1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/rcupdate_wait.h> 11 #include <linux/random.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 #include "percpu_freelist.h" 16 #include "bpf_lru_list.h" 17 #include "map_in_map.h" 18 #include <linux/bpf_mem_alloc.h> 19 20 #define HTAB_CREATE_FLAG_MASK \ 21 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 22 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 23 24 #define BATCH_OPS(_name) \ 25 .map_lookup_batch = \ 26 _name##_map_lookup_batch, \ 27 .map_lookup_and_delete_batch = \ 28 _name##_map_lookup_and_delete_batch, \ 29 .map_update_batch = \ 30 generic_map_update_batch, \ 31 .map_delete_batch = \ 32 generic_map_delete_batch 33 34 /* 35 * The bucket lock has two protection scopes: 36 * 37 * 1) Serializing concurrent operations from BPF programs on different 38 * CPUs 39 * 40 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 41 * 42 * BPF programs can execute in any context including perf, kprobes and 43 * tracing. As there are almost no limits where perf, kprobes and tracing 44 * can be invoked from the lock operations need to be protected against 45 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 46 * the lock held section when functions which acquire this lock are invoked 47 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 48 * variable bpf_prog_active, which prevents BPF programs attached to perf 49 * events, kprobes and tracing to be invoked before the prior invocation 50 * from one of these contexts completed. sys_bpf() uses the same mechanism 51 * by pinning the task to the current CPU and incrementing the recursion 52 * protection across the map operation. 53 * 54 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 55 * operations like memory allocations (even with GFP_ATOMIC) from atomic 56 * contexts. This is required because even with GFP_ATOMIC the memory 57 * allocator calls into code paths which acquire locks with long held lock 58 * sections. To ensure the deterministic behaviour these locks are regular 59 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 60 * true atomic contexts on an RT kernel are the low level hardware 61 * handling, scheduling, low level interrupt handling, NMIs etc. None of 62 * these contexts should ever do memory allocations. 63 * 64 * As regular device interrupt handlers and soft interrupts are forced into 65 * thread context, the existing code which does 66 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 67 * just works. 68 * 69 * In theory the BPF locks could be converted to regular spinlocks as well, 70 * but the bucket locks and percpu_freelist locks can be taken from 71 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 72 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 73 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 74 * because there is no memory allocation within the lock held sections. However 75 * after hash map was fully converted to use bpf_mem_alloc, there will be 76 * non-synchronous memory allocation for non-preallocated hash map, so it is 77 * safe to always use raw spinlock for bucket lock. 78 */ 79 struct bucket { 80 struct hlist_nulls_head head; 81 raw_spinlock_t raw_lock; 82 }; 83 84 #define HASHTAB_MAP_LOCK_COUNT 8 85 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 86 87 struct bpf_htab { 88 struct bpf_map map; 89 struct bpf_mem_alloc ma; 90 struct bpf_mem_alloc pcpu_ma; 91 struct bucket *buckets; 92 void *elems; 93 union { 94 struct pcpu_freelist freelist; 95 struct bpf_lru lru; 96 }; 97 struct htab_elem *__percpu *extra_elems; 98 /* number of elements in non-preallocated hashtable are kept 99 * in either pcount or count 100 */ 101 struct percpu_counter pcount; 102 atomic_t count; 103 bool use_percpu_counter; 104 u32 n_buckets; /* number of hash buckets */ 105 u32 elem_size; /* size of each element in bytes */ 106 u32 hashrnd; 107 struct lock_class_key lockdep_key; 108 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 109 }; 110 111 /* each htab element is struct htab_elem + key + value */ 112 struct htab_elem { 113 union { 114 struct hlist_nulls_node hash_node; 115 struct { 116 void *padding; 117 union { 118 struct pcpu_freelist_node fnode; 119 struct htab_elem *batch_flink; 120 }; 121 }; 122 }; 123 union { 124 /* pointer to per-cpu pointer */ 125 void *ptr_to_pptr; 126 struct bpf_lru_node lru_node; 127 }; 128 u32 hash; 129 char key[] __aligned(8); 130 }; 131 132 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 133 { 134 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 135 } 136 137 static void htab_init_buckets(struct bpf_htab *htab) 138 { 139 unsigned int i; 140 141 for (i = 0; i < htab->n_buckets; i++) { 142 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 143 raw_spin_lock_init(&htab->buckets[i].raw_lock); 144 lockdep_set_class(&htab->buckets[i].raw_lock, 145 &htab->lockdep_key); 146 cond_resched(); 147 } 148 } 149 150 static inline int htab_lock_bucket(const struct bpf_htab *htab, 151 struct bucket *b, u32 hash, 152 unsigned long *pflags) 153 { 154 unsigned long flags; 155 156 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 157 158 preempt_disable(); 159 local_irq_save(flags); 160 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 161 __this_cpu_dec(*(htab->map_locked[hash])); 162 local_irq_restore(flags); 163 preempt_enable(); 164 return -EBUSY; 165 } 166 167 raw_spin_lock(&b->raw_lock); 168 *pflags = flags; 169 170 return 0; 171 } 172 173 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 174 struct bucket *b, u32 hash, 175 unsigned long flags) 176 { 177 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 178 raw_spin_unlock(&b->raw_lock); 179 __this_cpu_dec(*(htab->map_locked[hash])); 180 local_irq_restore(flags); 181 preempt_enable(); 182 } 183 184 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 185 186 static bool htab_is_lru(const struct bpf_htab *htab) 187 { 188 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 189 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 190 } 191 192 static bool htab_is_percpu(const struct bpf_htab *htab) 193 { 194 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 195 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 196 } 197 198 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 199 void __percpu *pptr) 200 { 201 *(void __percpu **)(l->key + key_size) = pptr; 202 } 203 204 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 205 { 206 return *(void __percpu **)(l->key + key_size); 207 } 208 209 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 210 { 211 return *(void **)(l->key + roundup(map->key_size, 8)); 212 } 213 214 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 215 { 216 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 217 } 218 219 static bool htab_has_extra_elems(struct bpf_htab *htab) 220 { 221 return !htab_is_percpu(htab) && !htab_is_lru(htab); 222 } 223 224 static void htab_free_prealloced_timers_and_wq(struct bpf_htab *htab) 225 { 226 u32 num_entries = htab->map.max_entries; 227 int i; 228 229 if (htab_has_extra_elems(htab)) 230 num_entries += num_possible_cpus(); 231 232 for (i = 0; i < num_entries; i++) { 233 struct htab_elem *elem; 234 235 elem = get_htab_elem(htab, i); 236 if (btf_record_has_field(htab->map.record, BPF_TIMER)) 237 