				bpf_long_memcpy(dst_val + off,
1523 						per_cpu_ptr(pptr, cpu), size);
1524 				off += size;
1525 			}
1526 		} else {
1527 			value = l->key + roundup_key_size;
1528 			if (elem_map_flags & BPF_F_LOCK)
1529 				copy_map_value_locked(map, dst_val, value,
1530 						      true);
1531 			else
1532 				copy_map_value(map, dst_val, value);
1533 			check_and_init_map_lock(map, dst_val);
1534 		}
1535 		if (do_delete) {
1536 			hlist_nulls_del_rcu(&l->hash_node);
1537 
1538 			/* bpf_lru_push_free() will acquire lru_lock, which
1539 			 * may cause deadlock. See comments in function
1540 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1541 			 * after releasing the bucket lock.
1542 			 */
1543 			if (is_lru_map) {
1544 				l->batch_flink = node_to_free;
1545 				node_to_free = l;
1546 			} else {
1547 				free_htab_elem(htab, l);
1548 			}
1549 		}
1550 		dst_key += key_size;
1551 		dst_val += value_size;
1552 	}
1553 
1554 	htab_unlock_bucket(htab, b, batch, flags);
1555 	locked = false;
1556 
1557 	while (node_to_free) {
1558 		l = node_to_free;
1559 		node_to_free = node_to_free->batch_flink;
1560 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1561 	}
1562 
1563 next_batch:
1564 	/* If we are not copying data, we can go to next bucket and avoid
1565 	 * unlocking the rcu.
1566 	 */
1567 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1568 		batch++;
1569 		goto again_nocopy;
1570 	}
1571 
1572 	rcu_read_unlock();
1573 	bpf_enable_instrumentation();
1574 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1575 	    key_size * bucket_cnt) ||
1576 	    copy_to_user(uvalues + total * value_size, values,
1577 	    value_size * bucket_cnt))) {
1578 		ret = -EFAULT;
1579 		goto after_loop;
1580 	}
1581 
1582 	total += bucket_cnt;
1583 	batch++;
1584 	if (batch >= htab->n_buckets) {
1585 		ret = -ENOENT;
1586 		goto after_loop;
1587 	}
1588 	goto again;
1589 
1590 after_loop:
1591 	if (ret == -EFAULT)
1592 		goto out;
1593 
1594 	/* copy # of entries and next batch */
1595 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1596 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1597 	    put_user(total, &uattr->batch.count))
1598 		ret = -EFAULT;
1599 
1600 out:
1601 	kvfree(keys);
1602 	kvfree(values);
1603 	return ret;
1604 }
1605 
1606 static int
1607 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1608 			     union bpf_attr __user *uattr)
1609 {
1610 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1611 						  false, true);
1612 }
1613 
1614 static int
1615 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1616 					const union bpf_attr *attr,
1617 					union bpf_attr __user *uattr)
1618 {
1619 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1620 						  false, true);
1621 }
1622 
1623 static int
1624 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1625 		      union bpf_attr __user *uattr)
1626 {
1627 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1628 						  false, false);
1629 }
1630 
1631 static int
1632 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1633 				 const union bpf_attr *attr,
1634 				 union bpf_attr __user *uattr)
1635 {
1636 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1637 						  false, false);
1638 }
1639 
1640 static int
1641 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1642 				 const union bpf_attr *attr,
1643 				 union bpf_attr __user *uattr)
1644 {
1645 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1646 						  true, true);
1647 }
1648 
1649 static int
1650 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1651 					    const union bpf_attr *attr,
1652 					    union bpf_attr __user *uattr)
1653 {
1654 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1655 						  true, true);
1656 }
1657 
1658 static int
1659 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1660 			  union bpf_attr __user *uattr)
1661 {
1662 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1663 						  true, false);
1664 }
1665 
1666 static int
1667 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1668 				     const union bpf_attr *attr,
1669 				     union bpf_attr __user *uattr)
1670 {
1671 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1672 						  true, false);
1673 }
1674 
1675 struct bpf_iter_seq_hash_map_info {
1676 	struct bpf_map *map;
1677 	struct bpf_htab *htab;
1678 	void *percpu_value_buf; // non-zero means percpu hash
1679 	u32 bucket_id;
1680 	u32 skip_elems;
1681 };
1682 
1683 static struct htab_elem *
1684 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1685 			   struct htab_elem *prev_elem)
1686 {
1687 	const struct bpf_htab *htab = info->htab;
1688 	u32 skip_elems = info->skip_elems;
1689 	u32 bucket_id = info->bucket_id;
1690 	struct hlist_nulls_head *head;
1691 	struct hlist_nulls_node *n;
1692 	struct htab_elem *elem;
1693 	struct bucket *b;
1694 	u32 i, count;
1695 
1696 	if (bucket_id >= htab->n_buckets)
1697 		return NULL;
1698 
1699 	/* try to find next elem in the same bucket */
1700 	if (prev_elem) {
1701 		/* no update/deletion on this bucket, prev_elem should be still valid
1702 		 * and we won't skip elements.
