1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & HASHTAB_MAP_LOCK_MASK; 156 157 preempt_disable(); 158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 159 __this_cpu_dec(*(htab->map_locked[hash])); 160 preempt_enable(); 161 return -EBUSY; 162 } 163 164 raw_spin_lock_irqsave(&b->raw_lock, flags); 165 *pflags = flags; 166 167 return 0; 168 } 169 170 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 171 struct bucket *b, u32 hash, 172 unsigned long flags) 173 { 174 hash = hash & HASHTAB_MAP_LOCK_MASK; 175 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 176 __this_cpu_dec(*(htab->map_locked[hash])); 177 preempt_enable(); 178 } 179 180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 181 182 static bool htab_is_lru(const struct bpf_htab *htab) 183 { 184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 186 } 187 188 static bool htab_is_percpu(const struct bpf_htab *htab) 189 { 190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 192 } 193 194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 195 void __percpu *pptr) 196 { 197 *(void __percpu **)(l->key + key_size) = pptr; 198 } 199 200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 201 { 202 return *(void __percpu **)(l->key + key_size); 203 } 204 205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 206 { 207 return *(void **)(l->key + roundup(map->key_size, 8)); 208 } 209 210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 211 { 212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 213 } 214 215 static bool htab_has_extra_elems(struct bpf_htab *htab) 216 { 217 return !htab_is_percpu(htab) && !htab_is_lru(htab); 218 } 219 220 static void htab_free_prealloced_timers(struct bpf_htab *htab) 221 { 222 u32 num_entries = htab->map.max_entries; 223 int i; 224 225 if (!map_value_has_timer(&htab->map)) 226 return; 227 if (htab_has_extra_elems(htab)) 228 num_entries += num_possible_cpus(); 229 230 for (i = 0; i < num_entries; i++) { 231 struct htab_elem *elem; 232 233 elem = get_htab_elem(htab, i); 234 bpf_timer_cancel_and_free(elem->key + 235 round_up(htab->map.key_size, 8) + 236 htab->map.timer_off); 237 cond_resched(); 238 } 239 } 240 241 static void htab_free_prealloced_kptrs(struct bpf_htab *htab) 242 { 243 u32 num_entries = htab->map.max_entries; 244 int i; 245 246 if (!map_value_has_kptrs(&htab->map)) 247 return; 248 if (htab_has_extra_elems(htab)) 249 num_entries += num_possible_cpus(); 250 251 for (i = 0; i < num_entries; i++) { 252 struct htab_elem *elem; 253 254 elem = get_htab_elem(htab, i); 255 bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8)); 256 cond_resched(); 257 } 258 } 259 260 static void htab_free_elems(struct bpf_htab *htab) 261 { 262 int i; 263 264 if (!htab_is_percpu(htab)) 265 goto free_elems; 266 267 for (i = 0; i < htab->map.max_entries; i++) { 268 void __percpu *pptr; 269 270 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 271 htab->map.key_size); 272 free_percpu(pptr); 273 cond_resched(); 274 } 275 free_elems: 276 bpf_map_area_free(htab->elems); 277 } 278 279 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 280 * (bucket_lock). If both locks need to be acquired together, the lock 281 * order is always lru_lock -> bucket_lock and this only happens in 282 * bpf_lru_list.c logic. For example, certain code path of 283 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 284 * will acquire lru_lock first followed by acquiring bucket_lock. 285 * 286 * In hashtab.c, to avoid deadlock, lock acquisition of 287 * bucket_lock followed by lru_lock is not allowed. In such cases, 288 * bucket_lock needs to be released first before acquiring lru_lock. 289 */ 290 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 291 u32 hash) 292 { 293 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 294 struct htab_elem *l; 295 296 if (node) { 297 l = container_of(node, struct htab_elem, lru_node); 298 memcpy(l->key, key, htab->map.key_size); 299 return l; 300 } 301 302 return NULL; 303 } 304 305 static int prealloc_init(struct bpf_htab *htab) 306 { 307 u32 num_entries = htab->map.max_entries; 308 int err = -ENOMEM, i; 309 310 if (htab_has_extra_elems(htab)) 311 num_entries += num_possible_cpus(); 312 313 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 314 htab->map.numa_node); 315 if (!htab->elems) 316 return -ENOMEM; 317 318 if (!htab_is_percpu(htab)) 319 goto skip_percpu_elems; 320 321 for (i = 0; i < num_entries; i++) { 322 u32 size = round_up(htab->map.value_size, 8); 323 void __percpu *pptr; 324 325 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 326 GFP_USER | __GFP_NOWARN); 327 if (!pptr) 328 goto free_elems; 329 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 330 pptr); 331 cond_resched(); 332 } 333 334 skip_percpu_elems: 335 if (htab_is_lru(htab)) 336 err = bpf_lru_init(&htab->lru, 337 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 338 offsetof(struct htab_elem, hash) - 339 offsetof(struct htab_elem, lru_node), 340 htab_lru_map_delete_node, 341 htab); 342 else 343 err = pcpu_freelist_init(&htab->freelist); 344 345 if (err) 346 goto free_elems; 347 348 if (htab_is_lru(htab)) 349 bpf_lru_populate(&htab->lru, htab->elems, 350 offsetof(struct htab_elem, lru_node), 351 htab->elem_size, num_entries); 352 else 353 pcpu_freelist_populate(&htab->freelist, 354 htab->elems + offsetof(struct htab_elem, fnode), 355 htab->elem_size, num_entries); 356 357 return 0; 358 359 free_elems: 360 htab_free_elems(htab); 361 return err; 362 } 363 364 static void prealloc_destroy(struct bpf_htab *htab) 365 { 366 htab_free_elems(htab); 367 368 if (htab_is_lru(htab)) 369 bpf_lru_destroy(&htab->lru); 370 else 371 pcpu_freelist_destroy(&htab->freelist); 372 } 373 374 static int alloc_extra_elems(struct bpf_htab *htab) 375 { 376 struct htab_elem *__percpu *pptr, *l_new; 377 struct pcpu_freelist_node *l; 378 int cpu; 379 380 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 381 GFP_USER | __GFP_NOWARN); 382 if (!pptr) 383 return -ENOMEM; 384 385 for_each_possible_cpu(cpu) { 386 l = pcpu_freelist_pop(&htab->freelist); 387 /* pop will succeed, since prealloc_init() 388 * preallocated extra num_possible_cpus elements 389 */ 390 l_new = container_of(l, struct htab_elem, fnode); 391 *per_cpu_ptr(pptr, cpu) = l_new; 392 } 393 htab->extra_elems = pptr; 394 return 0; 395 } 396 397 /* Called from syscall */ 398 static int htab_map_alloc_check(union bpf_attr *attr) 399 { 400 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 401 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 402 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 403 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 404 /* percpu_lru means each cpu has its own LRU list. 405 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 406 * the map's value itself is percpu. percpu_lru has 407 * nothing to do with the map's value. 408 */ 409 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 410 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 411 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 412 int numa_node = bpf_map_attr_numa_node(attr); 413 414 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 415 offsetof(struct htab_elem, hash_node.pprev)); 416 417 if (lru && !bpf_capable()) 418 /* LRU implementation is much complicated than other 419 * maps. Hence, limit to CAP_BPF. 420 */ 421 return -EPERM; 422 423 if (zero_seed && !capable(CAP_SYS_ADMIN)) 424 /* Guard against local DoS, and discourage production use. */ 425 return -EPERM; 426 427 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 428 !bpf_map_flags_access_ok(attr->map_flags)) 429 return -EINVAL; 430 431 if (!lru && percpu_lru) 432 return -EINVAL; 433 434 if (lru && !prealloc) 435 return -ENOTSUPP; 436 437 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 438 return -EINVAL; 439 440 /* check sanity of attributes. 