bpf_obj_free_timer(htab->map.record, 238 elem->key + round_up(htab->map.key_size, 8)); 239 if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) 240 bpf_obj_free_workqueue(htab->map.record, 241 elem->key + round_up(htab->map.key_size, 8)); 242 cond_resched(); 243 } 244 } 245 246 static void htab_free_prealloced_fields(struct bpf_htab *htab) 247 { 248 u32 num_entries = htab->map.max_entries; 249 int i; 250 251 if (IS_ERR_OR_NULL(htab->map.record)) 252 return; 253 if (htab_has_extra_elems(htab)) 254 num_entries += num_possible_cpus(); 255 for (i = 0; i < num_entries; i++) { 256 struct htab_elem *elem; 257 258 elem = get_htab_elem(htab, i); 259 if (htab_is_percpu(htab)) { 260 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 261 int cpu; 262 263 for_each_possible_cpu(cpu) { 264 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 265 cond_resched(); 266 } 267 } else { 268 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 269 cond_resched(); 270 } 271 cond_resched(); 272 } 273 } 274 275 static void htab_free_elems(struct bpf_htab *htab) 276 { 277 int i; 278 279 if (!htab_is_percpu(htab)) 280 goto free_elems; 281 282 for (i = 0; i < htab->map.max_entries; i++) { 283 void __percpu *pptr; 284 285 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 286 htab->map.key_size); 287 free_percpu(pptr); 288 cond_resched(); 289 } 290 free_elems: 291 bpf_map_area_free(htab->elems); 292 } 293 294 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 295 * (bucket_lock). If both locks need to be acquired together, the lock 296 * order is always lru_lock -> bucket_lock and this only happens in 297 * bpf_lru_list.c logic. For example, certain code path of 298 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 299 * will acquire lru_lock first followed by acquiring bucket_lock. 300 * 301 * In hashtab.c, to avoid deadlock, lock acquisition of 302 * bucket_lock followed by lru_lock is not allowed. In such cases, 303 * bucket_lock needs to be released first before acquiring lru_lock. 304 */ 305 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 306 u32 hash) 307 { 308 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 309 struct htab_elem *l; 310 311 if (node) { 312 bpf_map_inc_elem_count(&htab->map); 313 l = container_of(node, struct htab_elem, lru_node); 314 memcpy(l->key, key, htab->map.key_size); 315 return l; 316 } 317 318 return NULL; 319 } 320 321 static int prealloc_init(struct bpf_htab *htab) 322 { 323 u32 num_entries = htab->map.max_entries; 324 int err = -ENOMEM, i; 325 326 if (htab_has_extra_elems(htab)) 327 num_entries += num_possible_cpus(); 328 329 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 330 htab->map.numa_node); 331 if (!htab->elems) 332 return -ENOMEM; 333 334 if (!htab_is_percpu(htab)) 335 goto skip_percpu_elems; 336 337 for (i = 0; i < num_entries; i++) { 338 u32 size = round_up(htab->map.value_size, 8); 339 void __percpu *pptr; 340 341 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 342 GFP_USER | __GFP_NOWARN); 343 if (!pptr) 344 goto free_elems; 345 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 346 pptr); 347 cond_resched(); 348 } 349 350 skip_percpu_elems: 351 if (htab_is_lru(htab)) 352 err = bpf_lru_init(&htab->lru, 353 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 354 offsetof(struct htab_elem, hash) - 355 offsetof(struct htab_elem, lru_node), 356 htab_lru_map_delete_node, 357 htab); 358 else 359 err = pcpu_freelist_init(&htab->freelist); 360 361 if (err) 362 goto free_elems; 363 364 if (htab_is_lru(htab)) 365 bpf_lru_populate(&htab->lru, htab->elems, 366 offsetof(struct htab_elem, lru_node), 367 htab->elem_size, num_entries); 368 else 369 pcpu_freelist_populate(&htab->freelist, 370 htab->elems + offsetof(struct htab_elem, fnode), 371 htab->elem_size, num_entries); 372 373 return 0; 374 375 free_elems: 376 htab_free_elems(htab); 377 return err; 378 } 379 380 static void prealloc_destroy(struct bpf_htab *htab) 381 { 382 htab_free_elems(htab); 383 384 if (htab_is_lru(htab)) 385 bpf_lru_destroy(&htab->lru); 386 else 387 pcpu_freelist_destroy(&htab->freelist); 388 } 389 390 static int alloc_extra_elems(struct bpf_htab *htab) 391 { 392 struct htab_elem *__percpu *pptr, *l_new; 393 struct pcpu_freelist_node *l; 394 int cpu; 395 396 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 397 GFP_USER | __GFP_NOWARN); 398 if (!pptr) 399 return -ENOMEM; 400 401 for_each_possible_cpu(cpu) { 402 l = pcpu_freelist_pop(&htab->freelist); 403 /* pop will succeed, since prealloc_init() 404 * preallocated extra num_possible_cpus elements 405 */ 406 l_new = container_of(l, struct htab_elem, fnode); 407 *per_cpu_ptr(pptr, cpu) = l_new; 408 } 409 htab->extra_elems = pptr; 410 return 0; 411 } 412 413 /* Called from syscall */ 414 static int htab_map_alloc_check(union bpf_attr *attr) 415 { 416 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 417 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 418 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 419 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 420 /* percpu_lru means each cpu has its own LRU list. 421 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 422 * the map's value itself is percpu. percpu_lru has 423 * nothing to do with the map's value. 424 */ 425 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 426 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 427 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 428 int numa_node = bpf_map_attr_numa_node(attr); 429 430 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 431 offsetof(struct htab_elem, hash_node.pprev)); 432 433 if (zero_seed && !capable(CAP_SYS_ADMIN)) 434 /* Guard against local DoS, and discourage production use. */ 435 return -EPERM; 436 437 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 438 !bpf_map_flags_access_ok(attr->map_flags)) 439 return -EINVAL; 440 441 if (!lru && percpu_lru) 442 return -EINVAL; 443 444 if (lru && !prealloc) 445 return -ENOTSUPP; 446 447 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 448 return -EINVAL; 449 450 /* check sanity of attributes. 451 * value_size == 0 may be allowed in the future to use map as a set 452 */ 453 if (attr->max_entries == 0 || attr->key_size == 0 || 454 attr->value_size == 0) 455 return -EINVAL; 456 457 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 458 sizeof(struct htab_elem)) 459 /* if key_size + value_size is bigger, the user space won't be 460 * able to access the elements via bpf syscall. This check 461 * also makes sure that the elem_size doesn't overflow and it's 462 * kmalloc-able later in htab_map_update_elem() 463 */ 464 return -E2BIG; 465 466 return 0; 467 } 468 469 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 470 { 471 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 472 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 473 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 474 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 475 /* percpu_lru means each cpu has its own LRU list. 476 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 477 * the map's value itself is percpu. percpu_lru has 478 * nothing to do with the map's value. 