1703 		 */
1704 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1705 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1706 		if (elem)
1707 			return elem;
1708 
1709 		/* not found, unlock and go to the next bucket */
1710 		b = &htab->buckets[bucket_id++];
1711 		rcu_read_unlock();
1712 		skip_elems = 0;
1713 	}
1714 
1715 	for (i = bucket_id; i < htab->n_buckets; i++) {
1716 		b = &htab->buckets[i];
1717 		rcu_read_lock();
1718 
1719 		count = 0;
1720 		head = &b->head;
1721 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1722 			if (count >= skip_elems) {
1723 				info->bucket_id = i;
1724 				info->skip_elems = count;
1725 				return elem;
1726 			}
1727 			count++;
1728 		}
1729 
1730 		rcu_read_unlock();
1731 		skip_elems = 0;
1732 	}
1733 
1734 	info->bucket_id = i;
1735 	info->skip_elems = 0;
1736 	return NULL;
1737 }
1738 
1739 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1740 {
1741 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1742 	struct htab_elem *elem;
1743 
1744 	elem = bpf_hash_map_seq_find_next(info, NULL);
1745 	if (!elem)
1746 		return NULL;
1747 
1748 	if (*pos == 0)
1749 		++*pos;
1750 	return elem;
1751 }
1752 
1753 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1754 {
1755 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1756 
1757 	++*pos;
1758 	++info->skip_elems;
1759 	return bpf_hash_map_seq_find_next(info, v);
1760 }
1761 
1762 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1763 {
1764 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1765 	u32 roundup_key_size, roundup_value_size;
1766 	struct bpf_iter__bpf_map_elem ctx = {};
1767 	struct bpf_map *map = info->map;
1768 	struct bpf_iter_meta meta;
1769 	int ret = 0, off = 0, cpu;
1770 	struct bpf_prog *prog;
1771 	void __percpu *pptr;
1772 
1773 	meta.seq = seq;
1774 	prog = bpf_iter_get_info(&meta, elem == NULL);
1775 	if (prog) {
1776 		ctx.meta = &meta;
1777 		ctx.map = info->map;
1778 		if (elem) {
1779 			roundup_key_size = round_up(map->key_size, 8);
1780 			ctx.key = elem->key;
1781 			if (!info->percpu_value_buf) {
1782 				ctx.value = elem->key + roundup_key_size;
1783 			} else {
1784 				roundup_value_size = round_up(map->value_size, 8);
1785 				pptr = htab_elem_get_ptr(elem, map->key_size);
1786 				for_each_possible_cpu(cpu) {
1787 					bpf_long_memcpy(info->percpu_value_buf + off,
1788 							per_cpu_ptr(pptr, cpu),
1789 							roundup_value_size);
1790 					off += roundup_value_size;
1791 				}
1792 				ctx.value = info->percpu_value_buf;
1793 			}
1794 		}
1795 		ret = bpf_iter_run_prog(prog, &ctx);
1796 	}
1797 
1798 	return ret;
1799 }
1800 
1801 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1802 {
1803 	return __bpf_hash_map_seq_show(seq, v);
1804 }
1805 
1806 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1807 {
1808 	if (!v)
1809 		(void)__bpf_hash_map_seq_show(seq, NULL);
1810 	else
1811 		rcu_read_unlock();
1812 }
1813 
1814 static int bpf_iter_init_hash_map(void *priv_data,
1815 				  struct bpf_iter_aux_info *aux)
1816 {
1817 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1818 	struct bpf_map *map = aux->map;
1819 	void *value_buf;
1820 	u32 buf_size;
1821 
1822 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1823 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1824 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1825 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1826 		if (!value_buf)
1827 			return -ENOMEM;
1828 