441 * value_size == 0 may be allowed in the future to use map as a set 442 */ 443 if (attr->max_entries == 0 || attr->key_size == 0 || 444 attr->value_size == 0) 445 return -EINVAL; 446 447 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 448 sizeof(struct htab_elem)) 449 /* if key_size + value_size is bigger, the user space won't be 450 * able to access the elements via bpf syscall. This check 451 * also makes sure that the elem_size doesn't overflow and it's 452 * kmalloc-able later in htab_map_update_elem() 453 */ 454 return -E2BIG; 455 456 return 0; 457 } 458 459 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 460 { 461 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 462 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 463 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 464 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 465 /* percpu_lru means each cpu has its own LRU list. 466 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 467 * the map's value itself is percpu. percpu_lru has 468 * nothing to do with the map's value. 469 */ 470 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 471 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 472 struct bpf_htab *htab; 473 int err, i; 474 475 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 476 if (!htab) 477 return ERR_PTR(-ENOMEM); 478 479 lockdep_register_key(&htab->lockdep_key); 480 481 bpf_map_init_from_attr(&htab->map, attr); 482 483 if (percpu_lru) { 484 /* ensure each CPU's lru list has >=1 elements. 485 * since we are at it, make each lru list has the same 486 * number of elements. 487 */ 488 htab->map.max_entries = roundup(attr->max_entries, 489 num_possible_cpus()); 490 if (htab->map.max_entries < attr->max_entries) 491 htab->map.max_entries = rounddown(attr->max_entries, 492 num_possible_cpus()); 493 } 494 495 /* hash table size must be power of 2 */ 496 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 497 498 htab->elem_size = sizeof(struct htab_elem) + 499 round_up(htab->map.key_size, 8); 500 if (percpu) 501 htab->elem_size += sizeof(void *); 502 else 503 htab->elem_size += round_up(htab->map.value_size, 8); 504 505 err = -E2BIG; 506 /* prevent zero size kmalloc and check for u32 overflow */ 507 if (htab->n_buckets == 0 || 508 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 509 goto free_htab; 510 511 err = -ENOMEM; 512 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 513 sizeof(struct bucket), 514 htab->map.numa_node); 515 if (!htab->buckets) 516 goto free_htab; 517 518 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 519 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 520 sizeof(int), 521 sizeof(int), 522 GFP_USER); 523 if (!htab->map_locked[i]) 524 goto free_map_locked; 525 } 526 527 if (htab->map.map_flags & BPF_F_ZERO_SEED) 528 htab->hashrnd = 0; 529 else 530 htab->hashrnd = get_random_u32(); 531 532 htab_init_buckets(htab); 533 534 /* compute_batch_value() computes batch value as num_online_cpus() * 2 535 * and __percpu_counter_compare() needs 536 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 537 * for percpu_counter to be faster than atomic_t. In practice the average bpf 538 * hash map size is 10k, which means that a system with 64 cpus will fill 539 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 540 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 541 * 10k - 8k > 32 _batch_ * 64 _cpus_ 542 * and __percpu_counter_compare() will still be fast. At that point hash map 543 * collisions will dominate its performance anyway. Assume that hash map filled 544 * to 50+% isn't going to be O(1) and use the following formula to choose 545 * between percpu_counter and atomic_t. 546 */ 547 #define PERCPU_COUNTER_BATCH 32 548 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 549 htab->use_percpu_counter = true; 550 551 if (htab->use_percpu_counter) { 552 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 553 if (err) 554 goto free_map_locked; 555 } 556 557 if (prealloc) { 558 err = prealloc_init(htab); 559 if (err) 560 goto free_map_locked; 561 562 if (!percpu && !lru) { 563 /* lru itself can remove the least used element, so 564 * there is no need for an extra elem during map_update. 565 */ 566 err = alloc_extra_elems(htab); 567 if (err) 568 goto free_prealloc; 569 } 570 } else { 571 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 572 if (err) 573 goto free_map_locked; 574 if (percpu) { 575 err = bpf_mem_alloc_init(&htab->pcpu_ma, 576 round_up(htab->map.value_size, 8), true); 577 if (err) 578 goto free_map_locked; 579 } 580 } 581 582 return &htab->map; 583 584 free_prealloc: 585 prealloc_destroy(htab); 586 free_map_locked: 587 if (htab->use_percpu_counter) 588 percpu_counter_destroy(&htab->pcount); 589 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 590 free_percpu(htab->map_locked[i]); 591 bpf_map_area_free(htab->buckets); 592 bpf_mem_alloc_destroy(&htab->pcpu_ma); 593 bpf_mem_alloc_destroy(&htab->ma); 594 free_htab: 595 lockdep_unregister_key(&htab->lockdep_key); 596 bpf_map_area_free(htab); 597 return ERR_PTR(err); 598 } 599 600 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 601 { 602 return jhash(key, key_len, hashrnd); 603 } 604 605 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 606 { 607 return &htab->buckets[hash & (htab->n_buckets - 1)]; 608 } 609 610 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 611 { 612 return &__select_bucket(htab, hash)->head; 613 } 614 615 /* this lookup function can only be called with bucket lock taken */ 616 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 617 void *key, u32 key_size) 618 { 619 struct hlist_nulls_node *n; 620 struct htab_elem *l; 621 622 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 623 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 624 return l; 625 626 return NULL; 627 } 628 629 /* can be called without bucket lock. it will repeat the loop in 630 * the unlikely event when elements moved from one bucket into another 631 * while link list is being walked 632 */ 633 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 634 u32 hash, void *key, 635 u32 key_size, u32 n_buckets) 636 { 637 struct hlist_nulls_node *n; 638 struct htab_elem *l; 639 640 again: 641 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 642 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 643 return l; 644 645 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 646 goto again; 647 648 return NULL; 649 } 650 651 /* Called from syscall or from eBPF program directly, so 652 * arguments have to match bpf_map_lookup_elem() exactly. 653 * The return value is adjusted by BPF instructions 654 * in htab_map_gen_lookup(). 655 */ 656 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 657 { 658 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 659 struct hlist_nulls_head *head; 660 struct htab_elem *l; 661 u32 hash, key_size; 662 663 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 664 !rcu_read_lock_bh_held()); 665 666 key_size = map->key_size; 667 668 hash = htab_map_hash(key, key_size, htab->hashrnd); 669 670 head = select_bucket(htab, hash); 671 672 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 673 674 return l; 675 } 676 677 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 678 { 679 struct htab_elem *l = __htab_map_lookup_elem(map, key); 680 681 if (l) 682 return l->key + round_up(map->key_size, 8); 683 684 return NULL; 685 } 686 687 /* inline bpf_map_lookup_elem() call. 688 * Instead of: 689 * bpf_prog 690 * bpf_map_lookup_elem 691 * map->ops->map_lookup_elem 692 * htab_map_lookup_elem 693 * __htab_map_lookup_elem 694 * do: 695 * bpf_prog 696 * __htab_map_lookup_elem 697 */ 698 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 699 { 700 struct bpf_insn *insn = insn_buf; 701 const int ret = BPF_REG_0; 702 703 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 704 (void *(*)(struct bpf_map *map, void *key))NULL)); 705 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 706 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 707 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 708 offsetof(struct htab_elem, key) + 709 round_up(map->key_size, 8)); 710 return insn - insn_buf; 711 } 712 713 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 714 void *key, const bool mark) 715 { 716 struct htab_elem *l = __htab_map_lookup_elem(map, key); 717 718 if (l) { 719 if (mark) 720 bpf_lru_node_set_ref(&l->lru_node); 721 return l->key + round_up(map->key_size, 8); 722 } 723 724 return NULL; 725 } 726 727 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 728 { 729 return __htab_lru_map_lookup_elem(map, key, true); 730 } 731 732 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 733 { 734 return __htab_lru_map_lookup_elem(map, key, false); 735 } 736 737 static int htab_lru_map_gen_lookup(struct bpf_map *map, 738 struct bpf_insn *insn_buf) 739 { 740 struct bpf_insn *insn = insn_buf; 741 const int ret = BPF_REG_0; 742 const int ref_reg = BPF_REG_1; 743 744 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 745 (void *(*)(struct bpf_map *map, void *key))NULL)); 746 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 747 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 748 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 749 offsetof(struct htab_elem, lru_node) + 750 offsetof(struct bpf_lru_node, ref)); 751 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 752 *insn++ = BPF_ST_MEM(BPF_B, ret, 753 offsetof(struct htab_elem, lru_node) + 754 offsetof(struct bpf_lru_node, ref), 755 1); 756 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 757 offsetof(struct htab_elem, key) + 758 round_up(map->key_size, 8)); 759 return insn - insn_buf; 760 } 761 762 static void check_and_free_fields(struct bpf_htab *htab, 763 struct htab_elem *elem) 764 { 765 void *map_value = elem->key + round_up(htab->map.key_size, 8); 766 767 if (map_value_has_timer(&htab->map)) 768 bpf_timer_cancel_and_free(map_value + htab->map.timer_off); 769 if (map_value_has_kptrs(&htab->map)) 770 bpf_map_free_kptrs(&htab->map, map_value); 771 } 772 773 /* It is called from the bpf_lru_list when the LRU needs to delete 774 * older elements from the htab. 775 */ 776 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 777 { 778 struct bpf_htab *htab = arg; 779 struct htab_elem *l = NULL, *tgt_l; 780 struct hlist_nulls_head *head; 781 struct hlist_nulls_node *n; 782 unsigned long flags; 783 struct bucket *b; 784 int ret; 785 786 tgt_l = container_of(node, struct htab_elem, lru_node); 787 b = __select_bucket(htab, tgt_l->hash); 788 head = &b->head; 789 790 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 791 if (ret) 792 return false; 793 794 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 795 if (l == tgt_l) { 796 hlist_nulls_del_rcu(&l->hash_node); 797 check_and_free_fields(htab, l); 798 break; 799 } 800 801 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 802 803 return l == tgt_l; 804 } 805 806 /* Called from syscall */ 807 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 808 { 809 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 810 struct hlist_nulls_head *head; 811 struct htab_elem *l, *next_l; 812 u32 hash, key_size; 813 int i = 0; 814 815 WARN_ON_ONCE(!rcu_read_lock_held()); 816 817 key_size = map->key_size; 818 819 if (!key) 820 goto find_first_elem; 821 822 hash = htab_map_hash(key, key_size, htab->hashrnd); 823 824 head = select_bucket(htab, hash); 825 826 /* lookup the key */ 827 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 828 829 if (!l) 830 goto find_first_elem; 831 832 /* key was found, get next key in the same bucket */ 833 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 834 struct htab_elem, hash_node); 835 836 if (next_l) { 837 /* if next elem in this hash list is non-zero, just return it */ 838 memcpy(next_key, next_l->key, key_size); 839 return 0; 840 } 841 842 /* no more elements in this hash list, go to the next bucket */ 843 i = hash & (htab->n_buckets - 1); 844 i++; 845 846 find_first_elem: 847 /* iterate over buckets */ 848 for (; i < htab->n_buckets; i++) { 849 head = select_bucket(htab, i); 850 851 /* pick first element in the bucket */ 852 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 853 struct htab_elem, hash_node); 854 if (next_l) { 855 /* if it's not empty, just return it */ 856 memcpy(next_key, next_l->key, key_size); 857 return 0; 858 } 859 } 860 861 /* iterated over all buckets and all elements */ 862 return -ENOENT; 863 } 864 865 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 866 { 867 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 868 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 869 check_and_free_fields(htab, l); 870 bpf_mem_cache_free(&htab->ma, l); 871 } 872 873 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 874 { 875 struct bpf_map *map = &htab->map; 876 void *ptr; 877 878 if (map->ops->map_fd_put_ptr) { 879 ptr = fd_htab_map_get_ptr(map, l); 880 map->ops->map_fd_put_ptr(ptr); 881 } 882 } 883 884 static bool is_map_full(struct bpf_htab *htab) 885 { 886 if (htab->use_percpu_counter) 887 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 888 PERCPU_COUNTER_BATCH) >= 0; 889 return atomic_read(&htab->count) >= htab->map.max_entries; 890 } 891 892 static void inc_elem_count(struct bpf_htab *htab) 893 { 894 if (htab->use_percpu_counter) 895 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 896 else 897 atomic_inc(&htab->count); 898 } 899 900 static void dec_elem_count(struct bpf_htab *htab) 901 { 902 if (htab->use_percpu_counter) 903 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 904 else 905 atomic_dec(&htab->count); 906 } 907 908 909 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 910 { 911 htab_put_fd_value(htab, l); 912 913 if (htab_is_prealloc(htab)) { 914 check_and_free_fields(htab, l); 915 __pcpu_freelist_push(&htab->freelist, &l->fnode); 916 } else { 917 dec_elem_count(htab); 918 htab_elem_free(htab, l); 919 } 920 } 921 922 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 923 void *value, bool onallcpus) 924 { 925 if (!onallcpus) { 926 /* copy true value_size bytes */ 927 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 928 } else { 929 u32 size = round_up(htab->map.value_size, 8); 930 int off = 0, cpu; 931 932 for_each_possible_cpu(cpu) { 933 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 934 value + off, size); 935 off += size; 936 } 937 } 938 } 939 940 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 941 void *value, bool onallcpus) 942 { 943 /* When not setting the initial value on all cpus, zero-fill element 944 * values for other cpus. Otherwise, bpf program has no way to ensure 945 * known initial values for cpus other than current one 946 * (onallcpus=false always when coming from bpf prog). 947 */ 948 if (!onallcpus) { 949 u32 size = round_up(htab->map.value_size, 8); 950 int current_cpu = raw_smp_processor_id(); 951 int cpu; 952 953 for_each_possible_cpu(cpu) { 954 if (cpu == current_cpu) 955 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 956 size); 957 else 958 memset(per_cpu_ptr(pptr, cpu), 0, size); 959 } 960 } else { 961 pcpu_copy_value(htab, pptr, value, onallcpus); 962 } 963 } 964 965 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 966 { 967 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 968 BITS_PER_LONG == 64; 969 } 970 971 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 972 void *value, u32 key_size, u32 hash, 973 bool percpu, bool onallcpus, 974 struct htab_elem *old_elem) 975 { 976 u32 size = htab->map.value_size; 977 bool prealloc = htab_is_prealloc(htab); 978 struct htab_elem *l_new, **pl_new; 979 void __percpu *pptr; 980 981 if (prealloc) { 982 if (old_elem) { 983 /* if we're updating the existing element, 984 * use per-cpu extra elems to avoid freelist_pop/push 985 */ 986 pl_new = this_cpu_ptr(htab->extra_elems); 987 l_new = *pl_new; 988 htab_put_fd_value(htab, old_elem); 989 *pl_new = old_elem; 990 } else { 991 struct pcpu_freelist_node *l; 992 993 l = __pcpu_freelist_pop(&htab->freelist); 994 if (!l) 995 return ERR_PTR(-E2BIG); 996 l_new = container_of(l, struct htab_elem, fnode); 997 } 998 } else { 999 if (is_map_full(htab)) 1000 if (!old_elem) 1001 /* when map is full and update() is replacing 1002 * old element, it's ok to allocate, since 1003 * old element will be freed immediately. 