479 */ 480 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 481 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 482 struct bpf_htab *htab; 483 int err, i; 484 485 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 486 if (!htab) 487 return ERR_PTR(-ENOMEM); 488 489 lockdep_register_key(&htab->lockdep_key); 490 491 bpf_map_init_from_attr(&htab->map, attr); 492 493 if (percpu_lru) { 494 /* ensure each CPU's lru list has >=1 elements. 495 * since we are at it, make each lru list has the same 496 * number of elements. 497 */ 498 htab->map.max_entries = roundup(attr->max_entries, 499 num_possible_cpus()); 500 if (htab->map.max_entries < attr->max_entries) 501 htab->map.max_entries = rounddown(attr->max_entries, 502 num_possible_cpus()); 503 } 504 505 /* hash table size must be power of 2; roundup_pow_of_two() can overflow 506 * into UB on 32-bit arches, so check that first 507 */ 508 err = -E2BIG; 509 if (htab->map.max_entries > 1UL << 31) 510 goto free_htab; 511 512 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 513 514 htab->elem_size = sizeof(struct htab_elem) + 515 round_up(htab->map.key_size, 8); 516 if (percpu) 517 htab->elem_size += sizeof(void *); 518 else 519 htab->elem_size += round_up(htab->map.value_size, 8); 520 521 /* check for u32 overflow */ 522 if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) 523 goto free_htab; 524 525 err = bpf_map_init_elem_count(&htab->map); 526 if (err) 527 goto free_htab; 528 529 err = -ENOMEM; 530 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 531 sizeof(struct bucket), 532 htab->map.numa_node); 533 if (!htab->buckets) 534 goto free_elem_count; 535 536 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 537 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 538 sizeof(int), 539 sizeof(int), 540 GFP_USER); 541 if (!htab->map_locked[i]) 542 goto free_map_locked; 543 } 544 545 if (htab->map.map_flags & BPF_F_ZERO_SEED) 546 htab->hashrnd = 0; 547 else 548 htab->hashrnd = get_random_u32(); 549 550 htab_init_buckets(htab); 551 552 /* compute_batch_value() computes batch value as num_online_cpus() * 2 553 * and __percpu_counter_compare() needs 554 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 555 * for percpu_counter to be faster than atomic_t. In practice the average bpf 556 * hash map size is 10k, which means that a system with 64 cpus will fill 557 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 558 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 559 * 10k - 8k > 32 _batch_ * 64 _cpus_ 560 * and __percpu_counter_compare() will still be fast. At that point hash map 561 * collisions will dominate its performance anyway. Assume that hash map filled 562 * to 50+% isn't going to be O(1) and use the following formula to choose 563 * between percpu_counter and atomic_t. 564 */ 565 #define PERCPU_COUNTER_BATCH 32 566 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 567 htab->use_percpu_counter = true; 568 569 if (htab->use_percpu_counter) { 570 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 571 if (err) 572 goto free_map_locked; 573 } 574 575 if (prealloc) { 576 err = prealloc_init(htab); 577 if (err) 578 goto free_map_locked; 579 580 if (!percpu && !lru) { 581 /* lru itself can remove the least used element, so 582 * there is no need for an extra elem during map_update. 583 */ 584 err = alloc_extra_elems(htab); 585 if (err) 586 goto free_prealloc; 587 } 588 } else { 589 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 590 if (err) 591 goto free_map_locked; 592 if (percpu) { 593 err = bpf_mem_alloc_init(&htab->pcpu_ma, 594 round_up(htab->map.value_size, 8), true); 595 if (err) 596 goto free_map_locked; 597 } 598 } 599 600 return &htab->map; 601 602 free_prealloc: 603 prealloc_destroy(htab); 604 free_map_locked: 605 if (htab->use_percpu_counter) 606 percpu_counter_destroy(&htab->pcount); 607 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 608 free_percpu(htab->map_locked[i]); 609 bpf_map_area_free(htab->buckets); 610 bpf_mem_alloc_destroy(&htab->pcpu_ma); 611 bpf_mem_alloc_destroy(&htab->ma); 612 free_elem_count: 613 bpf_map_free_elem_count(&htab->map); 614 free_htab: 615 lockdep_unregister_key(&htab->lockdep_key); 616 bpf_map_area_free(htab); 617 return ERR_PTR(err); 618 } 619 620 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 621 { 622 if (likely(key_len % 4 == 0)) 623 return jhash2(key, key_len / 4, hashrnd); 624 return jhash(key, key_len, hashrnd); 625 } 626 627 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 628 { 629 return &htab->buckets[hash & (htab->n_buckets - 1)]; 630 } 631 632 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 633 { 634 return &__select_bucket(htab, hash)->head; 635 } 636 637 /* this lookup function can only be called with bucket lock taken */ 638 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 639 void *key, u32 key_size) 640 { 641 struct hlist_nulls_node *n; 642 struct htab_elem *l; 643 644 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 645 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 646 return l; 647 648 return NULL; 649 } 650 651 /* can be called without bucket lock. it will repeat the loop in 652 * the unlikely event when elements moved from one bucket into another 653 * while link list is being walked 654 */ 655 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 656 u32 hash, void *key, 657 u32 key_size, u32 n_buckets) 658 { 659 struct hlist_nulls_node *n; 660 struct htab_elem *l; 661 662 again: 663 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 664 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 665 return l; 666 667 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 668 goto again; 669 670 return NULL; 671 } 672 673 /* Called from syscall or from eBPF program directly, so 674 * arguments have to match bpf_map_lookup_elem() exactly. 675 * The return value is adjusted by BPF instructions 676 * in htab_map_gen_lookup(). 677 */ 678 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 679 { 680 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 681 struct hlist_nulls_head *head; 682 struct htab_elem *l; 683 u32 hash, key_size; 684 685 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 686 !rcu_read_lock_bh_held()); 687 688 key_size = map->key_size; 689 690 hash = htab_map_hash(key, key_size, htab->hashrnd); 691 692 head = select_bucket(htab, hash); 693 694 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 695 696 return l; 697 } 698 699 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 700 { 701 struct htab_elem *l = __htab_map_lookup_elem(map, key); 702 703 if (l) 704 return l->key + round_up(map->key_size, 8); 705 706 return NULL; 707 } 708 709 /* inline bpf_map_lookup_elem() call. 710 * Instead of: 711 * bpf_prog 712 * bpf_map_lookup_elem 713 * map->ops->map_lookup_elem 714 * htab_map_lookup_elem 715 * __htab_map_lookup_elem 716 * do: 717 * bpf_prog 718 * __htab_map_lookup_elem 719 */ 720 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 721 { 722 struct bpf_insn *insn = insn_buf; 723 const int ret = BPF_REG_0; 724 725 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 726 (void *(*)(struct bpf_map *map, void *key))NULL)); 727 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 728 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 729 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 730 offsetof(struct htab_elem, key) + 731 round_up(map->key_size, 