xref: /linux/kernel/bpf/hashtab.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16 
17 #define HTAB_CREATE_FLAG_MASK						\
18 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
19 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 
21 #define BATCH_OPS(_name)			\
22 	.map_lookup_batch =			\
23 	_name##_map_lookup_batch,		\
24 	.map_lookup_and_delete_batch =		\
25 	_name##_map_lookup_and_delete_batch,	\
26 	.map_update_batch =			\
27 	generic_map_update_batch,		\
28 	.map_delete_batch =			\
29 	generic_map_delete_batch
30 
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on differrent
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection accross the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code pathes which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82 	struct hlist_nulls_head head;
83 	union {
84 		raw_spinlock_t raw_lock;
85 		spinlock_t     lock;
86 	};
87 };
88 
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91 
92 struct bpf_htab {
93 	struct bpf_map map;
94 	struct bucket *buckets;
95 	void *elems;
96 	union {
97 		struct pcpu_freelist freelist;
98 		struct bpf_lru lru;
99 	};
100 	struct htab_elem *__percpu *extra_elems;
101 	atomic_t count;	/* number of elements in this hashtable */
102 	u32 n_buckets;	/* number of hash buckets */
103 	u32 elem_size;	/* size of each element in bytes */
104 	u32 hashrnd;
105 	struct lock_class_key lockdep_key;
106 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108 
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111 	union {
112 		struct hlist_nulls_node hash_node;
113 		struct {
114 			void *padding;
115 			union {
116 				struct bpf_htab *htab;
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		struct rcu_head rcu;
124 		struct bpf_lru_node lru_node;
125 	};
126 	u32 hash;
127 	char key[] __aligned(8);
128 };
129 
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134 
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139 
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142 	unsigned i;
143 
144 	for (i = 0; i < htab->n_buckets; i++) {
145 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146 		if (htab_use_raw_lock(htab)) {
147 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
148 			lockdep_set_class(&htab->buckets[i].raw_lock,
149 					  &htab->lockdep_key);
150 		} else {
151 			spin_lock_init(&htab->buckets[i].lock);
152 			lockdep_set_class(&htab->buckets[i].lock,
153 					  &htab->lockdep_key);
154 		}
155 	}
156 }
157 
158 static inline int htab_lock_bucket(const struct bpf_htab *htab,
159 				   struct bucket *b, u32 hash,
160 				   unsigned long *pflags)
161 {
162 	unsigned long flags;
163 
164 	hash = hash & HASHTAB_MAP_LOCK_MASK;
165 
166 	migrate_disable();
167 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
168 		__this_cpu_dec(*(htab->map_locked[hash]));
169 		migrate_enable();
170 		return -EBUSY;
171 	}
172 
173 	if (htab_use_raw_lock(htab))
174 		raw_spin_lock_irqsave(&b->raw_lock, flags);
175 	else
176 		spin_lock_irqsave(&b->lock, flags);
177 	*pflags = flags;
178 
179 	return 0;
180 }
181 
182 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
183 				      struct bucket *b, u32 hash,
184 				      unsigned long flags)
185 {
186 	hash = hash & HASHTAB_MAP_LOCK_MASK;
187 	if (htab_use_raw_lock(htab))
188 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
189 	else
190 		spin_unlock_irqrestore(&b->lock, flags);
191 	__this_cpu_dec(*(htab->map_locked[hash]));
192 	migrate_enable();
193 }
194 
195 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
196 
197 static bool htab_is_lru(const struct bpf_htab *htab)
198 {
199 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
200 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
201 }
202 
203 static bool htab_is_percpu(const struct bpf_htab *htab)
204 {
205 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
206 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
207 }
208 
209 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
210 				     void __percpu *pptr)
211 {
212 	*(void __percpu **)(l->key + key_size) = pptr;
213 }
214 
215 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
216 {
217 	return *(void __percpu **)(l->key + key_size);
218 }
219 
220 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
221 {
222 	return *(void **)(l->key + roundup(map->key_size, 8));
223 }
224 
225 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
226 {
227 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
228 }
229 
230 static void htab_free_elems(struct bpf_htab *htab)
231 {
232 	int i;
233 
234 	if (!htab_is_percpu(htab))
235 		goto free_elems;
236 
237 	for (i = 0; i < htab->map.max_entries; i++) {
238 		void __percpu *pptr;
239 
240 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
241 					 htab->map.key_size);
242 		free_percpu(pptr);
243 		cond_resched();
244 	}
245 free_elems:
246 	bpf_map_area_free(htab->elems);
247 }
248 
249 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
250  * (bucket_lock). If both locks need to be acquired together, the lock
251  * order is always lru_lock -> bucket_lock and this only happens in
252  * bpf_lru_list.c logic. For example, certain code path of
253  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
254  * will acquire lru_lock first followed by acquiring bucket_lock.
255  *
256  * In hashtab.c, to avoid deadlock, lock acquisition of
257  * bucket_lock followed by lru_lock is not allowed. In such cases,
258  * bucket_lock needs to be released first before acquiring lru_lock.
259  */
260 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
261 					  u32 hash)
262 {
263 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
264 	struct htab_elem *l;
265 
266 	if (node) {
267 		l = container_of(node, struct htab_elem, lru_node);
268 		memcpy(l->key, key, htab->map.key_size);
269 		return l;
270 	}
271 
272 	return NULL;
273 }
274 
275 static int prealloc_init(struct bpf_htab *htab)
276 {
277 	u32 num_entries = htab->map.max_entries;
278 	int err = -ENOMEM, i;
279 
280 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
281 		num_entries += num_possible_cpus();
282 
283 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
284 					 htab->map.numa_node);
285 	if (!htab->elems)
286 		return -ENOMEM;
287 
288 	if (!htab_is_percpu(htab))
289 		goto skip_percpu_elems;
290 
291 	for (i = 0; i < num_entries; i++) {
292 		u32 size = round_up(htab->map.value_size, 8);
293 		void __percpu *pptr;
294 
295 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
296 					    GFP_USER | __GFP_NOWARN);
297 		if (!pptr)
298 			goto free_elems;
299 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
300 				  pptr);
301 		cond_resched();
302 	}
303 
304 skip_percpu_elems:
305 	if (htab_is_lru(htab))
306 		err = bpf_lru_init(&htab->lru,
307 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
308 				   offsetof(struct htab_elem, hash) -
309 				   offsetof(struct htab_elem, lru_node),
310 				   htab_lru_map_delete_node,
311 				   htab);
312 	else
313 		err = pcpu_freelist_init(&htab->freelist);
314 
315 	if (err)
316 		goto free_elems;
317 
318 	if (htab_is_lru(htab))
319 		bpf_lru_populate(&htab->lru, htab->elems,
320 				 offsetof(struct htab_elem, lru_node),
321 				 htab->elem_size, num_entries);
322 	else
323 		pcpu_freelist_populate(&htab->freelist,
324 				       htab->elems + offsetof(struct htab_elem, fnode),
325 				       htab->elem_size, num_entries);
326 
327 	return 0;
328 
329 free_elems:
330 	htab_free_elems(htab);
331 	return err;
332 }
333 
334 static void prealloc_destroy(struct bpf_htab *htab)
335 {
336 	htab_free_elems(htab);
337 
338 	if (htab_is_lru(htab))
339 		bpf_lru_destroy(&htab->lru);
340 	else
341 		pcpu_freelist_destroy(&htab->freelist);
342 }
343 
344 static int alloc_extra_elems(struct bpf_htab *htab)
345 {
346 	struct htab_elem *__percpu *pptr, *l_new;
347 	struct pcpu_freelist_node *l;
348 	int cpu;
349 
350 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
351 				    GFP_USER | __GFP_NOWARN);
352 	if (!pptr)
353 		return -ENOMEM;
354 
355 	for_each_possible_cpu(cpu) {
356 		l = pcpu_freelist_pop(&htab->freelist);
357 		/* pop will succeed, since prealloc_init()
358 		 * preallocated extra num_possible_cpus elements
359 		 */
360 		l_new = container_of(l, struct htab_elem, fnode);
361 		*per_cpu_ptr(pptr, cpu) = l_new;
362 	}
363 	htab->extra_elems = pptr;
364 	return 0;
365 }
366 
367 /* Called from syscall */
368 static int htab_map_alloc_check(union bpf_attr *attr)
369 {
370 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
371 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
372 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
373 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
374 	/* percpu_lru means each cpu has its own LRU list.