1004 * Otherwise return an error 1005 */ 1006 return ERR_PTR(-E2BIG); 1007 inc_elem_count(htab); 1008 l_new = bpf_mem_cache_alloc(&htab->ma); 1009 if (!l_new) { 1010 l_new = ERR_PTR(-ENOMEM); 1011 goto dec_count; 1012 } 1013 check_and_init_map_value(&htab->map, 1014 l_new->key + round_up(key_size, 8)); 1015 } 1016 1017 memcpy(l_new->key, key, key_size); 1018 if (percpu) { 1019 if (prealloc) { 1020 pptr = htab_elem_get_ptr(l_new, key_size); 1021 } else { 1022 /* alloc_percpu zero-fills */ 1023 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1024 if (!pptr) { 1025 bpf_mem_cache_free(&htab->ma, l_new); 1026 l_new = ERR_PTR(-ENOMEM); 1027 goto dec_count; 1028 } 1029 l_new->ptr_to_pptr = pptr; 1030 pptr = *(void **)pptr; 1031 } 1032 1033 pcpu_init_value(htab, pptr, value, onallcpus); 1034 1035 if (!prealloc) 1036 htab_elem_set_ptr(l_new, key_size, pptr); 1037 } else if (fd_htab_map_needs_adjust(htab)) { 1038 size = round_up(size, 8); 1039 memcpy(l_new->key + round_up(key_size, 8), value, size); 1040 } else { 1041 copy_map_value(&htab->map, 1042 l_new->key + round_up(key_size, 8), 1043 value); 1044 } 1045 1046 l_new->hash = hash; 1047 return l_new; 1048 dec_count: 1049 dec_elem_count(htab); 1050 return l_new; 1051 } 1052 1053 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1054 u64 map_flags) 1055 { 1056 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1057 /* elem already exists */ 1058 return -EEXIST; 1059 1060 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1061 /* elem doesn't exist, cannot update it */ 1062 return -ENOENT; 1063 1064 return 0; 1065 } 1066 1067 /* Called from syscall or from eBPF program */ 1068 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1069 u64 map_flags) 1070 { 1071 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1072 struct htab_elem *l_new = NULL, *l_old; 1073 struct hlist_nulls_head *head; 1074 unsigned long flags; 1075 struct bucket *b; 1076 u32 key_size, hash; 1077 int ret; 1078 1079 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1080 /* unknown flags */ 1081 return -EINVAL; 1082 1083 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1084 !rcu_read_lock_bh_held()); 1085 1086 key_size = map->key_size; 1087 1088 hash = htab_map_hash(key, key_size, htab->hashrnd); 1089 1090 b = __select_bucket(htab, hash); 1091 head = &b->head; 1092 1093 if (unlikely(map_flags & BPF_F_LOCK)) { 1094 if (unlikely(!map_value_has_spin_lock(map))) 1095 return -EINVAL; 1096 /* find an element without taking the bucket lock */ 1097 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1098 htab->n_buckets); 1099 ret = check_flags(htab, l_old, map_flags); 1100 if (ret) 1101 return ret; 1102 if (l_old) { 1103 /* grab the element lock and update value in place */ 1104 copy_map_value_locked(map, 1105 l_old->key + round_up(key_size, 8), 1106 value, false); 1107 return 0; 1108 } 1109 /* fall through, grab the bucket lock and lookup again. 1110 * 99.9% chance that the element won't be found, 1111 * but second lookup under lock has to be done. 1112 */ 1113 } 1114 1115 ret = htab_lock_bucket(htab, b, hash, &flags); 1116 if (ret) 1117 return ret; 1118 1119 l_old = lookup_elem_raw(head, hash, key, key_size); 1120 1121 ret = check_flags(htab, l_old, map_flags); 1122 if (ret) 1123 goto err; 1124 1125 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1126 /* first lookup without the bucket lock didn't find the element, 1127 * but second lookup with the bucket lock found it. 1128 * This case is highly unlikely, but has to be dealt with: 1129 * grab the element lock in addition to the bucket lock 1130 * and update element in place 1131 */ 1132 copy_map_value_locked(map, 1133 l_old->key + round_up(key_size, 8), 1134 value, false); 1135 ret = 0; 1136 goto err; 1137 } 1138 1139 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1140 l_old); 1141 if (IS_ERR(l_new)) { 1142 /* all pre-allocated elements are in use or memory exhausted */ 1143 ret = PTR_ERR(l_new); 1144 goto err; 1145 } 1146 1147 /* add new element to the head of the list, so that 1148 * concurrent search will find it before old elem 1149 */ 1150 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1151 if (l_old) { 1152 hlist_nulls_del_rcu(&l_old->hash_node); 1153 if (!htab_is_prealloc(htab)) 1154 free_htab_elem(htab, l_old); 1155 else 1156 check_and_free_fields(htab, l_old); 1157 } 1158 ret = 0; 1159 err: 1160 htab_unlock_bucket(htab, b, hash, flags); 1161 return ret; 1162 } 1163 1164 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1165 { 1166 check_and_free_fields(htab, elem); 1167 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1168 } 1169 1170 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1171 u64 map_flags) 1172 { 1173 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1174 struct htab_elem *l_new, *l_old = NULL; 1175 struct hlist_nulls_head *head; 1176 unsigned long flags; 1177 struct bucket *b; 1178 u32 key_size, hash; 1179 int ret; 1180 1181 if (unlikely(map_flags > BPF_EXIST)) 1182 /* unknown flags */ 1183 return -EINVAL; 1184 1185 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1186 !rcu_read_lock_bh_held()); 1187 1188 key_size = map->key_size; 1189 1190 hash = htab_map_hash(key, key_size, htab->hashrnd); 1191 1192 b = __select_bucket(htab, hash); 1193 head = &b->head; 1194 1195 /* For LRU, we need to alloc before taking bucket's 1196 * spinlock because getting free nodes from LRU may need 1197 * to remove older elements from htab and this removal 1198 * operation will need a bucket lock. 1199 */ 1200 l_new = prealloc_lru_pop(htab, key, hash); 1201 if (!l_new) 1202 return -ENOMEM; 1203 copy_map_value(&htab->map, 1204 l_new->key + round_up(map->key_size, 8), value); 1205 1206 ret = htab_lock_bucket(htab, b, hash, &flags); 1207 if (ret) 1208 return ret; 1209 1210 l_old = lookup_elem_raw(head, hash, key, key_size); 1211 1212 ret = check_flags(htab, l_old, map_flags); 1213 if (ret) 1214 goto err; 1215 1216 /* add new element to the head of the list, so that 1217 * concurrent search will find it before old elem 1218 */ 1219 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1220 if (l_old) { 1221 bpf_lru_node_set_ref(&l_new->lru_node); 1222 hlist_nulls_del_rcu(&l_old->hash_node); 1223 } 1224 ret = 0; 1225 1226 err: 1227 htab_unlock_bucket(htab, b, hash, flags); 1228 1229 if (ret) 1230 htab_lru_push_free(htab, l_new); 1231 else if (l_old) 1232 htab_lru_push_free(htab, l_old); 1233 1234 return ret; 1235 } 1236 1237 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1238 void *value, u64 map_flags, 1239 bool onallcpus) 1240 { 1241 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1242 struct htab_elem *l_new = NULL, *l_old; 1243 struct hlist_nulls_head *head; 1244 unsigned long flags; 1245 struct bucket *b; 1246 u32 key_size, hash; 1247 int ret; 1248 1249 if (unlikely(map_flags > BPF_EXIST)) 1250 /* unknown flags */ 1251 return -EINVAL; 1252 1253 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1254 !rcu_read_lock_bh_held()); 1255 1256 key_size = map->key_size; 1257 1258 hash = htab_map_hash(key, key_size, htab->hashrnd); 1259 1260 b = __select_bucket(htab, hash); 1261 head = &b->head; 1262 1263 ret = htab_lock_bucket(htab, b, hash, &flags); 1264 if (ret) 1265 return ret; 1266 1267 l_old = lookup_elem_raw(head, hash, key, key_size); 1268 1269 ret = check_flags(htab, l_old, map_flags); 1270 if (ret) 1271 goto err; 1272 1273 if (l_old) { 1274 /* per-cpu hash map can update value in-place */ 1275 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1276 value, onallcpus); 1277 } else { 1278 l_new = alloc_htab_elem(htab, key, value, key_size, 1279 hash, true, onallcpus, NULL); 1280 if (IS_ERR(l_new)) { 1281 ret = PTR_ERR(l_new); 1282 goto err; 1283 } 1284 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1285 } 1286 ret = 0; 1287 err: 1288 htab_unlock_bucket(htab, b, hash, flags); 1289 return ret; 1290 } 1291 1292 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1293 void *value, u64 map_flags, 1294 bool onallcpus) 1295 { 1296 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1297 struct htab_elem *l_new = NULL, *l_old; 1298 struct hlist_nulls_head *head; 1299 unsigned long flags; 1300 struct bucket *b; 1301 u32 key_size, hash; 1302 int ret; 1303 1304 if (unlikely(map_flags > BPF_EXIST)) 1305 /* unknown flags */ 1306 return -EINVAL; 1307 1308 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1309 !rcu_read_lock_bh_held()); 1310 1311 key_size = map->key_size; 1312 1313 hash = htab_map_hash(key, key_size, htab->hashrnd); 1314 1315 b = __select_bucket(htab, hash); 1316 head = &b->head; 1317 1318 /* For LRU, we need to alloc before taking bucket's 1319 * spinlock because LRU's elem alloc may need 1320 * to remove older elem from htab and this removal 1321 * operation will need a bucket lock. 1322 */ 1323 if (map_flags != BPF_EXIST) { 1324 l_new = prealloc_lru_pop(htab, key, hash); 1325 if (!l_new) 1326 return -ENOMEM; 1327 } 1328 1329 ret = htab_lock_bucket(htab, b, hash, &flags); 1330 if (ret) 1331 return ret; 1332 1333 l_old = lookup_elem_raw(head, hash, key, key_size); 1334 1335 ret = check_flags(htab, l_old, map_flags); 1336 if (ret) 1337 