8)); 732 return insn - insn_buf; 733 } 734 735 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 736 void *key, const bool mark) 737 { 738 struct htab_elem *l = __htab_map_lookup_elem(map, key); 739 740 if (l) { 741 if (mark) 742 bpf_lru_node_set_ref(&l->lru_node); 743 return l->key + round_up(map->key_size, 8); 744 } 745 746 return NULL; 747 } 748 749 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 750 { 751 return __htab_lru_map_lookup_elem(map, key, true); 752 } 753 754 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 755 { 756 return __htab_lru_map_lookup_elem(map, key, false); 757 } 758 759 static int htab_lru_map_gen_lookup(struct bpf_map *map, 760 struct bpf_insn *insn_buf) 761 { 762 struct bpf_insn *insn = insn_buf; 763 const int ret = BPF_REG_0; 764 const int ref_reg = BPF_REG_1; 765 766 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 767 (void *(*)(struct bpf_map *map, void *key))NULL)); 768 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 769 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 770 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 771 offsetof(struct htab_elem, lru_node) + 772 offsetof(struct bpf_lru_node, ref)); 773 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 774 *insn++ = BPF_ST_MEM(BPF_B, ret, 775 offsetof(struct htab_elem, lru_node) + 776 offsetof(struct bpf_lru_node, ref), 777 1); 778 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 779 offsetof(struct htab_elem, key) + 780 round_up(map->key_size, 8)); 781 return insn - insn_buf; 782 } 783 784 static void check_and_free_fields(struct bpf_htab *htab, 785 struct htab_elem *elem) 786 { 787 if (htab_is_percpu(htab)) { 788 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 789 int cpu; 790 791 for_each_possible_cpu(cpu) 792 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 793 } else { 794 void *map_value = elem->key + round_up(htab->map.key_size, 8); 795 796 bpf_obj_free_fields(htab->map.record, map_value); 797 } 798 } 799 800 /* It is called from the bpf_lru_list when the LRU needs to delete 801 * older elements from the htab. 802 */ 803 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 804 { 805 struct bpf_htab *htab = arg; 806 struct htab_elem *l = NULL, *tgt_l; 807 struct hlist_nulls_head *head; 808 struct hlist_nulls_node *n; 809 unsigned long flags; 810 struct bucket *b; 811 int ret; 812 813 tgt_l = container_of(node, struct htab_elem, lru_node); 814 b = __select_bucket(htab, tgt_l->hash); 815 head = &b->head; 816 817 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 818 if (ret) 819 return false; 820 821 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 822 if (l == tgt_l) { 823 hlist_nulls_del_rcu(&l->hash_node); 824 check_and_free_fields(htab, l); 825 bpf_map_dec_elem_count(&htab->map); 826 break; 827 } 828 829 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 830 831 return l == tgt_l; 832 } 833 834 /* Called from syscall */ 835 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 836 { 837 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 838 struct hlist_nulls_head *head; 839 struct htab_elem *l, *next_l; 840 u32 hash, key_size; 841 int i = 0; 842 843 WARN_ON_ONCE(!rcu_read_lock_held()); 844 845 key_size = map->key_size; 846 847 if (!key) 848 goto find_first_elem; 849 850 hash = htab_map_hash(key, key_size, htab->hashrnd); 851 852 head = select_bucket(htab, hash); 853 854 /* lookup the key */ 855 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 856 857 if (!l) 858 goto find_first_elem; 859 860 /* key was found, get next key in the same bucket */ 861 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 862 struct htab_elem, hash_node); 863 864 if (next_l) { 865 /* if next elem in this hash list is non-zero, just return it */ 866 memcpy(next_key, next_l->key, key_size); 867 return 0; 868 } 869 870 /* no more elements in this hash list, go to the next bucket */ 871 i = hash & (htab->n_buckets - 1); 872 i++; 873 874 find_first_elem: 875 /* iterate over buckets */ 876 for (; i < htab->n_buckets; i++) { 877 head = select_bucket(htab, i); 878 879 /* pick first element in the bucket */ 880 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 881 struct htab_elem, hash_node); 882 if (next_l) { 883 /* if it's not empty, just return it */ 884 memcpy(next_key, next_l->key, key_size); 885 return 0; 886 } 887 } 888 889 /* iterated over all buckets and all elements */ 890 return -ENOENT; 891 } 892 893 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 894 { 895 check_and_free_fields(htab, l); 896 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 897 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 898 bpf_mem_cache_free(&htab->ma, l); 899 } 900 901 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 902 { 903 struct bpf_map *map = &htab->map; 904 void *ptr; 905 906 if (map->ops->map_fd_put_ptr) { 907 ptr = fd_htab_map_get_ptr(map, l); 908 map->ops->map_fd_put_ptr(map, ptr, true); 909 } 910 } 911 912 static bool is_map_full(struct bpf_htab *htab) 913 { 914 if (htab->use_percpu_counter) 915 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 916 PERCPU_COUNTER_BATCH) >= 0; 917 return atomic_read(&htab->count) >= htab->map.max_entries; 918 } 919 920 static void inc_elem_count(struct bpf_htab *htab) 921 { 922 bpf_map_inc_elem_count(&htab->map); 923 924 if (htab->use_percpu_counter) 925 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 926 else 927 atomic_inc(&htab->count); 928 } 929 930 static void dec_elem_count(struct bpf_htab *htab) 931 { 932 bpf_map_dec_elem_count(&htab->map); 933 934 if (htab->use_percpu_counter) 935 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 936 else 937 atomic_dec(&htab->count); 938 } 939 940 941 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 942 { 943 htab_put_fd_value(htab, l); 944 945 if (htab_is_prealloc(htab)) { 946 bpf_map_dec_elem_count(&htab->map); 947 check_and_free_fields(htab, l); 948 __pcpu_freelist_push(&htab->freelist, &l->fnode); 949 } else { 950 dec_elem_count(htab); 951 htab_elem_free(htab, l); 952 } 953 } 954 955 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 956 void *value, bool onallcpus) 957 { 958 if (!onallcpus) { 959 /* copy true value_size bytes */ 960 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 961 } else { 962 u32 size = round_up(htab->map.value_size, 8); 963 int off = 0, cpu; 964 965 for_each_possible_cpu(cpu) { 966 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 967 off += size; 968 } 969 } 970 } 971 972 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 973 void *value, bool onallcpus) 974 { 975 /* When not setting the initial value on all cpus, zero-fill element 976 * values for other cpus. Otherwise, bpf program has no way to ensure 977 * known initial values for cpus other than current one 978 * (onallcpus=false always when coming from bpf prog). 