375 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
376 	 * the map's value itself is percpu.  percpu_lru has
377 	 * nothing to do with the map's value.
378 	 */
379 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
380 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
381 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
382 	int numa_node = bpf_map_attr_numa_node(attr);
383 
384 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
385 		     offsetof(struct htab_elem, hash_node.pprev));
386 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
387 		     offsetof(struct htab_elem, hash_node.pprev));
388 
389 	if (lru && !bpf_capable())
390 		/* LRU implementation is much complicated than other
391 		 * maps.  Hence, limit to CAP_BPF.
392 		 */
393 		return -EPERM;
394 
395 	if (zero_seed && !capable(CAP_SYS_ADMIN))
396 		/* Guard against local DoS, and discourage production use. */
397 		return -EPERM;
398 
399 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
400 	    !bpf_map_flags_access_ok(attr->map_flags))
401 		return -EINVAL;
402 
403 	if (!lru && percpu_lru)
404 		return -EINVAL;
405 
406 	if (lru && !prealloc)
407 		return -ENOTSUPP;
408 
409 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
410 		return -EINVAL;
411 
412 	/* check sanity of attributes.
413 	 * value_size == 0 may be allowed in the future to use map as a set
414 	 */
415 	if (attr->max_entries == 0 || attr->key_size == 0 ||
416 	    attr->value_size == 0)
417 		return -EINVAL;
418 
419 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
420 	   sizeof(struct htab_elem))
421 		/* if key_size + value_size is bigger, the user space won't be
422 		 * able to access the elements via bpf syscall. This check
423 		 * also makes sure that the elem_size doesn't overflow and it's
424 		 * kmalloc-able later in htab_map_update_elem()
425 		 */
426 		return -E2BIG;
427 
428 	return 0;
429 }
430 
431 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
432 {
433 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
434 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
435 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
436 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
437 	/* percpu_lru means each cpu has its own LRU list.
438 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
439 	 * the map's value itself is percpu.  percpu_lru has
440 	 * nothing to do with the map's value.
441 	 */
442 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
443 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
444 	struct bpf_htab *htab;
445 	int err, i;
446 
447 	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
448 	if (!htab)
449 		return ERR_PTR(-ENOMEM);
450 
451 	lockdep_register_key(&htab->lockdep_key);
452 
453 	bpf_map_init_from_attr(&htab->map, attr);
454 
455 	if (percpu_lru) {
456 		/* ensure each CPU's lru list has >=1 elements.
457 		 * since we are at it, make each lru list has the same
458 		 * number of elements.
459 		 */
460 		htab->map.max_entries = roundup(attr->max_entries,
461 						num_possible_cpus());
462 		if (htab->map.max_entries < attr->max_entries)
463 			htab->map.max_entries = rounddown(attr->max_entries,
464 							  num_possible_cpus());
465 	}
466 
467 	/* hash table size must be power of 2 */
468 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
469 
470 	htab->elem_size = sizeof(struct htab_elem) +
471 			  round_up(htab->map.key_size, 8);
472 	if (percpu)
473 		htab->elem_size += sizeof(void *);
474 	else
475 		htab->elem_size += round_up(htab->map.value_size, 8);
476 
477 	err = -E2BIG;
478 	/* prevent zero size kmalloc and check for u32 overflow */
479 	if (htab->n_buckets == 0 ||
480 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
481 		goto free_htab;
482 
483 	err = -ENOMEM;
484 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
485 					   sizeof(struct bucket),
486 					   htab->map.numa_node);
487 	if (!htab->buckets)
488 		goto free_htab;
489 
490 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
491 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
492 							   sizeof(int),
493 							   sizeof(int),
494 							   GFP_USER);
495 		if (!htab->map_locked[i])
496 			goto free_map_locked;
497 	}
498 
499 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
500 		htab->hashrnd = 0;
501 	else
502 		htab->hashrnd = get_random_int();
503 
504 	htab_init_buckets(htab);
505 
506 	if (prealloc) {
507 		err = prealloc_init(htab);
508 		if (err)
509 			goto free_map_locked;
510 
511 		if (!percpu && !lru) {
512 			/* lru itself can remove the least used element, so
513 			 * there is no need for an extra elem during map_update.
514 			 */
515 			err = alloc_extra_elems(htab);
516 			if (err)
517 				goto free_prealloc;
518 		}
519 	}
520 
521 	return &htab->map;
522 
523 free_prealloc:
524 	prealloc_destroy(htab);
525 free_map_locked:
526 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
527 		free_percpu(htab->map_locked[i]);
528 	bpf_map_area_free(htab->buckets);
529 free_htab:
530 	lockdep_unregister_key(&htab->lockdep_key);
531 	kfree(htab);
532 	return ERR_PTR(err);
533 }
534 
535 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
536 {
537 	return jhash(key, key_len, hashrnd);
538 }
539 
540 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
541 {
542 	return &htab->buckets[hash & (htab->n_buckets - 1)];
543 }
544 
545 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
546 {
547 	return &__select_bucket(htab, hash)->head;
548 }
549 
550 /* this lookup function can only be called with bucket lock taken */
551 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
552 					 void *key, u32 key_size)
553 {
554 	struct hlist_nulls_node *n;
555 	struct htab_elem *l;
556 
557 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
558 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
559 			return l;
560 
561 	return NULL;
562 }
563 
564 /* can be called without bucket lock. it will repeat the loop in
565  * the unlikely event when elements moved from one bucket into another
566  * while link list is being walked
567  */
568 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
569 					       u32 hash, void *key,
570 					       u32 key_size, u32 n_buckets)
571 {
572 	struct hlist_nulls_node *n;
573 	struct htab_elem *l;
574 
575 again:
576 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
577 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
578 			return l;
579 
580 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
581 		goto again;
582 
583 	return NULL;
584 }
585 
586 /* Called from syscall or from eBPF program directly, so
587  * arguments have to match bpf_map_lookup_elem() exactly.
588  * The return value is adjusted by BPF instructions
589  * in htab_map_gen_lookup().
590  */
591 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
592 {
593 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
594 	struct hlist_nulls_head *head;
595 	struct htab_elem *l;
596 	u32 hash, key_size;
597 
598 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
599 
600 	key_size = map->key_size;
601 
602 	hash = htab_map_hash(key, key_size, htab->hashrnd);
603 
604 	head = select_bucket(htab, hash);
605 
606 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
607 
608 	return l;
609 }
610 
611 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
612 {
613 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
614 
615 	if (l)
616 		return l->key + round_up(map->key_size, 8);
617 
618 	return NULL;
619 }
620 
621 /* inline bpf_map_lookup_elem() call.