goto err; 1338 1339 if (l_old) { 1340 bpf_lru_node_set_ref(&l_old->lru_node); 1341 1342 /* per-cpu hash map can update value in-place */ 1343 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1344 value, onallcpus); 1345 } else { 1346 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1347 value, onallcpus); 1348 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1349 l_new = NULL; 1350 } 1351 ret = 0; 1352 err: 1353 htab_unlock_bucket(htab, b, hash, flags); 1354 if (l_new) 1355 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1356 return ret; 1357 } 1358 1359 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1360 void *value, u64 map_flags) 1361 { 1362 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1363 } 1364 1365 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1366 void *value, u64 map_flags) 1367 { 1368 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1369 false); 1370 } 1371 1372 /* Called from syscall or from eBPF program */ 1373 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1374 { 1375 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1376 struct hlist_nulls_head *head; 1377 struct bucket *b; 1378 struct htab_elem *l; 1379 unsigned long flags; 1380 u32 hash, key_size; 1381 int ret; 1382 1383 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1384 !rcu_read_lock_bh_held()); 1385 1386 key_size = map->key_size; 1387 1388 hash = htab_map_hash(key, key_size, htab->hashrnd); 1389 b = __select_bucket(htab, hash); 1390 head = &b->head; 1391 1392 ret = htab_lock_bucket(htab, b, hash, &flags); 1393 if (ret) 1394 return ret; 1395 1396 l = lookup_elem_raw(head, hash, key, key_size); 1397 1398 if (l) { 1399 hlist_nulls_del_rcu(&l->hash_node); 1400 free_htab_elem(htab, l); 1401 } else { 1402 ret = -ENOENT; 1403 } 1404 1405 htab_unlock_bucket(htab, b, hash, flags); 1406 return ret; 1407 } 1408 1409 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1410 { 1411 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1412 struct hlist_nulls_head *head; 1413 struct bucket *b; 1414 struct htab_elem *l; 1415 unsigned long flags; 1416 u32 hash, key_size; 1417 int ret; 1418 1419 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1420 !rcu_read_lock_bh_held()); 1421 1422 key_size = map->key_size; 1423 1424 hash = htab_map_hash(key, key_size, htab->hashrnd); 1425 b = __select_bucket(htab, hash); 1426 head = &b->head; 1427 1428 ret = htab_lock_bucket(htab, b, hash, &flags); 1429 if (ret) 1430 return ret; 1431 1432 l = lookup_elem_raw(head, hash, key, key_size); 1433 1434 if (l) 1435 hlist_nulls_del_rcu(&l->hash_node); 1436 else 1437 ret = -ENOENT; 1438 1439 htab_unlock_bucket(htab, b, hash, flags); 1440 if (l) 1441 htab_lru_push_free(htab, l); 1442 return ret; 1443 } 1444 1445 static void delete_all_elements(struct bpf_htab *htab) 1446 { 1447 int i; 1448 1449 /* It's called from a worker thread, so disable migration here, 1450 * since bpf_mem_cache_free() relies on that. 1451 */ 1452 migrate_disable(); 1453 for (i = 0; i < htab->n_buckets; i++) { 1454 struct hlist_nulls_head *head = select_bucket(htab, i); 1455 struct hlist_nulls_node *n; 1456 struct htab_elem *l; 1457 1458 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1459 hlist_nulls_del_rcu(&l->hash_node); 1460 htab_elem_free(htab, l); 1461 } 1462 } 1463 migrate_enable(); 1464 } 1465 1466 static void htab_free_malloced_timers(struct bpf_htab *htab) 1467 { 1468 int i; 1469 1470 rcu_read_lock(); 1471 for (i = 0; i < htab->n_buckets; i++) { 1472 struct hlist_nulls_head *head = select_bucket(htab, i); 1473 struct hlist_nulls_node *n; 1474 struct htab_elem *l; 1475 1476 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1477 /* We don't reset or free kptr on uref dropping to zero, 1478 * hence just free timer. 1479 */ 1480 bpf_timer_cancel_and_free(l->key + 1481 round_up(htab->map.key_size, 8) + 1482 htab->map.timer_off); 1483 } 1484 cond_resched_rcu(); 1485 } 1486 rcu_read_unlock(); 1487 } 1488 1489 static void htab_map_free_timers(struct bpf_map *map) 1490 { 1491 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1492 1493 /* We don't reset or free kptr on uref dropping to zero. */ 1494 if (!map_value_has_timer(&htab->map)) 1495 return; 1496 if (!htab_is_prealloc(htab)) 1497 htab_free_malloced_timers(htab); 1498 else 1499 htab_free_prealloced_timers(htab); 1500 } 1501 1502 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1503 static void htab_map_free(struct bpf_map *map) 1504 { 1505 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1506 int i; 1507 1508 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1509 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1510 * There is no need to synchronize_rcu() here to protect map elements. 1511 */ 1512 1513 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1514 * underneath and is reponsible for waiting for callbacks to finish 1515 * during bpf_mem_alloc_destroy(). 1516 */ 1517 if (!htab_is_prealloc(htab)) { 1518 delete_all_elements(htab); 1519 } else { 1520 htab_free_prealloced_kptrs(htab); 1521 prealloc_destroy(htab); 1522 } 1523 1524 bpf_map_free_kptr_off_tab(map); 1525 free_percpu(htab->extra_elems); 1526 bpf_map_area_free(htab->buckets); 1527 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1528 bpf_mem_alloc_destroy(&htab->ma); 1529 if (htab->use_percpu_counter) 1530 percpu_counter_destroy(&htab->pcount); 1531 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1532 free_percpu(htab->map_locked[i]); 1533 lockdep_unregister_key(&htab->lockdep_key); 1534 bpf_map_area_free(htab); 1535 } 1536 1537 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1538 struct seq_file *m) 1539 { 1540 void *value; 1541 1542 rcu_read_lock(); 1543 1544 value = htab_map_lookup_elem(map, key); 1545 if (!value) { 1546 rcu_read_unlock(); 1547 return; 1548 } 1549 1550 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1551 seq_puts(m, ": "); 1552 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1553 seq_puts(m, "\n"); 1554 1555 rcu_read_unlock(); 1556 } 1557 1558 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1559 void *value, bool is_lru_map, 1560 bool is_percpu, u64 flags) 1561 { 1562 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1563 struct hlist_nulls_head *head; 1564 unsigned long bflags; 1565 struct htab_elem *l; 1566 u32 hash, key_size; 1567 struct bucket *b; 1568 int ret; 1569 1570 key_size = map->key_size; 1571 1572 hash = htab_map_hash(key, key_size, htab->hashrnd); 1573 b = __select_bucket(htab, hash); 1574 head = &b->head; 1575 1576 ret = htab_lock_bucket(htab, b, hash, &bflags); 1577 if (ret) 1578 return ret; 1579 1580 l = lookup_elem_raw(head, hash, key, key_size); 1581 if (!l) { 1582 ret = -ENOENT; 1583 } else { 1584 if (is_percpu) { 1585 u32 roundup_value_size = round_up(map->value_size, 8); 1586 void __percpu *pptr; 1587 int off = 0, cpu; 1588 1589 pptr = htab_elem_get_ptr(l, key_size); 1590 for_each_possible_cpu(cpu) { 1591 bpf_long_memcpy(value + off, 1592 per_cpu_ptr(pptr, cpu), 1593 roundup_value_size); 1594 off += roundup_value_size; 1595 } 1596 } else { 1597 u32 roundup_key_size = round_up(map->key_size, 8); 1598 1599 if (flags & BPF_F_LOCK) 1600 copy_map_value_locked(map, value, l->key + 1601 roundup_key_size, 1602 true); 1603 else 1604 copy_map_value(map, value, l->key + 1605 roundup_key_size); 1606 check_and_init_map_value(map, value); 1607 } 1608 1609 hlist_nulls_del_rcu(&l->hash_node); 1610 if (!is_lru_map) 1611 free_htab_elem(htab, l); 1612 } 1613 1614 htab_unlock_bucket(htab, b, hash, bflags); 1615 1616 if (is_lru_map && l) 1617 htab_lru_push_free(htab, l); 1618 1619 return ret; 1620 } 1621 1622 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1623 void *value, u64 flags) 1624 { 1625 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1626 flags); 1627 } 1628 1629 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1630 void *key, void *value, 1631 u64 flags) 1632 { 1633 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1634 flags); 1635 } 1636 1637 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1638 void *value, u64 flags) 1639 { 1640 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1641 flags); 1642 } 1643 1644 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1645 void *key, void *value, 1646 u64 flags) 1647 { 1648 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1649 flags); 