1829 		seq_info->percpu_value_buf = value_buf;
1830 	}
1831 
1832 	seq_info->map = map;
1833 	seq_info->htab = container_of(map, struct bpf_htab, map);
1834 	return 0;
1835 }
1836 
1837 static void bpf_iter_fini_hash_map(void *priv_data)
1838 {
1839 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1840 
1841 	kfree(seq_info->percpu_value_buf);
1842 }
1843 
1844 static const struct seq_operations bpf_hash_map_seq_ops = {
1845 	.start	= bpf_hash_map_seq_start,
1846 	.next	= bpf_hash_map_seq_next,
1847 	.stop	= bpf_hash_map_seq_stop,
1848 	.show	= bpf_hash_map_seq_show,
1849 };
1850 
1851 static const struct bpf_iter_seq_info iter_seq_info = {
1852 	.seq_ops		= &bpf_hash_map_seq_ops,
1853 	.init_seq_private	= bpf_iter_init_hash_map,
1854 	.fini_seq_private	= bpf_iter_fini_hash_map,
1855 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1856 };
1857 
1858 static int htab_map_btf_id;
1859 const struct bpf_map_ops htab_map_ops = {
1860 	.map_meta_equal = bpf_map_meta_equal,
1861 	.map_alloc_check = htab_map_alloc_check,
1862 	.map_alloc = htab_map_alloc,
1863 	.map_free = htab_map_free,
1864 	.map_get_next_key = htab_map_get_next_key,
1865 	.map_lookup_elem = htab_map_lookup_elem,
1866 	.map_update_elem = htab_map_update_elem,
1867 	.map_delete_elem = htab_map_delete_elem,
1868 	.map_gen_lookup = htab_map_gen_lookup,
1869 	.map_seq_show_elem = htab_map_seq_show_elem,
1870 	BATCH_OPS(htab),
1871 	.map_btf_name = "bpf_htab",
1872 	.map_btf_id = &htab_map_btf_id,
1873 	.iter_seq_info = &iter_seq_info,
1874 };
1875 
1876 static int htab_lru_map_btf_id;
1877 const struct bpf_map_ops htab_lru_map_ops = {
1878 	.map_meta_equal = bpf_map_meta_equal,
1879 	.map_alloc_check = htab_map_alloc_check,
1880 	.map_alloc = htab_map_alloc,
1881 	.map_free = htab_map_free,
1882 	.map_get_next_key = htab_map_get_next_key,
1883 	.map_lookup_elem = htab_lru_map_lookup_elem,
1884 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1885 	.map_update_elem = htab_lru_map_update_elem,
1886 	.map_delete_elem = htab_lru_map_delete_elem,
1887 	.map_gen_lookup = htab_lru_map_gen_lookup,
1888 	.map_seq_show_elem = htab_map_seq_show_elem,
1889 	BATCH_OPS(htab_lru),
1890 	.map_btf_name = "bpf_htab",
1891 	.map_btf_id = &htab_lru_map_btf_id,
1892 	.iter_seq_info = &iter_seq_info,
1893 };
1894 
1895 /* Called from eBPF program */
1896 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1897 {
1898 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1899 
1900 	if (l)
1901 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1902 	else
1903 		return NULL;
1904 }
1905 
1906 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1907 {
1908 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1909 
1910 	if (l) {
1911 		bpf_lru_node_set_ref(&l->lru_node);
1912 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1913 	}
1914 
1915 	return NULL;
1916 }
1917 
1918 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1919 {
1920 	struct htab_elem *l;
1921 	void __percpu *pptr;
1922 	int ret = -ENOENT;
1923 	int cpu, off = 0;
1924 	u32 size;
1925 
1926 	/* per_cpu areas are zero-filled and bpf programs can only
1927 	 * access 'value_size' of them, so copying rounded areas
1928 	 * will not leak any kernel data
1929 	 */
1930 	size = round_up(map->value_size, 8);
1931 	rcu_read_lock();
1932 	l = __htab_map_lookup_elem(map, key);
1933 	if (!l)
1934 		goto out;
1935 	/* We do not mark LRU map element here in order to not mess up
1936 	 * eviction heuristics when user space does a map walk.