622  * Instead of:
623  * bpf_prog
624  *   bpf_map_lookup_elem
625  *     map->ops->map_lookup_elem
626  *       htab_map_lookup_elem
627  *         __htab_map_lookup_elem
628  * do:
629  * bpf_prog
630  *   __htab_map_lookup_elem
631  */
632 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
633 {
634 	struct bpf_insn *insn = insn_buf;
635 	const int ret = BPF_REG_0;
636 
637 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
638 		     (void *(*)(struct bpf_map *map, void *key))NULL));
639 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
640 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
641 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
642 				offsetof(struct htab_elem, key) +
643 				round_up(map->key_size, 8));
644 	return insn - insn_buf;
645 }
646 
647 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
648 							void *key, const bool mark)
649 {
650 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
651 
652 	if (l) {
653 		if (mark)
654 			bpf_lru_node_set_ref(&l->lru_node);
655 		return l->key + round_up(map->key_size, 8);
656 	}
657 
658 	return NULL;
659 }
660 
661 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
662 {
663 	return __htab_lru_map_lookup_elem(map, key, true);
664 }
665 
666 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
667 {
668 	return __htab_lru_map_lookup_elem(map, key, false);
669 }
670 
671 static int htab_lru_map_gen_lookup(struct bpf_map *map,
672 				   struct bpf_insn *insn_buf)
673 {
674 	struct bpf_insn *insn = insn_buf;
675 	const int ret = BPF_REG_0;
676 	const int ref_reg = BPF_REG_1;
677 
678 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
679 		     (void *(*)(struct bpf_map *map, void *key))NULL));
680 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
681 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
682 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
683 			      offsetof(struct htab_elem, lru_node) +
684 			      offsetof(struct bpf_lru_node, ref));
685 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
686 	*insn++ = BPF_ST_MEM(BPF_B, ret,
687 			     offsetof(struct htab_elem, lru_node) +
688 			     offsetof(struct bpf_lru_node, ref),
689 			     1);
690 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
691 				offsetof(struct htab_elem, key) +
692 				round_up(map->key_size, 8));
693 	return insn - insn_buf;
694 }
695 
696 /* It is called from the bpf_lru_list when the LRU needs to delete
697  * older elements from the htab.
698  */
699 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
700 {
701 	struct bpf_htab *htab = (struct bpf_htab *)arg;
702 	struct htab_elem *l = NULL, *tgt_l;
703 	struct hlist_nulls_head *head;
704 	struct hlist_nulls_node *n;
705 	unsigned long flags;
706 	struct bucket *b;
707 	int ret;
708 
709 	tgt_l = container_of(node, struct htab_elem, lru_node);
710 	b = __select_bucket(htab, tgt_l->hash);
711 	head = &b->head;
712 
713 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
714 	if (ret)
715 		return false;
716 
717 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
718 		if (l == tgt_l) {
719 			hlist_nulls_del_rcu(&l->hash_node);
720 			break;
721 		}
722 
723 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
724 
725 	return l == tgt_l;
726 }
727 
728 /* Called from syscall */
729 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
730 {
731 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
732 	struct hlist_nulls_head *head;
733 	struct htab_elem *l, *next_l;
734 	u32 hash, key_size;
735 	int i = 0;
736 
737 	WARN_ON_ONCE(!rcu_read_lock_held());
738 
739 	key_size = map->key_size;
740 
741 	if (!key)
742 		goto find_first_elem;
743 
744 	hash = htab_map_hash(key, key_size, htab->hashrnd);
745 
746 	head = select_bucket(htab, hash);
747 
748 	/* lookup the key */
749 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
750 
751 	if (!l)
752 		goto find_first_elem;
753 
754 	/* key was found, get next key in the same bucket */
755 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
756 				  struct htab_elem, hash_node);
757 
758 	if (next_l) {
759 		/* if next elem in this hash list is non-zero, just return it */
760 		memcpy(next_key, next_l->key, key_size);
761 		return 0;
762 	}
763 
764 	/* no more elements in this hash list, go to the next bucket */
765 	i = hash & (htab->n_buckets - 1);
766 	i++;
767 
768 find_first_elem:
769 	/* iterate over buckets */
770 	for (; i < htab->n_buckets; i++) {
771 		head = select_bucket(htab, i);
772 
773 		/* pick first element in the bucket */
774 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
775 					  struct htab_elem, hash_node);
776 		if (next_l) {
777 			/* if it's not empty, just return it */
778 			memcpy(next_key, next_l->key, key_size);
779 			return 0;
780 		}
781 	}
782 
783 	/* iterated over all buckets and all elements */
784 	return -ENOENT;
785 }
786 
787 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
788 {
789 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
790 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
791 	kfree(l);
792 }
793 
794 static void htab_elem_free_rcu(struct rcu_head *head)
795 {
796 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
797 	struct bpf_htab *htab = l->htab;
798 
799 	htab_elem_free(htab, l);
800 }
801 
802 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
803 {
804 	struct bpf_map *map = &htab->map;
805 	void *ptr;
806 
807 	if (map->ops->map_fd_put_ptr) {
808 		ptr = fd_htab_map_get_ptr(map, l);
809 		map->ops->map_fd_put_ptr(ptr);
810 	}
811 }
812 
813 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
814 {
815 	htab_put_fd_value(htab, l);
816 
817 	if (htab_is_prealloc(htab)) {
818 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
819 	} else {
820 		atomic_dec(&htab->count);
821 		l->htab = htab;
822 		call_rcu(&l->rcu, htab_elem_free_rcu);
823 	}
824 }
825 
826 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
827 			    void *value, bool onallcpus)
828 {
829 	if (!onallcpus) {
830 		/* copy true value_size bytes */
831 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
832 	} else {
833 		u32 size = round_up(htab->map.value_size, 8);
834 		int off = 0, cpu;
835 
836 		for_each_possible_cpu(cpu) {
837 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
838 					value + off, size);
839 			off += size;
840 		}
841 	}
842 }
843 
844 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
845 			    void *value, bool onallcpus)
846 {
847 	/* When using prealloc and not setting the initial value on all cpus,
848 	 * zero-fill element values for other cpus (just as what happens when
849 	 * not using prealloc). Otherwise, bpf program has no way to ensure
850 	 * known initial values for cpus other than current one
851 	 * (onallcpus=false always when coming from bpf prog).
852 	 */
853 	if (htab_is_prealloc(htab) && !onallcpus) {
854 		u32 size = round_up(htab->map.value_size, 8);
855 		int current_cpu = raw_smp_processor_id();
856 		int cpu;
857 
858 		for_each_possible_cpu(cpu) {
859 			if (cpu == current_cpu)
860 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
861 						size);
862 			else
863 				memset(per_cpu_ptr(pptr, cpu), 0, size);
864 		}
865 	} else {
866 		pcpu_copy_value(htab, pptr, value, onallcpus);
867 	}
868 }
869 
870 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
871 {
872 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
873 	       BITS_PER_LONG == 64;
874 }
875 
876 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
877 					 void *value, u32 key_size, u32 hash,
878 					 bool percpu, bool onallcpus,
879 					 struct htab_elem *old_elem)
880 {
881 	u32 size = htab->map.value_size;
882 	bool prealloc = htab_is_prealloc(htab);
883 	struct htab_elem *l_new, **pl_new;
884 	void __percpu *pptr;
885 
886 	if (prealloc) {
887 		if (old_elem) {
888 			/* if we're updating the existing element,
889 			 * use per-cpu extra elems to avoid freelist_pop/push
890 			 */
891 			pl_new = this_cpu_ptr(htab->extra_elems);
892 			l_new = *pl_new;
893 			htab_put_fd_value(htab, old_elem);
894 			*pl_new = old_elem;
895 		} else {
896 			struct pcpu_freelist_node *l;
897 
898 			l = __pcpu_freelist_pop(&htab->freelist);
899 			if (!l)
900 				return ERR_PTR(-E2BIG);
901 			l_new = container_of(l, struct htab_elem, fnode);
902 		}
903 	} else {
904 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
905 			if (!old_elem) {
906 				/* when map is full and update() is replacing
907 				 * old element, it's ok to allocate, since
908 				 * old element will be freed immediately.