1650 } 1651 1652 static int 1653 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1654 const union bpf_attr *attr, 1655 union bpf_attr __user *uattr, 1656 bool do_delete, bool is_lru_map, 1657 bool is_percpu) 1658 { 1659 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1660 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1661 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1662 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1663 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1664 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1665 u32 batch, max_count, size, bucket_size, map_id; 1666 struct htab_elem *node_to_free = NULL; 1667 u64 elem_map_flags, map_flags; 1668 struct hlist_nulls_head *head; 1669 struct hlist_nulls_node *n; 1670 unsigned long flags = 0; 1671 bool locked = false; 1672 struct htab_elem *l; 1673 struct bucket *b; 1674 int ret = 0; 1675 1676 elem_map_flags = attr->batch.elem_flags; 1677 if ((elem_map_flags & ~BPF_F_LOCK) || 1678 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1679 return -EINVAL; 1680 1681 map_flags = attr->batch.flags; 1682 if (map_flags) 1683 return -EINVAL; 1684 1685 max_count = attr->batch.count; 1686 if (!max_count) 1687 return 0; 1688 1689 if (put_user(0, &uattr->batch.count)) 1690 return -EFAULT; 1691 1692 batch = 0; 1693 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1694 return -EFAULT; 1695 1696 if (batch >= htab->n_buckets) 1697 return -ENOENT; 1698 1699 key_size = htab->map.key_size; 1700 roundup_key_size = round_up(htab->map.key_size, 8); 1701 value_size = htab->map.value_size; 1702 size = round_up(value_size, 8); 1703 if (is_percpu) 1704 value_size = size * num_possible_cpus(); 1705 total = 0; 1706 /* while experimenting with hash tables with sizes ranging from 10 to 1707 * 1000, it was observed that a bucket can have up to 5 entries. 1708 */ 1709 bucket_size = 5; 1710 1711 alloc: 1712 /* We cannot do copy_from_user or copy_to_user inside 1713 * the rcu_read_lock. Allocate enough space here. 1714 */ 1715 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1716 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1717 if (!keys || !values) { 1718 ret = -ENOMEM; 1719 goto after_loop; 1720 } 1721 1722 again: 1723 bpf_disable_instrumentation(); 1724 rcu_read_lock(); 1725 again_nocopy: 1726 dst_key = keys; 1727 dst_val = values; 1728 b = &htab->buckets[batch]; 1729 head = &b->head; 1730 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1731 if (locked) { 1732 ret = htab_lock_bucket(htab, b, batch, &flags); 1733 if (ret) { 1734 rcu_read_unlock(); 1735 bpf_enable_instrumentation(); 1736 goto after_loop; 1737 } 1738 } 1739 1740 bucket_cnt = 0; 1741 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1742 bucket_cnt++; 1743 1744 if (bucket_cnt && !locked) { 1745 locked = true; 1746 goto again_nocopy; 1747 } 1748 1749 if (bucket_cnt > (max_count - total)) { 1750 if (total == 0) 1751 ret = -ENOSPC; 1752 /* Note that since bucket_cnt > 0 here, it is implicit 1753 * that the locked was grabbed, so release it. 1754 */ 1755 htab_unlock_bucket(htab, b, batch, flags); 1756 rcu_read_unlock(); 1757 bpf_enable_instrumentation(); 1758 goto after_loop; 1759 } 1760 1761 if (bucket_cnt > bucket_size) { 1762 bucket_size = bucket_cnt; 1763 /* Note that since bucket_cnt > 0 here, it is implicit 1764 * that the locked was grabbed, so release it. 1765 */ 1766 htab_unlock_bucket(htab, b, batch, flags); 1767 rcu_read_unlock(); 1768 bpf_enable_instrumentation(); 1769 kvfree(keys); 1770 kvfree(values); 1771 goto alloc; 1772 } 1773 1774 /* Next block is only safe to run if you have grabbed the lock */ 1775 if (!locked) 1776 goto next_batch; 1777 1778 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1779 memcpy(dst_key, l->key, key_size); 1780 1781 if (is_percpu) { 1782 int off = 0, cpu; 1783 void __percpu *pptr; 1784 1785 pptr = htab_elem_get_ptr(l, map->key_size); 1786 for_each_possible_cpu(cpu) { 1787 bpf_long_memcpy(dst_val + off, 1788 per_cpu_ptr(pptr, cpu), size); 1789 off += size; 1790 } 1791 } else { 1792 value = l->key + roundup_key_size; 1793 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1794 struct bpf_map **inner_map = value; 1795 1796 /* Actual value is the id of the inner map */ 1797 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1798 value = &map_id; 1799 } 1800 1801 if (elem_map_flags & BPF_F_LOCK) 1802 copy_map_value_locked(map, dst_val, value, 1803 true); 1804 else 1805 copy_map_value(map, dst_val, value); 1806 check_and_init_map_value(map, dst_val); 1807 } 1808 if (do_delete) { 1809 hlist_nulls_del_rcu(&l->hash_node); 1810 1811 /* bpf_lru_push_free() will acquire lru_lock, which 1812 * may cause deadlock. See comments in function 1813 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1814 * after releasing the bucket lock. 1815 */ 1816 if (is_lru_map) { 1817 l->batch_flink = node_to_free; 1818 node_to_free = l; 1819 } else { 1820 free_htab_elem(htab, l); 1821 } 1822 } 1823 dst_key += key_size; 1824 dst_val += value_size; 1825 } 1826 1827 htab_unlock_bucket(htab, b, batch, flags); 1828 locked = false; 1829 1830 while (node_to_free) { 1831 l = node_to_free; 1832 node_to_free = node_to_free->batch_flink; 1833 htab_lru_push_free(htab, l); 1834 } 1835 1836 next_batch: 1837 /* If we are not copying data, we can go to next bucket and avoid 1838 * unlocking the rcu. 1839 */ 1840 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1841 batch++; 1842 goto again_nocopy; 1843 } 1844 1845 rcu_read_unlock(); 1846 bpf_enable_instrumentation(); 1847 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1848 key_size * bucket_cnt) || 1849 copy_to_user(uvalues + total * value_size, values, 1850 value_size * bucket_cnt))) { 1851 ret = -EFAULT; 1852 goto after_loop; 1853 } 1854 1855 total += bucket_cnt; 1856 batch++; 1857 if (batch >= htab->n_buckets) { 1858 ret = -ENOENT; 1859 goto after_loop; 1860 } 1861 goto again; 1862 1863 after_loop: 1864 if (ret == -EFAULT) 1865 goto out; 1866 1867 /* copy # of entries and next batch */ 1868 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1869 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1870 put_user(total, &uattr->batch.count)) 1871 ret = -EFAULT; 1872 1873 out: 1874 kvfree(keys); 1875 kvfree(values); 1876 return ret; 1877 } 1878 1879 static int 1880 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1881 union bpf_attr __user *uattr) 1882 { 1883 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1884 false, true); 1885 } 1886 1887 static int 1888 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1889 const union bpf_attr *attr, 1890 union bpf_attr __user *uattr) 1891 { 1892 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1893 false, true); 1894 } 1895 1896 static int 1897 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1898 union bpf_attr __user *uattr) 1899 { 1900 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1901 false, false); 1902 } 1903 1904 static int 1905 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1906 const union bpf_attr *attr, 1907 union bpf_attr __user *uattr) 1908 { 1909 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1910 false, false); 1911 } 1912 1913 static int 1914 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1915 const union bpf_attr *attr, 1916 union bpf_attr __user *uattr) 1917 { 1918 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1919 true, true); 1920 } 1921 1922 static int 1923 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1924 const union bpf_attr *attr, 1925 union bpf_attr __user *uattr) 1926 { 1927 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1928 true, true); 1929 } 1930 1931 static int 1932 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1933 union bpf_attr __user *uattr) 1934 { 1935 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1936 true, false); 1937 } 1938 1939 static int 1940 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1941 const union bpf_attr *attr, 1942 union bpf_attr __user *uattr) 1943 { 1944 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1945 true, false); 1946 } 1947 1948 struct bpf_iter_seq_hash_map_info { 1949 struct bpf_map *map; 1950 struct bpf_htab *htab; 1951 void *percpu_value_buf; // non-zero means percpu hash 1952 u32 bucket_id; 1953 u32 skip_elems; 1954 }; 1955 1956 static struct htab_elem * 1957 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1958 struct htab_elem *prev_elem) 1959 { 1960 const struct bpf_htab *htab = info->htab; 1961 u32 skip_elems = info->skip_elems; 1962 u32 bucket_id = info->bucket_id; 1963 struct hlist_nulls_head *head; 1964 struct hlist_nulls_node *n; 1965 struct htab_elem *elem; 1966 struct bucket *b; 1967 u32 i, count; 1968 1969 if (bucket_id >= htab->n_buckets) 1970 return NULL; 1971 1972 /* try to find next elem in the same bucket */ 1973 if (prev_elem) { 1974 /* no update/deletion on this bucket, prev_elem should be still valid 1975 * and we won't skip elements. 