979 */ 980 if (!onallcpus) { 981 int current_cpu = raw_smp_processor_id(); 982 int cpu; 983 984 for_each_possible_cpu(cpu) { 985 if (cpu == current_cpu) 986 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 987 else /* Since elem is preallocated, we cannot touch special fields */ 988 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 989 } 990 } else { 991 pcpu_copy_value(htab, pptr, value, onallcpus); 992 } 993 } 994 995 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 996 { 997 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 998 BITS_PER_LONG == 64; 999 } 1000 1001 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 1002 void *value, u32 key_size, u32 hash, 1003 bool percpu, bool onallcpus, 1004 struct htab_elem *old_elem) 1005 { 1006 u32 size = htab->map.value_size; 1007 bool prealloc = htab_is_prealloc(htab); 1008 struct htab_elem *l_new, **pl_new; 1009 void __percpu *pptr; 1010 1011 if (prealloc) { 1012 if (old_elem) { 1013 /* if we're updating the existing element, 1014 * use per-cpu extra elems to avoid freelist_pop/push 1015 */ 1016 pl_new = this_cpu_ptr(htab->extra_elems); 1017 l_new = *pl_new; 1018 htab_put_fd_value(htab, old_elem); 1019 *pl_new = old_elem; 1020 } else { 1021 struct pcpu_freelist_node *l; 1022 1023 l = __pcpu_freelist_pop(&htab->freelist); 1024 if (!l) 1025 return ERR_PTR(-E2BIG); 1026 l_new = container_of(l, struct htab_elem, fnode); 1027 bpf_map_inc_elem_count(&htab->map); 1028 } 1029 } else { 1030 if (is_map_full(htab)) 1031 if (!old_elem) 1032 /* when map is full and update() is replacing 1033 * old element, it's ok to allocate, since 1034 * old element will be freed immediately. 1035 * Otherwise return an error 1036 */ 1037 return ERR_PTR(-E2BIG); 1038 inc_elem_count(htab); 1039 l_new = bpf_mem_cache_alloc(&htab->ma); 1040 if (!l_new) { 1041 l_new = ERR_PTR(-ENOMEM); 1042 goto dec_count; 1043 } 1044 } 1045 1046 memcpy(l_new->key, key, key_size); 1047 if (percpu) { 1048 if (prealloc) { 1049 pptr = htab_elem_get_ptr(l_new, key_size); 1050 } else { 1051 /* alloc_percpu zero-fills */ 1052 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1053 if (!pptr) { 1054 bpf_mem_cache_free(&htab->ma, l_new); 1055 l_new = ERR_PTR(-ENOMEM); 1056 goto dec_count; 1057 } 1058 l_new->ptr_to_pptr = pptr; 1059 pptr = *(void **)pptr; 1060 } 1061 1062 pcpu_init_value(htab, pptr, value, onallcpus); 1063 1064 if (!prealloc) 1065 htab_elem_set_ptr(l_new, key_size, pptr); 1066 } else if (fd_htab_map_needs_adjust(htab)) { 1067 size = round_up(size, 8); 1068 memcpy(l_new->key + round_up(key_size, 8), value, size); 1069 } else { 1070 copy_map_value(&htab->map, 1071 l_new->key + round_up(key_size, 8), 1072 value); 1073 } 1074 1075 l_new->hash = hash; 1076 return l_new; 1077 dec_count: 1078 dec_elem_count(htab); 1079 return l_new; 1080 } 1081 1082 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1083 u64 map_flags) 1084 { 1085 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1086 /* elem already exists */ 1087 return -EEXIST; 1088 1089 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1090 /* elem doesn't exist, cannot update it */ 1091 return -ENOENT; 1092 1093 return 0; 1094 } 1095 1096 /* Called from syscall or from eBPF program */ 1097 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1098 u64 map_flags) 1099 { 1100 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1101 struct htab_elem *l_new = NULL, *l_old; 1102 struct hlist_nulls_head *head; 1103 unsigned long flags; 1104 struct bucket *b; 1105 u32 key_size, hash; 1106 int ret; 1107 1108 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1109 /* unknown flags */ 1110 return -EINVAL; 1111 1112 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1113 !rcu_read_lock_bh_held()); 1114 1115 key_size = map->key_size; 1116 1117 hash = htab_map_hash(key, key_size, htab->hashrnd); 1118 1119 b = __select_bucket(htab, hash); 1120 head = &b->head; 1121 1122 if (unlikely(map_flags & BPF_F_LOCK)) { 1123 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1124 return -EINVAL; 1125 /* find an element without taking the bucket lock */ 1126 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1127 htab->n_buckets); 1128 ret = check_flags(htab, l_old, map_flags); 1129 if (ret) 1130 return ret; 1131 if (l_old) { 1132 /* grab the element lock and update value in place */ 1133 copy_map_value_locked(map, 1134 l_old->key + round_up(key_size, 8), 1135 value, false); 1136 return 0; 1137 } 1138 /* fall through, grab the bucket lock and lookup again. 1139 * 99.9% chance that the element won't be found, 1140 * but second lookup under lock has to be done. 1141 */ 1142 } 1143 1144 ret = htab_lock_bucket(htab, b, hash, &flags); 1145 if (ret) 1146 return ret; 1147 1148 l_old = lookup_elem_raw(head, hash, key, key_size); 1149 1150 ret = check_flags(htab, l_old, map_flags); 1151 if (ret) 1152 goto err; 1153 1154 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1155 /* first lookup without the bucket lock didn't find the element, 1156 * but second lookup with the bucket lock found it. 1157 * This case is highly unlikely, but has to be dealt with: 1158 * grab the element lock in addition to the bucket lock 1159 * and update element in place 1160 */ 1161 copy_map_value_locked(map, 1162 l_old->key + round_up(key_size, 8), 1163 value, false); 1164 ret = 0; 1165 goto err; 1166 } 1167 1168 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1169 l_old); 1170 if (IS_ERR(l_new)) { 1171 /* all pre-allocated elements are in use or memory exhausted */ 1172 ret = PTR_ERR(l_new); 1173 goto err; 1174 } 1175 1176 /* add new element to the head of the list, so that 1177 * concurrent search will find it before old elem 1178 */ 1179 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1180 if (l_old) { 1181 hlist_nulls_del_rcu(&l_old->hash_node); 1182 if (!htab_is_prealloc(htab)) 1183 free_htab_elem(htab, l_old); 1184 else 1185 check_and_free_fields(htab, l_old); 1186 } 1187 ret = 0; 1188 err: 1189 htab_unlock_bucket(htab, b, hash, flags); 1190 return ret; 1191 } 1192 1193 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1194 { 1195 check_and_free_fields(htab, elem); 1196 bpf_map_dec_elem_count(&htab->map); 1197 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1198 } 1199 1200 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1201 u64 map_flags) 1202 { 1203 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1204 struct htab_elem *l_new, *l_old = NULL; 1205 struct hlist_nulls_head *head; 1206 unsigned long flags; 1207 struct bucket *b; 1208 u32 key_size, hash; 1209 int ret; 1210 1211 if (unlikely(map_flags > BPF_EXIST)) 1212 /* unknown flags */ 1213 return -EINVAL; 1214 1215 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1216 !rcu_read_lock_bh_held()); 1217 1218 key_size = map->key_size; 1219 1220 hash = htab_map_hash(key, key_size, htab->hashrnd); 1221 1222 b = __select_bucket(htab, hash); 1223 head = &b->head; 1224 1225 /* For LRU, we need to alloc before taking bucket's 1226 * spinlock because getting free nodes from LRU may need 1227 * to remove older elements from htab and this removal 1228 * operation will need a bucket lock. 1229 */ 1230 l_new = prealloc_lru_pop(htab, key, hash); 1231 if (!l_new) 1232 return -ENOMEM; 1233 copy_map_value(&htab->map, 1234 l_new->key + round_up(map->key_size, 8), value); 1235 1236 ret = htab_lock_bucket(htab, b, hash, &flags); 1237 if (ret) 1238 goto err_lock_bucket; 1239 1240 l_old = lookup_elem_raw(head, hash, key, key_size); 1241 1242 ret = check_flags(htab, l_old, map_flags); 1243 if (ret) 1244 goto err; 1245 1246 /* add new element to the head of the list, so that 1247 * concurrent search will find it before old elem 1248 */ 1249 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1250 