909 				 * Otherwise return an error
910 				 */
911 				l_new = ERR_PTR(-E2BIG);
912 				goto dec_count;
913 			}
914 		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
915 					     GFP_ATOMIC | __GFP_NOWARN,
916 					     htab->map.numa_node);
917 		if (!l_new) {
918 			l_new = ERR_PTR(-ENOMEM);
919 			goto dec_count;
920 		}
921 		check_and_init_map_lock(&htab->map,
922 					l_new->key + round_up(key_size, 8));
923 	}
924 
925 	memcpy(l_new->key, key, key_size);
926 	if (percpu) {
927 		size = round_up(size, 8);
928 		if (prealloc) {
929 			pptr = htab_elem_get_ptr(l_new, key_size);
930 		} else {
931 			/* alloc_percpu zero-fills */
932 			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
933 						    GFP_ATOMIC | __GFP_NOWARN);
934 			if (!pptr) {
935 				kfree(l_new);
936 				l_new = ERR_PTR(-ENOMEM);
937 				goto dec_count;
938 			}
939 		}
940 
941 		pcpu_init_value(htab, pptr, value, onallcpus);
942 
943 		if (!prealloc)
944 			htab_elem_set_ptr(l_new, key_size, pptr);
945 	} else if (fd_htab_map_needs_adjust(htab)) {
946 		size = round_up(size, 8);
947 		memcpy(l_new->key + round_up(key_size, 8), value, size);
948 	} else {
949 		copy_map_value(&htab->map,
950 			       l_new->key + round_up(key_size, 8),
951 			       value);
952 	}
953 
954 	l_new->hash = hash;
955 	return l_new;
956 dec_count:
957 	atomic_dec(&htab->count);
958 	return l_new;
959 }
960 
961 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
962 		       u64 map_flags)
963 {
964 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
965 		/* elem already exists */
966 		return -EEXIST;
967 
968 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
969 		/* elem doesn't exist, cannot update it */
970 		return -ENOENT;
971 
972 	return 0;
973 }
974 
975 /* Called from syscall or from eBPF program */
976 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
977 				u64 map_flags)
978 {
979 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
980 	struct htab_elem *l_new = NULL, *l_old;
981 	struct hlist_nulls_head *head;
982 	unsigned long flags;
983 	struct bucket *b;
984 	u32 key_size, hash;
985 	int ret;
986 
987 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
988 		/* unknown flags */
989 		return -EINVAL;
990 
991 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
992 
993 	key_size = map->key_size;
994 
995 	hash = htab_map_hash(key, key_size, htab->hashrnd);
996 
997 	b = __select_bucket(htab, hash);
998 	head = &b->head;
999 
1000 	if (unlikely(map_flags & BPF_F_LOCK)) {
1001 		if (unlikely(!map_value_has_spin_lock(map)))
1002 			return -EINVAL;
1003 		/* find an element without taking the bucket lock */
1004 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1005 					      htab->n_buckets);
1006 		ret = check_flags(htab, l_old, map_flags);
1007 		if (ret)
1008 			return ret;
1009 		if (l_old) {
1010 			/* grab the element lock and update value in place */
1011 			copy_map_value_locked(map,
1012 					      l_old->key + round_up(key_size, 8),
1013 					      value, false);
1014 			return 0;
1015 		}
1016 		/* fall through, grab the bucket lock and lookup again.
1017 		 * 99.9% chance that the element won't be found,
1018 		 * but second lookup under lock has to be done.
1019 		 */
1020 	}
1021 
1022 	ret = htab_lock_bucket(htab, b, hash, &flags);
1023 	if (ret)
1024 		return ret;
1025 
1026 	l_old = lookup_elem_raw(head, hash, key, key_size);
1027 
1028 	ret = check_flags(htab, l_old, map_flags);
1029 	if (ret)
1030 		goto err;
1031 
1032 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1033 		/* first lookup without the bucket lock didn't find the element,
1034 		 * but second lookup with the bucket lock found it.
1035 		 * This case is highly unlikely, but has to be dealt with:
1036 		 * grab the element lock in addition to the bucket lock
1037 		 * and update element in place
1038 		 */
1039 		copy_map_value_locked(map,
1040 				      l_old->key + round_up(key_size, 8),
1041 				      value, false);
1042 		ret = 0;
1043 		goto err;
1044 	}
1045 
1046 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1047 				l_old);
1048 	if (IS_ERR(l_new)) {
1049 		/* all pre-allocated elements are in use or memory exhausted */
1050 		ret = PTR_ERR(l_new);
1051 		goto err;
1052 	}
1053 
1054 	/* add new element to the head of the list, so that
1055 	 * concurrent search will find it before old elem
1056 	 */
1057 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1058 	if (l_old) {
1059 		hlist_nulls_del_rcu(&l_old->hash_node);
1060 		if (!htab_is_prealloc(htab))
1061 			free_htab_elem(htab, l_old);
1062 	}
1063 	ret = 0;
1064 err:
1065 	htab_unlock_bucket(htab, b, hash, flags);
1066 	return ret;
1067 }
1068 
1069 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1070 				    u64 map_flags)
1071 {
1072 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1073 	struct htab_elem *l_new, *l_old = NULL;
1074 	struct hlist_nulls_head *head;
1075 	unsigned long flags;
1076 	struct bucket *b;
1077 	u32 key_size, hash;
1078 	int ret;
1079 
1080 	if (unlikely(map_flags > BPF_EXIST))
1081 		/* unknown flags */
1082 		return -EINVAL;
1083 
1084 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1085 
1086 	key_size = map->key_size;
1087 
1088 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1089 
1090 	b = __select_bucket(htab, hash);
1091 	head = &b->head;
1092 
1093 	/* For LRU, we need to alloc before taking bucket's
1094 	 * spinlock because getting free nodes from LRU may need
1095 	 * to remove older elements from htab and this removal
1096 	 * operation will need a bucket lock.
1097 	 */
1098 	l_new = prealloc_lru_pop(htab, key, hash);
1099 	if (!l_new)
1100 		return -ENOMEM;
1101 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1102 
1103 	ret = htab_lock_bucket(htab, b, hash, &flags);
1104 	if (ret)
1105 		return ret;
1106 
1107 	l_old = lookup_elem_raw(head, hash, key, key_size);
1108 
1109 	ret = check_flags(htab, l_old, map_flags);
1110 	if (ret)
1111 		goto err;
1112 
1113 	/* add new element to the head of the list, so that
1114 	 * concurrent search will find it before old elem
1115 	 */
1116 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1117 	if (l_old) {
1118 		bpf_lru_node_set_ref(&l_new->lru_node);
1119 		hlist_nulls_del_rcu(&l_old->hash_node);
1120 	}
1121 	ret = 0;
1122 
1123 err:
1124 	htab_unlock_bucket(htab, b, hash, flags);
1125 
1126 	if (ret)
1127 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1128 	else if (l_old)
1129 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1130 
1131 	return ret;
1132 }
1133 
1134 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1135 					 void *value, u64 map_flags,
1136 					 bool onallcpus)
1137 {
1138 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1139 	struct htab_elem *l_new = NULL, *l_old;
1140 	struct hlist_nulls_head *head;
1141 	unsigned long flags;
1142 	struct bucket *b;
1143 	u32 key_size, hash;
1144 	int ret;
1145 
1146 	if (unlikely(map_flags > BPF_EXIST))
1147 		/* unknown flags */
1148 		return -EINVAL;
1149 
1150 	WARN_ON_ONCE(!rcu_read_lock_held());
1151 
1152 	key_size = map->key_size;
1153 
1154 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1155 
1156 	b = __select_bucket(htab, hash);
1157 	head = &b->head;
1158 
1159 	ret = htab_lock_bucket(htab, b, hash, &flags);
1160 	if (ret)
1161 		return ret;
1162 
1163 	l_old = lookup_elem_raw(head, hash, key, key_size);
1164 
1165 	ret = check_flags(htab, l_old, map_flags);
1166 	if (ret)
1167 		goto err;
1168 
1169 	if (l_old) {
1170 		/* per-cpu hash map can update value in-place */
1171 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1172 				value, onallcpus);
1173 	} else {
1174 		l_new = alloc_htab_elem(htab, key, value, key_size,
1175 					hash, true, onallcpus, NULL);
1176 		if (IS_ERR(l_new)) {
1177 			ret = PTR_ERR(l_new);
1178 			goto err;
1179 		}
1180 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1181 	}
1182 	ret = 0;
1183 err:
1184 	htab_unlock_bucket(htab, b, hash, flags);
1185 	return ret;
1186 }
1187 
1188 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1189 					     void *value, u64 map_flags,
1190 					     bool onallcpus)
1191 {
1192 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1193 	struct htab_elem *l_new = NULL, *l_old;
1194 	struct hlist_nulls_head *head;
1195 	unsigned long flags;
1196 	struct bucket *b;
1197 	u32 key_size, hash;
1198 	int ret;
1199 
1200 	if (unlikely(map_flags > BPF_EXIST))
1201 		/* unknown flags */
1202 		return -EINVAL;
1203 
1204 	WARN_ON_ONCE(!rcu_read_lock_held());
1205 
1206 	key_size = map->key_size;
1207 
1208 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1209 
1210 	b = __select_bucket(htab, hash);
1211 	head = &b->head;
1212 
1213 	/* For LRU, we need to alloc before taking bucket's
1214 	 * spinlock because LRU's elem alloc may need
1215 	 * to remove older elem from htab and this removal
1216 	 * operation will need a bucket lock.