1976 */ 1977 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1978 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1979 if (elem) 1980 return elem; 1981 1982 /* not found, unlock and go to the next bucket */ 1983 b = &htab->buckets[bucket_id++]; 1984 rcu_read_unlock(); 1985 skip_elems = 0; 1986 } 1987 1988 for (i = bucket_id; i < htab->n_buckets; i++) { 1989 b = &htab->buckets[i]; 1990 rcu_read_lock(); 1991 1992 count = 0; 1993 head = &b->head; 1994 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1995 if (count >= skip_elems) { 1996 info->bucket_id = i; 1997 info->skip_elems = count; 1998 return elem; 1999 } 2000 count++; 2001 } 2002 2003 rcu_read_unlock(); 2004 skip_elems = 0; 2005 } 2006 2007 info->bucket_id = i; 2008 info->skip_elems = 0; 2009 return NULL; 2010 } 2011 2012 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2013 { 2014 struct bpf_iter_seq_hash_map_info *info = seq->private; 2015 struct htab_elem *elem; 2016 2017 elem = bpf_hash_map_seq_find_next(info, NULL); 2018 if (!elem) 2019 return NULL; 2020 2021 if (*pos == 0) 2022 ++*pos; 2023 return elem; 2024 } 2025 2026 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2027 { 2028 struct bpf_iter_seq_hash_map_info *info = seq->private; 2029 2030 ++*pos; 2031 ++info->skip_elems; 2032 return bpf_hash_map_seq_find_next(info, v); 2033 } 2034 2035 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2036 { 2037 struct bpf_iter_seq_hash_map_info *info = seq->private; 2038 u32 roundup_key_size, roundup_value_size; 2039 struct bpf_iter__bpf_map_elem ctx = {}; 2040 struct bpf_map *map = info->map; 2041 struct bpf_iter_meta meta; 2042 int ret = 0, off = 0, cpu; 2043 struct bpf_prog *prog; 2044 void __percpu *pptr; 2045 2046 meta.seq = seq; 2047 prog = bpf_iter_get_info(&meta, elem == NULL); 2048 if (prog) { 2049 ctx.meta = &meta; 2050 ctx.map = info->map; 2051 if (elem) { 2052 roundup_key_size = round_up(map->key_size, 8); 2053 ctx.key = elem->key; 2054 if (!info->percpu_value_buf) { 2055 ctx.value = elem->key + roundup_key_size; 2056 } else { 2057 roundup_value_size = round_up(map->value_size, 8); 2058 pptr = htab_elem_get_ptr(elem, map->key_size); 2059 for_each_possible_cpu(cpu) { 2060 bpf_long_memcpy(info->percpu_value_buf + off, 2061 per_cpu_ptr(pptr, cpu), 2062 roundup_value_size); 2063 off += roundup_value_size; 2064 } 2065 ctx.value = info->percpu_value_buf; 2066 } 2067 } 2068 ret = bpf_iter_run_prog(prog, &ctx); 2069 } 2070 2071 return ret; 2072 } 2073 2074 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2075 { 2076 return __bpf_hash_map_seq_show(seq, v); 2077 } 2078 2079 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2080 { 2081 if (!v) 2082 (void)__bpf_hash_map_seq_show(seq, NULL); 2083 else 2084 rcu_read_unlock(); 2085 } 2086 2087 static int bpf_iter_init_hash_map(void *priv_data, 2088 struct bpf_iter_aux_info *aux) 2089 { 2090 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2091 struct bpf_map *map = aux->map; 2092 void *value_buf; 2093 u32 buf_size; 2094 2095 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2096 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2097 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2098 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2099 if (!value_buf) 2100 return -ENOMEM; 2101 2102 seq_info->percpu_value_buf = value_buf; 2103 } 2104 2105 bpf_map_inc_with_uref(map); 2106 seq_info->map = map; 2107 seq_info->htab = container_of(map, struct bpf_htab, map); 2108 return 0; 2109 } 2110 2111 static void bpf_iter_fini_hash_map(void *priv_data) 2112 { 2113 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2114 2115 bpf_map_put_with_uref(seq_info->map); 2116 kfree(seq_info->percpu_value_buf); 2117 } 2118 2119 static const struct seq_operations bpf_hash_map_seq_ops = { 2120 .start = bpf_hash_map_seq_start, 2121 .next = bpf_hash_map_seq_next, 2122 .stop = bpf_hash_map_seq_stop, 2123 .show = bpf_hash_map_seq_show, 2124 }; 2125 2126 static const struct bpf_iter_seq_info iter_seq_info = { 2127 .seq_ops = &bpf_hash_map_seq_ops, 2128 .init_seq_private = bpf_iter_init_hash_map, 2129 .fini_seq_private = bpf_iter_fini_hash_map, 2130 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2131 }; 2132 2133 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2134 void *callback_ctx, u64 flags) 2135 { 2136 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2137 struct hlist_nulls_head *head; 2138 struct hlist_nulls_node *n; 2139 struct htab_elem *elem; 2140 u32 roundup_key_size; 2141 int i, num_elems = 0; 2142 void __percpu *pptr; 2143 struct bucket *b; 2144 void *key, *val; 2145 bool is_percpu; 2146 u64 ret = 0; 2147 2148 if (flags != 0) 2149 return -EINVAL; 2150 2151 is_percpu = htab_is_percpu(htab); 2152 2153 roundup_key_size = round_up(map->key_size, 8); 2154 /* disable migration so percpu value prepared here will be the 2155 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2156 */ 2157 if (is_percpu) 2158 migrate_disable(); 2159 for (i = 0; i < htab->n_buckets; i++) { 2160 b = &htab->buckets[i]; 2161 rcu_read_lock(); 2162 head = &b->head; 2163 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2164 key = elem->key; 2165 if (is_percpu) { 2166 /* current cpu value for percpu map */ 2167 pptr = htab_elem_get_ptr(elem, map->key_size); 2168 val = this_cpu_ptr(pptr); 2169 } else { 2170 val = elem->key + roundup_key_size; 2171 } 2172 num_elems++; 2173 ret = callback_fn((u64)(long)map, (u64)(long)key, 2174 (u64)(long)val, (u64)(long)callback_ctx, 0); 2175 /* return value: 0 - continue, 1 - stop and return */ 2176 if (ret) { 2177 rcu_read_unlock(); 2178 goto out; 2179 } 2180 } 2181 rcu_read_unlock(); 2182 } 2183 out: 2184 if (is_percpu) 2185 migrate_enable(); 2186 return num_elems; 2187 } 2188 2189 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2190 const struct bpf_map_ops htab_map_ops = { 2191 .map_meta_equal = bpf_map_meta_equal, 2192 .map_alloc_check = htab_map_alloc_check, 2193 .map_alloc = htab_map_alloc, 2194 .map_free = htab_map_free, 2195 .map_get_next_key = htab_map_get_next_key, 2196 .map_release_uref = htab_map_free_timers, 2197 .map_lookup_elem = htab_map_lookup_elem, 2198 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2199 .map_update_elem = htab_map_update_elem, 2200 .map_delete_elem = htab_map_delete_elem, 2201 .map_gen_lookup = htab_map_gen_lookup, 2202 .map_seq_show_elem = htab_map_seq_show_elem, 2203 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2204 .map_for_each_callback = bpf_for_each_hash_elem, 2205 BATCH_OPS(htab), 2206 .map_btf_id = &htab_map_btf_ids[0], 2207 .iter_seq_info = &iter_seq_info, 2208 }; 2209 2210 const struct bpf_map_ops htab_lru_map_ops = { 2211 .map_meta_equal = bpf_map_meta_equal, 2212 .map_alloc_check = htab_map_alloc_check, 2213 .map_alloc = htab_map_alloc, 2214 .map_free = htab_map_free, 2215 .map_get_next_key = htab_map_get_next_key, 2216 .map_release_uref = htab_map_free_timers, 2217 .map_lookup_elem = htab_lru_map_lookup_elem, 2218 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2219 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2220 .map_update_elem = htab_lru_map_update_elem, 2221 .map_delete_elem = htab_lru_map_delete_elem, 2222 .map_gen_lookup = htab_lru_map_gen_lookup, 2223 .map_seq_show_elem = htab_map_seq_show_elem, 2224 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2225 .map_for_each_callback = bpf_for_each_hash_elem, 2226 BATCH_OPS(htab_lru), 2227 .map_btf_id = &htab_map_btf_ids[0], 2228 .iter_seq_info = &iter_seq_info, 2229 }; 2230 2231 /* Called from eBPF program */ 2232 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2233 { 2234 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2235 2236 if (l) 2237 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2238 