if (l_old) { 1251 bpf_lru_node_set_ref(&l_new->lru_node); 1252 hlist_nulls_del_rcu(&l_old->hash_node); 1253 } 1254 ret = 0; 1255 1256 err: 1257 htab_unlock_bucket(htab, b, hash, flags); 1258 1259 err_lock_bucket: 1260 if (ret) 1261 htab_lru_push_free(htab, l_new); 1262 else if (l_old) 1263 htab_lru_push_free(htab, l_old); 1264 1265 return ret; 1266 } 1267 1268 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1269 void *value, u64 map_flags, 1270 bool onallcpus) 1271 { 1272 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1273 struct htab_elem *l_new = NULL, *l_old; 1274 struct hlist_nulls_head *head; 1275 unsigned long flags; 1276 struct bucket *b; 1277 u32 key_size, hash; 1278 int ret; 1279 1280 if (unlikely(map_flags > BPF_EXIST)) 1281 /* unknown flags */ 1282 return -EINVAL; 1283 1284 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1285 !rcu_read_lock_bh_held()); 1286 1287 key_size = map->key_size; 1288 1289 hash = htab_map_hash(key, key_size, htab->hashrnd); 1290 1291 b = __select_bucket(htab, hash); 1292 head = &b->head; 1293 1294 ret = htab_lock_bucket(htab, b, hash, &flags); 1295 if (ret) 1296 return ret; 1297 1298 l_old = lookup_elem_raw(head, hash, key, key_size); 1299 1300 ret = check_flags(htab, l_old, map_flags); 1301 if (ret) 1302 goto err; 1303 1304 if (l_old) { 1305 /* per-cpu hash map can update value in-place */ 1306 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1307 value, onallcpus); 1308 } else { 1309 l_new = alloc_htab_elem(htab, key, value, key_size, 1310 hash, true, onallcpus, NULL); 1311 if (IS_ERR(l_new)) { 1312 ret = PTR_ERR(l_new); 1313 goto err; 1314 } 1315 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1316 } 1317 ret = 0; 1318 err: 1319 htab_unlock_bucket(htab, b, hash, flags); 1320 return ret; 1321 } 1322 1323 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1324 void *value, u64 map_flags, 1325 bool onallcpus) 1326 { 1327 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1328 struct htab_elem *l_new = NULL, *l_old; 1329 struct hlist_nulls_head *head; 1330 unsigned long flags; 1331 struct bucket *b; 1332 u32 key_size, hash; 1333 int ret; 1334 1335 if (unlikely(map_flags > BPF_EXIST)) 1336 /* unknown flags */ 1337 return -EINVAL; 1338 1339 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1340 !rcu_read_lock_bh_held()); 1341 1342 key_size = map->key_size; 1343 1344 hash = htab_map_hash(key, key_size, htab->hashrnd); 1345 1346 b = __select_bucket(htab, hash); 1347 head = &b->head; 1348 1349 /* For LRU, we need to alloc before taking bucket's 1350 * spinlock because LRU's elem alloc may need 1351 * to remove older elem from htab and this removal 1352 * operation will need a bucket lock. 1353 */ 1354 if (map_flags != BPF_EXIST) { 1355 l_new = prealloc_lru_pop(htab, key, hash); 1356 if (!l_new) 1357 return -ENOMEM; 1358 } 1359 1360 ret = htab_lock_bucket(htab, b, hash, &flags); 1361 if (ret) 1362 goto err_lock_bucket; 1363 1364 l_old = lookup_elem_raw(head, hash, key, key_size); 1365 1366 ret = check_flags(htab, l_old, map_flags); 1367 if (ret) 1368 goto err; 1369 1370 if (l_old) { 1371 bpf_lru_node_set_ref(&l_old->lru_node); 1372 1373 /* per-cpu hash map can update value in-place */ 1374 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1375 value, onallcpus); 1376 } else { 1377 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1378 value, onallcpus); 1379 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1380 l_new = NULL; 1381 } 1382 ret = 0; 1383 err: 1384 htab_unlock_bucket(htab, b, hash, flags); 1385 err_lock_bucket: 1386 if (l_new) { 1387 bpf_map_dec_elem_count(&htab->map); 1388 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1389 } 1390 return ret; 1391 } 1392 1393 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1394 void *value, u64 map_flags) 1395 { 1396 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1397 } 1398 1399 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1400 void *value, u64 map_flags) 1401 { 1402 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1403 false); 1404 } 1405 1406 /* Called from syscall or from eBPF program */ 1407 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1408 { 1409 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1410 struct hlist_nulls_head *head; 1411 struct bucket *b; 1412 struct htab_elem *l; 1413 unsigned long flags; 1414 u32 hash, key_size; 1415 int ret; 1416 1417 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1418 !rcu_read_lock_bh_held()); 1419 1420 key_size = map->key_size; 1421 1422 hash = htab_map_hash(key, key_size, htab->hashrnd); 1423 b = __select_bucket(htab, hash); 1424 head = &b->head; 1425 1426 ret = htab_lock_bucket(htab, b, hash, &flags); 1427 if (ret) 1428 return ret; 1429 1430 l = lookup_elem_raw(head, hash, key, key_size); 1431 1432 if (l) { 1433 hlist_nulls_del_rcu(&l->hash_node); 1434 free_htab_elem(htab, l); 1435 } else { 1436 ret = -ENOENT; 1437 } 1438 1439 htab_unlock_bucket(htab, b, hash, flags); 1440 return ret; 1441 } 1442 1443 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1444 { 1445 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1446 struct hlist_nulls_head *head; 1447 struct bucket *b; 1448 struct htab_elem *l; 1449 unsigned long flags; 1450 u32 hash, key_size; 1451 int ret; 1452 1453 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1454 !rcu_read_lock_bh_held()); 1455 1456 key_size = map->key_size; 1457 1458 hash = htab_map_hash(key, key_size, htab->hashrnd); 1459 b = __select_bucket(htab, hash); 1460 head = &b->head; 1461 1462 ret = htab_lock_bucket(htab, b, hash, &flags); 1463 if (ret) 1464 return ret; 1465 1466 l = lookup_elem_raw(head, hash, key, key_size); 1467 1468 if (l) 1469 hlist_nulls_del_rcu(&l->hash_node); 1470 else 1471 ret = -ENOENT; 1472 1473 htab_unlock_bucket(htab, b, hash, flags); 1474 if (l) 1475 htab_lru_push_free(htab, l); 1476 return ret; 1477 } 1478 1479 static void delete_all_elements(struct bpf_htab *htab) 1480 { 1481 int i; 1482 1483 /* It's called from a worker thread, so disable migration here, 1484 * since bpf_mem_cache_free() relies on that. 1485 */ 1486 migrate_disable(); 1487 for (i = 0; i < htab->n_buckets; i++) { 1488 struct hlist_nulls_head *head = select_bucket(htab, i); 1489 struct hlist_nulls_node *n; 1490 struct htab_elem *l; 1491 1492 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1493 hlist_nulls_del_rcu(&l->hash_node); 1494 htab_elem_free(htab, l); 1495 } 1496 cond_resched(); 1497 } 1498 migrate_enable(); 1499 } 1500 1501 static void htab_free_malloced_timers_and_wq(struct bpf_htab *htab) 1502 { 1503 int i; 1504 1505 rcu_read_lock(); 1506 for (i = 0; i < htab->n_buckets; i++) { 1507 struct hlist_nulls_head *head = select_bucket(htab, i); 1508 struct hlist_nulls_node *n; 1509 struct htab_elem *l; 1510 1511 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1512 /* We only free timer on uref dropping to zero */ 1513 if (btf_record_has_field(htab->map.record, BPF_TIMER)) 1514 bpf_obj_free_timer(htab->map.record, 1515 l->key + round_up(htab->map.key_size, 8)); 1516 if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) 1517 bpf_obj_free_workqueue(htab->map.record, 1518 l->key + round_up(htab->map.key_size, 8)); 1519 } 1520 cond_resched_rcu(); 1521 } 1522 rcu_read_unlock(); 1523 } 1524 1525 static void htab_map_free_timers_and_wq(struct bpf_map *map) 1526 { 1527 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1528 1529 /* We only free timer and workqueue on uref dropping to zero */ 1530 if (btf_record_has_field(htab->map.record, BPF_TIMER | BPF_WORKQUEUE)) { 1531 if (!htab_is_prealloc(htab)) 1532 htab_free_malloced_timers_and_wq(htab); 1533 else 1534 htab_free_prealloced_timers_and_wq(htab); 1535 } 1536 } 1537 1538 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1539 static void htab_map_free(struct bpf_map *map) 1540 { 1541 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1542 int i; 1543 1544 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1545 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1546 * There is no need to synchronize_rcu() here to protect map elements. 