1217 	 */
1218 	if (map_flags != BPF_EXIST) {
1219 		l_new = prealloc_lru_pop(htab, key, hash);
1220 		if (!l_new)
1221 			return -ENOMEM;
1222 	}
1223 
1224 	ret = htab_lock_bucket(htab, b, hash, &flags);
1225 	if (ret)
1226 		return ret;
1227 
1228 	l_old = lookup_elem_raw(head, hash, key, key_size);
1229 
1230 	ret = check_flags(htab, l_old, map_flags);
1231 	if (ret)
1232 		goto err;
1233 
1234 	if (l_old) {
1235 		bpf_lru_node_set_ref(&l_old->lru_node);
1236 
1237 		/* per-cpu hash map can update value in-place */
1238 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1239 				value, onallcpus);
1240 	} else {
1241 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1242 				value, onallcpus);
1243 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1244 		l_new = NULL;
1245 	}
1246 	ret = 0;
1247 err:
1248 	htab_unlock_bucket(htab, b, hash, flags);
1249 	if (l_new)
1250 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1251 	return ret;
1252 }
1253 
1254 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1255 				       void *value, u64 map_flags)
1256 {
1257 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1258 }
1259 
1260 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1261 					   void *value, u64 map_flags)
1262 {
1263 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1264 						 false);
1265 }
1266 
1267 /* Called from syscall or from eBPF program */
1268 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1269 {
1270 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1271 	struct hlist_nulls_head *head;
1272 	struct bucket *b;
1273 	struct htab_elem *l;
1274 	unsigned long flags;
1275 	u32 hash, key_size;
1276 	int ret;
1277 
1278 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1279 
1280 	key_size = map->key_size;
1281 
1282 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1283 	b = __select_bucket(htab, hash);
1284 	head = &b->head;
1285 
1286 	ret = htab_lock_bucket(htab, b, hash, &flags);
1287 	if (ret)
1288 		return ret;
1289 
1290 	l = lookup_elem_raw(head, hash, key, key_size);
1291 
1292 	if (l) {
1293 		hlist_nulls_del_rcu(&l->hash_node);
1294 		free_htab_elem(htab, l);
1295 	} else {
1296 		ret = -ENOENT;
1297 	}
1298 
1299 	htab_unlock_bucket(htab, b, hash, flags);
1300 	return ret;
1301 }
1302 
1303 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1304 {
1305 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1306 	struct hlist_nulls_head *head;
1307 	struct bucket *b;
1308 	struct htab_elem *l;
1309 	unsigned long flags;
1310 	u32 hash, key_size;
1311 	int ret;
1312 
1313 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held());
1314 
1315 	key_size = map->key_size;
1316 
1317 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1318 	b = __select_bucket(htab, hash);
1319 	head = &b->head;
1320 
1321 	ret = htab_lock_bucket(htab, b, hash, &flags);
1322 	if (ret)
1323 		return ret;
1324 
1325 	l = lookup_elem_raw(head, hash, key, key_size);
1326 
1327 	if (l)
1328 		hlist_nulls_del_rcu(&l->hash_node);
1329 	else
1330 		ret = -ENOENT;
1331 
1332 	htab_unlock_bucket(htab, b, hash, flags);
1333 	if (l)
1334 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1335 	return ret;
1336 }
1337 
1338 static void delete_all_elements(struct bpf_htab *htab)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < htab->n_buckets; i++) {
1343 		struct hlist_nulls_head *head = select_bucket(htab, i);
1344 		struct hlist_nulls_node *n;
1345 		struct htab_elem *l;
1346 
1347 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1348 			hlist_nulls_del_rcu(&l->hash_node);
1349 			htab_elem_free(htab, l);
1350 		}
1351 	}
1352 }
1353 
1354 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1355 static void htab_map_free(struct bpf_map *map)
1356 {
1357 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1358 	int i;
1359 
1360 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1361 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1362 	 * There is no need to synchronize_rcu() here to protect map elements.
1363 	 */
1364 
1365 	/* some of free_htab_elem() callbacks for elements of this map may
1366 	 * not have executed. Wait for them.
1367 	 */
1368 	rcu_barrier();
1369 	if (!htab_is_prealloc(htab))
1370 		delete_all_elements(htab);
1371 	else
1372 		prealloc_destroy(htab);
1373 
1374 	free_percpu(htab->extra_elems);
1375 	bpf_map_area_free(htab->buckets);
1376 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1377 		free_percpu(htab->map_locked[i]);
1378 	lockdep_unregister_key(&htab->lockdep_key);
1379 	kfree(htab);
1380 }
1381 
1382 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1383 				   struct seq_file *m)
1384 {
1385 	void *value;
1386 
1387 	rcu_read_lock();
1388 
1389 	value = htab_map_lookup_elem(map, key);
1390 	if (!value) {
1391 		rcu_read_unlock();
1392 		return;
1393 	}
1394 
1395 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1396 	seq_puts(m, ": ");
1397 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1398 	seq_puts(m, "\n");
1399 
1400 	rcu_read_unlock();
1401 }
1402 
1403 static int
1404 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1405 				   const union bpf_attr *attr,
1406 				   union bpf_attr __user *uattr,
1407 				   bool do_delete, bool is_lru_map,
1408 				   bool is_percpu)
1409 {
1410 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1411 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1412 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1413 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1414 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1415 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1416 	u32 batch, max_count, size, bucket_size;
1417 	struct htab_elem *node_to_free = NULL;
1418 	u64 elem_map_flags, map_flags;
1419 	struct hlist_nulls_head *head;
1420 	struct hlist_nulls_node *n;
1421 	unsigned long flags = 0;
1422 	bool locked = false;
1423 	struct htab_elem *l;
1424 	struct bucket *b;
1425 	int ret = 0;
1426 
1427 	elem_map_flags = attr->batch.elem_flags;
1428 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1429 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1430 		return -EINVAL;
1431 
1432 	map_flags = attr->batch.flags;
1433 	if (map_flags)
1434 		return -EINVAL;
1435 
1436 	max_count = attr->batch.count;
1437 	if (!max_count)
1438 		return 0;
1439 
1440 	if (put_user(0, &uattr->batch.count))
1441 		return -EFAULT;
1442 
1443 	batch = 0;
1444 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1445 		return -EFAULT;
1446 
1447 	if (batch >= htab->n_buckets)
1448 		return -ENOENT;
1449 
1450 	key_size = htab->map.key_size;
1451 	roundup_key_size = round_up(htab->map.key_size, 8);
1452 	value_size = htab->map.value_size;
1453 	size = round_up(value_size, 8);
1454 	if (is_percpu)
1455 		value_size = size * num_possible_cpus();
1456 	total = 0;
1457 	/* while experimenting with hash tables with sizes ranging from 10 to
1458 	 * 1000, it was observed that a bucket can have upto 5 entries.