1937 	 */
1938 	pptr = htab_elem_get_ptr(l, map->key_size);
1939 	for_each_possible_cpu(cpu) {
1940 		bpf_long_memcpy(value + off,
1941 				per_cpu_ptr(pptr, cpu), size);
1942 		off += size;
1943 	}
1944 	ret = 0;
1945 out:
1946 	rcu_read_unlock();
1947 	return ret;
1948 }
1949 
1950 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1951 			   u64 map_flags)
1952 {
1953 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1954 	int ret;
1955 
1956 	rcu_read_lock();
1957 	if (htab_is_lru(htab))
1958 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1959 							map_flags, true);
1960 	else
1961 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1962 						    true);
1963 	rcu_read_unlock();
1964 
1965 	return ret;
1966 }
1967 
1968 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1969 					  struct seq_file *m)
1970 {
1971 	struct htab_elem *l;
1972 	void __percpu *pptr;
1973 	int cpu;
1974 
1975 	rcu_read_lock();
1976 
1977 	l = __htab_map_lookup_elem(map, key);
1978 	if (!l) {
1979 		rcu_read_unlock();
1980 		return;
1981 	}
1982 
1983 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1984 	seq_puts(m, ": {\n");
1985 	pptr = htab_elem_get_ptr(l, map->key_size);
1986 	for_each_possible_cpu(cpu) {
1987 		seq_printf(m, "\tcpu%d: ", cpu);
1988 		btf_type_seq_show(map->btf, map->btf_value_type_id,
1989 				  per_cpu_ptr(pptr, cpu), m);
1990 		seq_puts(m, "\n");
1991 	}
1992 	seq_puts(m, "}\n");
1993 
1994 	rcu_read_unlock();
1995 }
1996 
1997 static int htab_percpu_map_btf_id;
1998 const struct bpf_map_ops htab_percpu_map_ops = {
1999 	.map_meta_equal = bpf_map_meta_equal,
2000 	.map_alloc_check = htab_map_alloc_check,
2001 	.map_alloc = htab_map_alloc,
2002 	.map_free = htab_map_free,
2003 	.map_get_next_key = htab_map_get_next_key,
2004 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2005 	.map_update_elem = htab_percpu_map_update_elem,
2006 	.map_delete_elem = htab_map_delete_elem,
2007 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2008 	BATCH_OPS(htab_percpu),
2009 	.map_btf_name = "bpf_htab",
2010 	.map_btf_id = &htab_percpu_map_btf_id,
2011 	.iter_seq_info = &iter_seq_info,
2012 };
2013 
2014 static int htab_lru_percpu_map_btf_id;
2015 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2016 	.map_meta_equal = bpf_map_meta_equal,
2017 	.map_alloc_check = htab_map_alloc_check,
2018 	.map_alloc = htab_map_alloc,
2019 	.map_free = htab_map_free,
2020 	.map_get_next_key = htab_map_get_next_key,
2021 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2022 	.map_update_elem = htab_lru_percpu_map_update_elem,
2023 	.map_delete_elem = htab_lru_map_delete_elem,
2024 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2025 	BATCH_OPS(htab_lru_percpu),
2026 	.map_btf_name = "bpf_htab",
2027 	.map_btf_id = &htab_lru_percpu_map_btf_id,
2028 	.iter_seq_info = &iter_seq_info,
2029 };
2030 
2031 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2032 {
2033 	if (attr->value_size != sizeof(u32))
2034 		return -EINVAL;
2035 	return htab_map_alloc_check(attr);
2036 }
2037 
2038 static void fd_htab_map_free(struct bpf_map *map)
2039 {
2040 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2041 	struct hlist_nulls_node *n;
2042 	struct hlist_nulls_head *head;
2043 	struct htab_elem *l;
2044 	int i;
2045 
2046 	for (i = 0; i < htab->n_buckets; i++) {
2047 		head = select_bucket(htab, i);
2048 