1547 */ 1548 1549 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1550 * underneath and is responsible for waiting for callbacks to finish 1551 * during bpf_mem_alloc_destroy(). 1552 */ 1553 if (!htab_is_prealloc(htab)) { 1554 delete_all_elements(htab); 1555 } else { 1556 htab_free_prealloced_fields(htab); 1557 prealloc_destroy(htab); 1558 } 1559 1560 bpf_map_free_elem_count(map); 1561 free_percpu(htab->extra_elems); 1562 bpf_map_area_free(htab->buckets); 1563 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1564 bpf_mem_alloc_destroy(&htab->ma); 1565 if (htab->use_percpu_counter) 1566 percpu_counter_destroy(&htab->pcount); 1567 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1568 free_percpu(htab->map_locked[i]); 1569 lockdep_unregister_key(&htab->lockdep_key); 1570 bpf_map_area_free(htab); 1571 } 1572 1573 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1574 struct seq_file *m) 1575 { 1576 void *value; 1577 1578 rcu_read_lock(); 1579 1580 value = htab_map_lookup_elem(map, key); 1581 if (!value) { 1582 rcu_read_unlock(); 1583 return; 1584 } 1585 1586 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1587 seq_puts(m, ": "); 1588 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1589 seq_puts(m, "\n"); 1590 1591 rcu_read_unlock(); 1592 } 1593 1594 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1595 void *value, bool is_lru_map, 1596 bool is_percpu, u64 flags) 1597 { 1598 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1599 struct hlist_nulls_head *head; 1600 unsigned long bflags; 1601 struct htab_elem *l; 1602 u32 hash, key_size; 1603 struct bucket *b; 1604 int ret; 1605 1606 key_size = map->key_size; 1607 1608 hash = htab_map_hash(key, key_size, htab->hashrnd); 1609 b = __select_bucket(htab, hash); 1610 head = &b->head; 1611 1612 ret = htab_lock_bucket(htab, b, hash, &bflags); 1613 if (ret) 1614 return ret; 1615 1616 l = lookup_elem_raw(head, hash, key, key_size); 1617 if (!l) { 1618 ret = -ENOENT; 1619 } else { 1620 if (is_percpu) { 1621 u32 roundup_value_size = round_up(map->value_size, 8); 1622 void __percpu *pptr; 1623 int off = 0, cpu; 1624 1625 pptr = htab_elem_get_ptr(l, key_size); 1626 for_each_possible_cpu(cpu) { 1627 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1628 check_and_init_map_value(&htab->map, value + off); 1629 off += roundup_value_size; 1630 } 1631 } else { 1632 u32 roundup_key_size = round_up(map->key_size, 8); 1633 1634 if (flags & BPF_F_LOCK) 1635 copy_map_value_locked(map, value, l->key + 1636 roundup_key_size, 1637 true); 1638 else 1639 copy_map_value(map, value, l->key + 1640 roundup_key_size); 1641 /* Zeroing special fields in the temp buffer */ 1642 check_and_init_map_value(map, value); 1643 } 1644 1645 hlist_nulls_del_rcu(&l->hash_node); 1646 if (!is_lru_map) 1647 free_htab_elem(htab, l); 1648 } 1649 1650 htab_unlock_bucket(htab, b, hash, bflags); 1651 1652 if (is_lru_map && l) 1653 htab_lru_push_free(htab, l); 1654 1655 return ret; 1656 } 1657 1658 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1659 void *value, u64 flags) 1660 { 1661 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1662 flags); 1663 } 1664 1665 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1666 void *key, void *value, 1667 u64 flags) 1668 { 1669 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1670 flags); 1671 } 1672 1673 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1674 void *value, u64 flags) 1675 { 1676 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1677 flags); 1678 } 1679 1680 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1681 void *key, void *value, 1682 u64 flags) 1683 { 1684 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1685 flags); 1686 } 1687 1688 static int 1689 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1690 const union bpf_attr *attr, 1691 union bpf_attr __user *uattr, 1692 bool do_delete, bool is_lru_map, 1693 bool is_percpu) 1694 { 1695 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1696 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1697 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1698 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1699 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1700 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1701 u32 batch, max_count, size, bucket_size, map_id; 1702 struct htab_elem *node_to_free = NULL; 1703 u64 elem_map_flags, map_flags; 1704 struct hlist_nulls_head *head; 1705 struct hlist_nulls_node *n; 1706 unsigned long flags = 0; 1707 bool locked = false; 1708 struct htab_elem *l; 1709 struct bucket *b; 1710 int ret = 0; 1711 1712 elem_map_flags = attr->batch.elem_flags; 1713 if ((elem_map_flags & ~BPF_F_LOCK) || 1714 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1715 return -EINVAL; 1716 1717 map_flags = attr->batch.flags; 1718 if (map_flags) 1719 return -EINVAL; 1720 1721 max_count = attr->batch.count; 1722 if (!max_count) 1723 return 0; 1724 1725 if (put_user(0, &uattr->batch.count)) 1726 return -EFAULT; 1727 1728 batch = 0; 1729 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1730 return -EFAULT; 1731 1732 if (batch >= htab->n_buckets) 1733 return -ENOENT; 1734 1735 key_size = htab->map.key_size; 1736 roundup_key_size = round_up(htab->map.key_size, 8); 1737 value_size = htab->map.value_size; 1738 size = round_up(value_size, 8); 1739 if (is_percpu) 1740 value_size = size * num_possible_cpus(); 1741 total = 0; 1742 /* while experimenting with hash tables with sizes ranging from 10 to 1743 * 1000, it was observed that a bucket can have up to 5 entries. 