1459 	 */
1460 	bucket_size = 5;
1461 
1462 alloc:
1463 	/* We cannot do copy_from_user or copy_to_user inside
1464 	 * the rcu_read_lock. Allocate enough space here.
1465 	 */
1466 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1467 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1468 	if (!keys || !values) {
1469 		ret = -ENOMEM;
1470 		goto after_loop;
1471 	}
1472 
1473 again:
1474 	bpf_disable_instrumentation();
1475 	rcu_read_lock();
1476 again_nocopy:
1477 	dst_key = keys;
1478 	dst_val = values;
1479 	b = &htab->buckets[batch];
1480 	head = &b->head;
1481 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1482 	if (locked) {
1483 		ret = htab_lock_bucket(htab, b, batch, &flags);
1484 		if (ret)
1485 			goto next_batch;
1486 	}
1487 
1488 	bucket_cnt = 0;
1489 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1490 		bucket_cnt++;
1491 
1492 	if (bucket_cnt && !locked) {
1493 		locked = true;
1494 		goto again_nocopy;
1495 	}
1496 
1497 	if (bucket_cnt > (max_count - total)) {
1498 		if (total == 0)
1499 			ret = -ENOSPC;
1500 		/* Note that since bucket_cnt > 0 here, it is implicit
1501 		 * that the locked was grabbed, so release it.
1502 		 */
1503 		htab_unlock_bucket(htab, b, batch, flags);
1504 		rcu_read_unlock();
1505 		bpf_enable_instrumentation();
1506 		goto after_loop;
1507 	}
1508 
1509 	if (bucket_cnt > bucket_size) {
1510 		bucket_size = bucket_cnt;
1511 		/* Note that since bucket_cnt > 0 here, it is implicit
1512 		 * that the locked was grabbed, so release it.
1513 		 */
1514 		htab_unlock_bucket(htab, b, batch, flags);
1515 		rcu_read_unlock();
1516 		bpf_enable_instrumentation();
1517 		kvfree(keys);
1518 		kvfree(values);
1519 		goto alloc;
1520 	}
1521 
1522 	/* Next block is only safe to run if you have grabbed the lock */
1523 	if (!locked)
1524 		goto next_batch;
1525 
1526 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1527 		memcpy(dst_key, l->key, key_size);
1528 
1529 		if (is_percpu) {
1530 			int off = 0, cpu;
1531 			void __percpu *pptr;
1532 
1533 			pptr = htab_elem_get_ptr(l, map->key_size);
1534 			for_each_possible_cpu(cpu) {
1535 				bpf_long_memcpy(dst_val + off,
1536 						per_cpu_ptr(pptr, cpu), size);
1537 				off += size;
1538 			}
1539 		} else {
1540 			value = l->key + roundup_key_size;
1541 			if (elem_map_flags & BPF_F_LOCK)
1542 				copy_map_value_locked(map, dst_val, value,
1543 						      true);
1544 			else
1545 				copy_map_value(map, dst_val, value);
1546 			check_and_init_map_lock(map, dst_val);
1547 		}
1548 		if (do_delete) {
1549 			hlist_nulls_del_rcu(&l->hash_node);
1550 
1551 			/* bpf_lru_push_free() will acquire lru_lock, which
1552 			 * may cause deadlock. See comments in function
1553 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1554 			 * after releasing the bucket lock.
1555 			 */
1556 			if (is_lru_map) {
1557 				l->batch_flink = node_to_free;
1558 				node_to_free = l;
1559 			} else {
1560 				free_htab_elem(htab, l);
1561 			}
1562 		}
1563 		dst_key += key_size;
1564 		dst_val += value_size;
1565 	}
1566 
1567 	htab_unlock_bucket(htab, b, batch, flags);
1568 	locked = false;
1569 
1570 	while (node_to_free) {
1571 		l = node_to_free;
1572 		node_to_free = node_to_free->batch_flink;
1573 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1574 	}
1575 
1576 next_batch:
1577 	/* If we are not copying data, we can go to next bucket and avoid
1578 	 * unlocking the rcu.
1579 	 */
1580 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1581 		batch++;
1582 		goto again_nocopy;
1583 	}
1584 
1585 	rcu_read_unlock();
1586 	bpf_enable_instrumentation();
1587 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1588 	    key_size * bucket_cnt) ||
1589 	    copy_to_user(uvalues + total * value_size, values,
1590 	    value_size * bucket_cnt))) {
1591 		ret = -EFAULT;
1592 		goto after_loop;
1593 	}
1594 
1595 	total += bucket_cnt;
1596 	batch++;
1597 	if (batch >= htab->n_buckets) {
1598 		ret = -ENOENT;
1599 		goto after_loop;
1600 	}
1601 	goto again;
1602 
1603 after_loop:
1604 	if (ret == -EFAULT)
1605 		goto out;
1606 
1607 	/* copy # of entries and next batch */
1608 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1609 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1610 	    put_user(total, &uattr->batch.count))
1611 		ret = -EFAULT;
1612 
1613 out:
1614 	kvfree(keys);
1615 	kvfree(values);
1616 	return ret;
1617 }
1618 
1619 static int
1620 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1621 			     union bpf_attr __user *uattr)
1622 {
1623 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1624 						  false, true);
1625 }
1626 
1627 static int
1628 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1629 					const union bpf_attr *attr,
1630 					union bpf_attr __user *uattr)
1631 {
1632 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1633 						  false, true);
1634 }
1635 
1636 static int
1637 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1638 		      union bpf_attr __user *uattr)
1639 {
1640 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1641 						  false, false);
1642 }
1643 
1644 static int
1645 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1646 				 const union bpf_attr *attr,
1647 				 union bpf_attr __user *uattr)
1648 {
1649 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1650 						  false, false);
1651 }
1652 
1653 static int
1654 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1655 				 const union bpf_attr *attr,
1656 				 union bpf_attr __user *uattr)
1657 {
1658 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1659 						  true, true);
1660 }
1661 
1662 static int
1663 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1664 					    const union bpf_attr *attr,
1665 					    union bpf_attr __user *uattr)
1666 {
1667 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1668 						  true, true);
1669 }
1670 
1671 static int
1672 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1673 			  union bpf_attr __user *uattr)
1674 {
1675 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1676 						  true, false);
1677 }
1678 
1679 static int
1680 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1681 				     const union bpf_attr *attr,
1682 				     union bpf_attr __user *uattr)
1683 {
1684 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1685 						  true, false);
1686 }
1687 
1688 struct bpf_iter_seq_hash_map_info {
1689 	struct bpf_map *map;
1690 	struct bpf_htab *htab;
1691 	void *percpu_value_buf; // non-zero means percpu hash
1692 	u32 bucket_id;
1693 	u32 skip_elems;
1694 };
1695 
1696 static struct htab_elem *
1697 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1698 			   struct htab_elem *prev_elem)
1699 {
1700 	const struct bpf_htab *htab = info->htab;
1701 	u32 skip_elems = info->skip_elems;
1702 	u32 bucket_id = info->bucket_id;
1703 	struct hlist_nulls_head *head;
1704 	struct hlist_nulls_node *n;
1705 	struct htab_elem *elem;
1706 	struct bucket *b;
1707 	u32 i, count;
1708 
1709 	if (bucket_id >= htab->n_buckets)
1710 		return NULL;
1711 
1712 	/* try to find next elem in the same bucket */
1713 	if (prev_elem) {
1714 		/* no update/deletion on this bucket, prev_elem should be still valid
1715 		 * and we won't skip elements.