else 2239 return NULL; 2240 } 2241 2242 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2243 { 2244 struct htab_elem *l; 2245 2246 if (cpu >= nr_cpu_ids) 2247 return NULL; 2248 2249 l = __htab_map_lookup_elem(map, key); 2250 if (l) 2251 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2252 else 2253 return NULL; 2254 } 2255 2256 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2257 { 2258 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2259 2260 if (l) { 2261 bpf_lru_node_set_ref(&l->lru_node); 2262 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2263 } 2264 2265 return NULL; 2266 } 2267 2268 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2269 { 2270 struct htab_elem *l; 2271 2272 if (cpu >= nr_cpu_ids) 2273 return NULL; 2274 2275 l = __htab_map_lookup_elem(map, key); 2276 if (l) { 2277 bpf_lru_node_set_ref(&l->lru_node); 2278 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2279 } 2280 2281 return NULL; 2282 } 2283 2284 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2285 { 2286 struct htab_elem *l; 2287 void __percpu *pptr; 2288 int ret = -ENOENT; 2289 int cpu, off = 0; 2290 u32 size; 2291 2292 /* per_cpu areas are zero-filled and bpf programs can only 2293 * access 'value_size' of them, so copying rounded areas 2294 * will not leak any kernel data 2295 */ 2296 size = round_up(map->value_size, 8); 2297 rcu_read_lock(); 2298 l = __htab_map_lookup_elem(map, key); 2299 if (!l) 2300 goto out; 2301 /* We do not mark LRU map element here in order to not mess up 2302 * eviction heuristics when user space does a map walk. 2303 */ 2304 pptr = htab_elem_get_ptr(l, map->key_size); 2305 for_each_possible_cpu(cpu) { 2306 bpf_long_memcpy(value + off, 2307 per_cpu_ptr(pptr, cpu), size); 2308 off += size; 2309 } 2310 ret = 0; 2311 out: 2312 rcu_read_unlock(); 2313 return ret; 2314 } 2315 2316 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2317 u64 map_flags) 2318 { 2319 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2320 int ret; 2321 2322 rcu_read_lock(); 2323 if (htab_is_lru(htab)) 2324 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2325 map_flags, true); 2326 else 2327 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2328 true); 2329 rcu_read_unlock(); 2330 2331 return ret; 2332 } 2333 2334 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2335 struct seq_file *m) 2336 { 2337 struct htab_elem *l; 2338 void __percpu *pptr; 2339 int cpu; 2340 2341 rcu_read_lock(); 2342 2343 l = __htab_map_lookup_elem(map, key); 2344 if (!l) { 2345 rcu_read_unlock(); 2346 return; 2347 } 2348 2349 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2350 seq_puts(m, ": {\n"); 2351 pptr = htab_elem_get_ptr(l, map->key_size); 2352 for_each_possible_cpu(cpu) { 2353 seq_printf(m, "\tcpu%d: ", cpu); 2354 btf_type_seq_show(map->btf, map->btf_value_type_id, 2355 per_cpu_ptr(pptr, cpu), m); 2356 seq_puts(m, "\n"); 2357 } 2358 seq_puts(m, "}\n"); 2359 2360 rcu_read_unlock(); 2361 } 2362 2363 const struct bpf_map_ops htab_percpu_map_ops = { 2364 .map_meta_equal = bpf_map_meta_equal, 2365 .map_alloc_check = htab_map_alloc_check, 2366 .map_alloc = htab_map_alloc, 2367 .map_free = htab_map_free, 2368 .map_get_next_key = htab_map_get_next_key, 2369 .map_lookup_elem = htab_percpu_map_lookup_elem, 2370 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2371 .map_update_elem = htab_percpu_map_update_elem, 2372 .map_delete_elem = htab_map_delete_elem, 2373 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2374 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2375 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2376 .map_for_each_callback = bpf_for_each_hash_elem, 2377 BATCH_OPS(htab_percpu), 2378 .map_btf_id = &htab_map_btf_ids[0], 2379 .iter_seq_info = &iter_seq_info, 2380 }; 2381 2382 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2383 .map_meta_equal = bpf_map_meta_equal, 2384 .map_alloc_check = htab_map_alloc_check, 2385 .map_alloc = htab_map_alloc, 2386 .map_free = htab_map_free, 2387 .map_get_next_key = htab_map_get_next_key, 2388 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2389 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2390 .map_update_elem = htab_lru_percpu_map_update_elem, 2391 .map_delete_elem = htab_lru_map_delete_elem, 2392 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2393 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2394 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2395 .map_for_each_callback = bpf_for_each_hash_elem, 2396 BATCH_OPS(htab_lru_percpu), 2397 .map_btf_id = &htab_map_btf_ids[0], 2398 .iter_seq_info = &iter_seq_info, 2399 }; 2400 2401 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2402 { 2403 if (attr->value_size != sizeof(u32)) 2404 return -EINVAL; 2405 return htab_map_alloc_check(attr); 2406 } 2407 2408 static void fd_htab_map_free(struct bpf_map *map) 2409 { 2410 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2411 struct hlist_nulls_node *n; 2412 struct hlist_nulls_head *head; 2413 struct htab_elem *l; 2414 int i; 2415 2416 for (i = 0; i < htab->n_buckets; i++) { 2417 head = select_bucket(htab, i); 2418 2419 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2420 void *ptr = fd_htab_map_get_ptr(map, l); 2421 2422 map->ops->map_fd_put_ptr(ptr); 2423 } 2424 } 2425 2426 htab_map_free(map); 2427 } 2428 2429 /* only called from syscall */ 2430 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2431 { 2432 void **ptr; 2433 int ret = 0; 2434 2435 if (!map->ops->map_fd_sys_lookup_elem) 2436 return -ENOTSUPP; 2437 2438 rcu_read_lock(); 2439 ptr = htab_map_lookup_elem(map, key); 2440 if (ptr) 2441 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2442 else 2443 ret = -ENOENT; 2444 rcu_read_unlock(); 2445 2446 return ret; 2447 } 2448 2449 /* only called from syscall */ 2450 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2451 void *key, void *value, u64 map_flags) 2452 { 2453 void *ptr; 2454 int ret; 2455 u32 ufd = *(u32 *)value; 2456 2457 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2458 if (IS_ERR(ptr)) 2459 return PTR_ERR(ptr); 2460 2461 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2462 if (ret) 2463 map->ops->map_fd_put_ptr(ptr); 2464 2465 return ret; 2466 } 2467 2468 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2469 { 2470 struct bpf_map *map, *inner_map_meta; 2471 2472 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2473 if (IS_ERR(inner_map_meta)) 2474 return inner_map_meta; 2475 2476 map = htab_map_alloc(attr); 2477 if (IS_ERR(map)) { 2478 bpf_map_meta_free(inner_map_meta); 2479 return map; 2480 } 2481 2482 map->inner_map_meta = inner_map_meta; 2483 2484 return map; 2485 } 2486 2487 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2488 { 2489 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2490 2491 if (!inner_map) 2492 return NULL; 2493 2494 return READ_ONCE(*inner_map); 2495 } 2496 2497 static int htab_of_map_gen_lookup(struct bpf_map *map, 2498 struct bpf_insn *insn_buf) 2499 { 2500 struct bpf_insn *insn = insn_buf; 2501 const int ret = BPF_REG_0; 2502 2503 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2504 (void *(*)(struct bpf_map *map, void *key))NULL)); 2505 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2506 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2507 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2508 offsetof(struct htab_elem, key) + 2509 round_up(map->key_size, 8)); 2510 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2511 2512 return insn - insn_buf; 2513 } 2514 2515 static void htab_of_map_free(struct bpf_map *map) 2516 { 2517 bpf_map_meta_free(map->inner_map_meta); 2518 fd_htab_map_free(map); 2519 } 2520 2521 const struct bpf_map_ops htab_of_maps_map_ops = { 2522 .map_alloc_check = fd_htab_map_alloc_check, 2523 .map_alloc = htab_of_map_alloc, 2524 .map_free = htab_of_map_free, 2525 .map_get_next_key = htab_map_get_next_key, 2526 .map_lookup_elem = htab_of_map_lookup_elem, 2527 .map_delete_elem = htab_map_delete_elem, 2528 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2529 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2530 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2531 .map_gen_lookup = htab_of_map_gen_lookup, 2532 .map_check_btf = map_check_no_btf, 2533 BATCH_OPS(htab), 2534 .map_btf_id = &htab_map_btf_ids[0], 2535 }; 2536