2049 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2050 			void *ptr = fd_htab_map_get_ptr(map, l);
2051 
2052 			map->ops->map_fd_put_ptr(ptr);
2053 		}
2054 	}
2055 
2056 	htab_map_free(map);
2057 }
2058 
2059 /* only called from syscall */
2060 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2061 {
2062 	void **ptr;
2063 	int ret = 0;
2064 
2065 	if (!map->ops->map_fd_sys_lookup_elem)
2066 		return -ENOTSUPP;
2067 
2068 	rcu_read_lock();
2069 	ptr = htab_map_lookup_elem(map, key);
2070 	if (ptr)
2071 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2072 	else
2073 		ret = -ENOENT;
2074 	rcu_read_unlock();
2075 
2076 	return ret;
2077 }
2078 
2079 /* only called from syscall */
2080 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2081 				void *key, void *value, u64 map_flags)
2082 {
2083 	void *ptr;
2084 	int ret;
2085 	u32 ufd = *(u32 *)value;
2086 
2087 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2088 	if (IS_ERR(ptr))
2089 		return PTR_ERR(ptr);
2090 
2091 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2092 	if (ret)
2093 		map->ops->map_fd_put_ptr(ptr);
2094 
2095 	return ret;
2096 }
2097 
2098 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2099 {
2100 	struct bpf_map *map, *inner_map_meta;
2101 
2102 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2103 	if (IS_ERR(inner_map_meta))
2104 		return inner_map_meta;
2105 
2106 	map = htab_map_alloc(attr);
2107 	if (IS_ERR(map)) {
2108 		bpf_map_meta_free(inner_map_meta);
2109 		return map;
2110 	}
2111 
2112 	map->inner_map_meta = inner_map_meta;
2113 
2114 	return map;
2115 }
2116 
2117 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2118 {
2119 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2120 
2121 	if (!inner_map)
2122 		return NULL;
2123 
2124 	return READ_ONCE(*inner_map);
2125 }
2126 
2127 static int htab_of_map_gen_lookup(struct bpf_map *map,
2128 				  struct bpf_insn *insn_buf)
2129 {
2130 	struct bpf_insn *insn = insn_buf;
2131 	const int ret = BPF_REG_0;
2132 
2133 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2134 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2135 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2136 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2137 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2138 				offsetof(struct htab_elem, key) +
2139 				round_up(map->key_size, 8));
2140 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2141 
2142 	return insn - insn_buf;
2143 }
2144 
2145 static void htab_of_map_free(struct bpf_map *map)
2146 {
2147 	bpf_map_meta_free(map->inner_map_meta);
2148 	fd_htab_map_free(map);
2149 }
2150 
2151 static int htab_of_maps_map_btf_id;
2152 const struct bpf_map_ops htab_of_maps_map_ops = {
2153 	.map_alloc_check = fd_htab_map_alloc_check,
2154 	.map_alloc = htab_of_map_alloc,
2155 	.map_free = htab_of_map_free,
2156 	.map_get_next_key = htab_map_get_next_key,
2157 	.map_lookup_elem = htab_of_map_lookup_elem,
2158 	.map_delete_elem = htab_map_delete_elem,
2159 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2160 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2161 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2162 	.map_gen_lookup = htab_of_map_gen_lookup,
2163 	.map_check_btf = map_check_no_btf,
2164 	.map_btf_name = "bpf_htab",
2165 	.map_btf_id = &htab_of_maps_map_btf_id,
2166 };
2167