1716 		 */
1717 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1718 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1719 		if (elem)
1720 			return elem;
1721 
1722 		/* not found, unlock and go to the next bucket */
1723 		b = &htab->buckets[bucket_id++];
1724 		rcu_read_unlock();
1725 		skip_elems = 0;
1726 	}
1727 
1728 	for (i = bucket_id; i < htab->n_buckets; i++) {
1729 		b = &htab->buckets[i];
1730 		rcu_read_lock();
1731 
1732 		count = 0;
1733 		head = &b->head;
1734 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1735 			if (count >= skip_elems) {
1736 				info->bucket_id = i;
1737 				info->skip_elems = count;
1738 				return elem;
1739 			}
1740 			count++;
1741 		}
1742 
1743 		rcu_read_unlock();
1744 		skip_elems = 0;
1745 	}
1746 
1747 	info->bucket_id = i;
1748 	info->skip_elems = 0;
1749 	return NULL;
1750 }
1751 
1752 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1753 {
1754 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1755 	struct htab_elem *elem;
1756 
1757 	elem = bpf_hash_map_seq_find_next(info, NULL);
1758 	if (!elem)
1759 		return NULL;
1760 
1761 	if (*pos == 0)
1762 		++*pos;
1763 	return elem;
1764 }
1765 
1766 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1767 {
1768 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1769 
1770 	++*pos;
1771 	++info->skip_elems;
1772 	return bpf_hash_map_seq_find_next(info, v);
1773 }
1774 
1775 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1776 {
1777 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1778 	u32 roundup_key_size, roundup_value_size;
1779 	struct bpf_iter__bpf_map_elem ctx = {};
1780 	struct bpf_map *map = info->map;
1781 	struct bpf_iter_meta meta;
1782 	int ret = 0, off = 0, cpu;
1783 	struct bpf_prog *prog;
1784 	void __percpu *pptr;
1785 
1786 	meta.seq = seq;
1787 	prog = bpf_iter_get_info(&meta, elem == NULL);
1788 	if (prog) {
1789 		ctx.meta = &meta;
1790 		ctx.map = info->map;
1791 		if (elem) {
1792 			roundup_key_size = round_up(map->key_size, 8);
1793 			ctx.key = elem->key;
1794 			if (!info->percpu_value_buf) {
1795 				ctx.value = elem->key + roundup_key_size;
1796 			} else {
1797 				roundup_value_size = round_up(map->value_size, 8);
1798 				pptr = htab_elem_get_ptr(elem, map->key_size);
1799 				for_each_possible_cpu(cpu) {
1800 					bpf_long_memcpy(info->percpu_value_buf + off,
1801 							per_cpu_ptr(pptr, cpu),
1802 							roundup_value_size);
1803 					off += roundup_value_size;
1804 				}
1805 				ctx.value = info->percpu_value_buf;
1806 			}
1807 		}
1808 		ret = bpf_iter_run_prog(prog, &ctx);
1809 	}
1810 
1811 	return ret;
1812 }
1813 
1814 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1815 {
1816 	return __bpf_hash_map_seq_show(seq, v);
1817 }
1818 
1819 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
1820 {
1821 	if (!v)
1822 		(void)__bpf_hash_map_seq_show(seq, NULL);
1823 	else
1824 		rcu_read_unlock();
1825 }
1826 
1827 static int bpf_iter_init_hash_map(void *priv_data,
1828 				  struct bpf_iter_aux_info *aux)
1829 {
1830 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1831 	struct bpf_map *map = aux->map;
1832 	void *value_buf;
1833 	u32 buf_size;
1834 
1835 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
1836 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
1837 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
1838 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
1839 		if (!value_buf)
1840 			return -ENOMEM;
1841 
1842 		seq_info->percpu_value_buf = value_buf;
1843 	}
1844 
1845 	seq_info->map = map;
1846 	seq_info->htab = container_of(map, struct bpf_htab, map);
1847 	return 0;
1848 }
1849 
1850 static void bpf_iter_fini_hash_map(void *priv_data)
1851 {
1852 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
1853 
1854 	kfree(seq_info->percpu_value_buf);
1855 }
1856 
1857 static const struct seq_operations bpf_hash_map_seq_ops = {
1858 	.start	= bpf_hash_map_seq_start,
1859 	.next	= bpf_hash_map_seq_next,
1860 	.stop	= bpf_hash_map_seq_stop,
1861 	.show	= bpf_hash_map_seq_show,
1862 };
1863 
1864 static const struct bpf_iter_seq_info iter_seq_info = {
1865 	.seq_ops		= &bpf_hash_map_seq_ops,
1866 	.init_seq_private	= bpf_iter_init_hash_map,
1867 	.fini_seq_private	= bpf_iter_fini_hash_map,
1868 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
1869 };
1870 
1871 static int htab_map_btf_id;
1872 const struct bpf_map_ops htab_map_ops = {
1873 	.map_meta_equal = bpf_map_meta_equal,
1874 	.map_alloc_check = htab_map_alloc_check,
1875 	.map_alloc = htab_map_alloc,
1876 	.map_free = htab_map_free,
1877 	.map_get_next_key = htab_map_get_next_key,
1878 	.map_lookup_elem = htab_map_lookup_elem,
1879 	.map_update_elem = htab_map_update_elem,
1880 	.map_delete_elem = htab_map_delete_elem,
1881 	.map_gen_lookup = htab_map_gen_lookup,
1882 	.map_seq_show_elem = htab_map_seq_show_elem,
1883 	BATCH_OPS(htab),
1884 	.map_btf_name = "bpf_htab",
1885 	.map_btf_id = &htab_map_btf_id,
1886 	.iter_seq_info = &iter_seq_info,
1887 };
1888 
1889 static int htab_lru_map_btf_id;
1890 const struct bpf_map_ops htab_lru_map_ops = {
1891 	.map_meta_equal = bpf_map_meta_equal,
1892 	.map_alloc_check = htab_map_alloc_check,
1893 	.map_alloc = htab_map_alloc,
1894 	.map_free = htab_map_free,
1895 	.map_get_next_key = htab_map_get_next_key,
1896 	.map_lookup_elem = htab_lru_map_lookup_elem,
1897 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1898 	.map_update_elem = htab_lru_map_update_elem,
1899 	.map_delete_elem = htab_lru_map_delete_elem,
1900 	.map_gen_lookup = htab_lru_map_gen_lookup,
1901 	.map_seq_show_elem = htab_map_seq_show_elem,
1902 	BATCH_OPS(htab_lru),
1903 	.map_btf_name = "bpf_htab",
1904 	.map_btf_id = &htab_lru_map_btf_id,
1905 	.iter_seq_info = &iter_seq_info,
1906 };
1907 
1908 /* Called from eBPF program */
1909 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1910 {
1911 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1912 
1913 	if (l)
1914 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1915 	else
1916 		return NULL;
1917 }
1918 
1919 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1920 {
1921 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1922 
1923 	if (l) {
1924 		bpf_lru_node_set_ref(&l->lru_node);
1925 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1926 	}
1927 
1928 	return NULL;
1929 }
1930 
1931 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1932 {
1933 	struct htab_elem *l;
1934 	void __percpu *pptr;
1935 	int ret = -ENOENT;
1936 	int cpu, off = 0;
1937 	u32 size;
1938 
1939 	/* per_cpu areas are zero-filled and bpf programs can only
1940 	 * access 'value_size' of them, so copying rounded areas
1941 	 * will not leak any kernel data
1942 	 */
1943 	size = round_up(map->value_size, 8);
1944 	rcu_read_lock();
1945 	l = __htab_map_lookup_elem(map, key);
1946 	if (!l)
1947 		goto out;
1948 	/* We do not mark LRU map element here in order to not mess up
1949 	 * eviction heuristics when user space does a map walk.
1950 	 */
1951 	pptr = htab_elem_get_ptr(l, map->key_size);
1952 	for_each_possible_cpu(cpu) {
1953 		bpf_long_memcpy(value + off,
1954 				per_cpu_ptr(pptr, cpu), size);
1955 		off += size;
1956 	}
1957 	ret = 0;
1958 out:
1959 	rcu_read_unlock();
1960 	return ret;
1961 }
1962 
1963 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1964 			   u64 map_flags)
1965 {
1966 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1967 	int ret;
1968 
1969 	rcu_read_lock();
1970 	if (htab_is_lru(htab))
1971 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1972 							map_flags, true);
1973 	else
1974 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1975 						    true);
1976 	rcu_read_unlock();
1977 
1978 	return ret;
1979 }
1980 
1981 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1982 					  struct seq_file *m)
1983 {
1984 	struct htab_elem *l;
1985 	void __percpu *pptr;
1986 	int cpu;
1987 
1988 	rcu_read_lock();
1989 
1990 	l = __htab_map_lookup_elem(map, key);
1991 	if (!l) {
1992 		rcu_read_unlock();
1993 		return;
1994 	}
1995 
1996 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1997 	seq_puts(m, ": {\n");
1998 	pptr = htab_elem_get_ptr(l, map->key_size);
1999 	for_each_possible_cpu(cpu) {
2000 		seq_printf(m, "\tcpu%d: ", cpu);
2001 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2002 				  per_cpu_ptr(pptr, cpu), m);
2003 		seq_puts(m, "\n");
2004 	}
2005 	seq_puts(m, "}\n");
2006 
2007 	rcu_read_unlock();
2008 }
2009 
2010 static int htab_percpu_map_btf_id;
2011 const struct bpf_map_ops htab_percpu_map_ops = {
2012 	.map_meta_equal = bpf_map_meta_equal,
2013 	.map_alloc_check = htab_map_alloc_check,
2014 	.map_alloc = htab_map_alloc,
2015 	.map_free = htab_map_free,
2016 	.map_get_next_key = htab_map_get_next_key,
2017 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2018 	.map_update_elem = htab_percpu_map_update_elem,
2019 	.map_delete_elem = htab_map_delete_elem,
2020 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2021 	BATCH_OPS(htab_percpu),
2022 	.map_btf_name = "bpf_htab",
2023 	.map_btf_id = &htab_percpu_map_btf_id,
2024 	.iter_seq_info = &iter_seq_info,
2025 };
2026 
2027 static int htab_lru_percpu_map_btf_id;
2028 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2029 	.map_meta_equal = bpf_map_meta_equal,
2030 	.map_alloc_check = htab_map_alloc_check,
2031 	.map_alloc = htab_map_alloc,
2032 	.map_free = htab_map_free,
2033 	.map_get_next_key = htab_map_get_next_key,
2034 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2035 	.map_update_elem = htab_lru_percpu_map_update_elem,
2036 	.map_delete_elem = htab_lru_map_delete_elem,
2037 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2038 	BATCH_OPS(htab_lru_percpu),
2039 	.map_btf_name = "bpf_htab",
2040 	.map_btf_id = &htab_lru_percpu_map_btf_id,
2041 	.iter_seq_info = &iter_seq_info,
2042 };
2043 
2044 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2045 {
2046 	if (attr->value_size != sizeof(u32))
2047 		return -EINVAL;
2048 	return htab_map_alloc_check(attr);
2049 }
2050 
2051 static void fd_htab_map_free(struct bpf_map *map)
2052 {
2053 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2054 	struct hlist_nulls_node *n;
2055 	struct hlist_nulls_head *head;
2056 	struct htab_elem *l;
2057 	int i;
2058 
2059 	for (i = 0; i < htab->n_buckets; i++) {
2060 		head = select_bucket(htab, i);
2061 
2062 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2063 			void *ptr = fd_htab_map_get_ptr(map, l);
2064 
2065 			map->ops->map_fd_put_ptr(ptr);
2066 		}
2067 	}
2068 
2069 	htab_map_free(map);
2070 }
2071 
2072 /* only called from syscall */
2073 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2074 {
2075 	void **ptr;
2076 	int ret = 0;
2077 
2078 	if (!map->ops->map_fd_sys_lookup_elem)
2079 		return -ENOTSUPP;
2080 
2081 	rcu_read_lock();
2082 	ptr = htab_map_lookup_elem(map, key);
2083 	if (ptr)
2084 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2085 	else
2086 		ret = -ENOENT;
2087 	rcu_read_unlock();
2088 
2089 	return ret;
2090 }
2091 
2092 /* only called from syscall */
2093 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2094 				void *key, void *value, u64 map_flags)
2095 {
2096 	void *ptr;
2097 	int ret;
2098 	u32 ufd = *(u32 *)value;
2099 
2100 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2101 	if (IS_ERR(ptr))
2102 		return PTR_ERR(ptr);
2103 
2104 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2105 	if (ret)
2106 		map->ops->map_fd_put_ptr(ptr);
2107 
2108 	return ret;
2109 }
2110 
2111 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2112 {
2113 	struct bpf_map *map, *inner_map_meta;
2114 
2115 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2116 	if (IS_ERR(inner_map_meta))
2117 		return inner_map_meta;
2118 
2119 	map = htab_map_alloc(attr);
2120 	if (IS_ERR(map)) {
2121 		bpf_map_meta_free(inner_map_meta);
2122 		return map;
2123 	}
2124 
2125 	map->inner_map_meta = inner_map_meta;
2126 
2127 	return map;
2128 }
2129 
2130 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2131 {
2132 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2133 
2134 	if (!inner_map)
2135 		return NULL;
2136 
2137 	return READ_ONCE(*inner_map);
2138 }
2139 
2140 static int htab_of_map_gen_lookup(struct bpf_map *map,
2141 				  struct bpf_insn *insn_buf)
2142 {
2143 	struct bpf_insn *insn = insn_buf;
2144 	const int ret = BPF_REG_0;
2145 
2146 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2147 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2148 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
2149 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2150 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2151 				offsetof(struct htab_elem, key) +
2152 				round_up(map->key_size, 8));
2153 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2154 
2155 	return insn - insn_buf;
2156 }
2157 
2158 static void htab_of_map_free(struct bpf_map *map)
2159 {
2160 	bpf_map_meta_free(map->inner_map_meta);
2161 	fd_htab_map_free(map);
2162 }
2163 
2164 static int htab_of_maps_map_btf_id;
2165 const struct bpf_map_ops htab_of_maps_map_ops = {
2166 	.map_alloc_check = fd_htab_map_alloc_check,
2167 	.map_alloc = htab_of_map_alloc,
2168 	.map_free = htab_of_map_free,
2169 	.map_get_next_key = htab_map_get_next_key,
2170 	.map_lookup_elem = htab_of_map_lookup_elem,
2171 	.map_delete_elem = htab_map_delete_elem,
2172 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2173 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2174 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2175 	.map_gen_lookup = htab_of_map_gen_lookup,
2176 	.map_check_btf = map_check_no_btf,
2177 	.map_btf_name = "bpf_htab",
2178 	.map_btf_id = &htab_of_maps_map_btf_id,
2179 };
2180