1744 */ 1745 bucket_size = 5; 1746 1747 alloc: 1748 /* We cannot do copy_from_user or copy_to_user inside 1749 * the rcu_read_lock. Allocate enough space here. 1750 */ 1751 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1752 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1753 if (!keys || !values) { 1754 ret = -ENOMEM; 1755 goto after_loop; 1756 } 1757 1758 again: 1759 bpf_disable_instrumentation(); 1760 rcu_read_lock(); 1761 again_nocopy: 1762 dst_key = keys; 1763 dst_val = values; 1764 b = &htab->buckets[batch]; 1765 head = &b->head; 1766 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1767 if (locked) { 1768 ret = htab_lock_bucket(htab, b, batch, &flags); 1769 if (ret) { 1770 rcu_read_unlock(); 1771 bpf_enable_instrumentation(); 1772 goto after_loop; 1773 } 1774 } 1775 1776 bucket_cnt = 0; 1777 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1778 bucket_cnt++; 1779 1780 if (bucket_cnt && !locked) { 1781 locked = true; 1782 goto again_nocopy; 1783 } 1784 1785 if (bucket_cnt > (max_count - total)) { 1786 if (total == 0) 1787 ret = -ENOSPC; 1788 /* Note that since bucket_cnt > 0 here, it is implicit 1789 * that the locked was grabbed, so release it. 1790 */ 1791 htab_unlock_bucket(htab, b, batch, flags); 1792 rcu_read_unlock(); 1793 bpf_enable_instrumentation(); 1794 goto after_loop; 1795 } 1796 1797 if (bucket_cnt > bucket_size) { 1798 bucket_size = bucket_cnt; 1799 /* Note that since bucket_cnt > 0 here, it is implicit 1800 * that the locked was grabbed, so release it. 1801 */ 1802 htab_unlock_bucket(htab, b, batch, flags); 1803 rcu_read_unlock(); 1804 bpf_enable_instrumentation(); 1805 kvfree(keys); 1806 kvfree(values); 1807 goto alloc; 1808 } 1809 1810 /* Next block is only safe to run if you have grabbed the lock */ 1811 if (!locked) 1812 goto next_batch; 1813 1814 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1815 memcpy(dst_key, l->key, key_size); 1816 1817 if (is_percpu) { 1818 int off = 0, cpu; 1819 void __percpu *pptr; 1820 1821 pptr = htab_elem_get_ptr(l, map->key_size); 1822 for_each_possible_cpu(cpu) { 1823 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1824 check_and_init_map_value(&htab->map, dst_val + off); 1825 off += size; 1826 } 1827 } else { 1828 value = l->key + roundup_key_size; 1829 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1830 struct bpf_map **inner_map = value; 1831 1832 /* Actual value is the id of the inner map */ 1833 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1834 value = &map_id; 1835 } 1836 1837 if (elem_map_flags & BPF_F_LOCK) 1838 copy_map_value_locked(map, dst_val, value, 1839 true); 1840 else 1841 copy_map_value(map, dst_val, value); 1842 /* Zeroing special fields in the temp buffer */ 1843 check_and_init_map_value(map, dst_val); 1844 } 1845 if (do_delete) { 1846 hlist_nulls_del_rcu(&l->hash_node); 1847 1848 /* bpf_lru_push_free() will acquire lru_lock, which 1849 * may cause deadlock. See comments in function 1850 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1851 * after releasing the bucket lock. 1852 */ 1853 if (is_lru_map) { 1854 l->batch_flink = node_to_free; 1855 node_to_free = l; 1856 } else { 1857 free_htab_elem(htab, l); 1858 } 1859 } 1860 dst_key += key_size; 1861 dst_val += value_size; 1862 } 1863 1864 htab_unlock_bucket(htab, b, batch, flags); 1865 locked = false; 1866 1867 while (node_to_free) { 1868 l = node_to_free; 1869 node_to_free = node_to_free->batch_flink; 1870 htab_lru_push_free(htab, l); 1871 } 1872 1873 next_batch: 1874 /* If we are not copying data, we can go to next bucket and avoid 1875 * unlocking the rcu. 1876 */ 1877 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1878 batch++; 1879 goto again_nocopy; 1880 } 1881 1882 rcu_read_unlock(); 1883 bpf_enable_instrumentation(); 1884 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1885 key_size * bucket_cnt) || 1886 copy_to_user(uvalues + total * value_size, values, 1887 value_size * bucket_cnt))) { 1888 ret = -EFAULT; 1889 goto after_loop; 1890 } 1891 1892 total += bucket_cnt; 1893 batch++; 1894 if (batch >= htab->n_buckets) { 1895 ret = -ENOENT; 1896 goto after_loop; 1897 } 1898 goto again; 1899 1900 after_loop: 1901 if (ret == -EFAULT) 1902 goto out; 1903 1904 /* copy # of entries and next batch */ 1905 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1906 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1907 put_user(total, &uattr->batch.count)) 1908 ret = -EFAULT; 1909 1910 out: 1911 kvfree(keys); 1912 kvfree(values); 1913 return ret; 1914 } 1915 1916 static int 1917 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1918 union bpf_attr __user *uattr) 1919 { 1920 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1921 false, true); 1922 } 1923 1924 static int 1925 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1926 const union bpf_attr *attr, 1927 union bpf_attr __user *uattr) 1928 { 1929 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1930 false, true); 1931 } 1932 1933 static int 1934 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1935 union bpf_attr __user *uattr) 1936 { 1937 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1938 false, false); 1939 } 1940 1941 static int 1942 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1943 const union bpf_attr *attr, 1944 union bpf_attr __user *uattr) 1945 { 1946 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1947 false, false); 1948 } 1949 1950 static int 1951 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1952 const union bpf_attr *attr, 1953 union bpf_attr __user *uattr) 1954 { 1955 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1956 true, true); 1957 } 1958 1959 static int 1960 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1961 const union bpf_attr *attr, 1962 union bpf_attr __user *uattr) 1963 { 1964 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1965 true, true); 1966 } 1967 1968 static int 1969 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1970 union bpf_attr __user *uattr) 1971 { 1972 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1973 true, false); 1974 } 1975 1976 static int 1977 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1978 const union bpf_attr *attr, 1979 union bpf_attr __user *uattr) 1980 { 1981 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1982 true, false); 1983 } 1984 1985 struct bpf_iter_seq_hash_map_info { 1986 struct bpf_map *map; 1987 struct bpf_htab *htab; 1988 void *percpu_value_buf; // non-zero means percpu hash 1989 u32 bucket_id; 1990 u32 skip_elems; 1991 }; 1992 1993 static struct htab_elem * 1994 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1995 struct htab_elem *prev_elem) 1996 { 1997 const struct bpf_htab *htab = info->htab; 1998 u32 skip_elems = info->skip_elems; 1999 u32 bucket_id = info->bucket_id; 2000 struct hlist_nulls_head *head; 2001 struct hlist_nulls_node *n; 2002 struct htab_elem *elem; 2003 struct bucket *b; 2004 u32 i, count; 2005 2006 if (bucket_id >= htab->n_buckets) 2007 return NULL; 2008 2009 /* try to find next elem in the same bucket */ 2010 if (prev_elem) { 2011 /* no update/deletion on this bucket, prev_elem should be still valid 2012 * and we won't skip elements. 2013 */ 2014 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 2015 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 2016 if (elem) 2017 return elem; 2018 2019 /* not found, unlock and go to the next bucket */ 2020 b = &htab->buckets[bucket_id++]; 2021 rcu_read_unlock(); 2022 skip_elems = 0; 2023 } 2024 2025 for (i = bucket_id; i < htab->n_buckets; i++) { 2026 b = &htab->buckets[i]; 2027 rcu_read_lock(); 2028 2029 count = 0; 2030 head = &b->head; 2031 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2032 if (count >= skip_elems) { 2033 info->bucket_id = i; 2034 info->skip_elems = count; 2035 return elem; 2036 } 2037 count++; 2038 } 2039 2040 rcu_read_unlock(); 2041 skip_elems = 0; 2042 } 2043 2044 info->bucket_id = i; 2045 info->skip_elems = 0; 2046 return NULL; 2047 } 2048 2049 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2050 { 2051 struct bpf_iter_seq_hash_map_info *info = seq->private; 2052 struct htab_elem *elem; 2053 2054 elem = bpf_hash_map_seq_find_next(info, NULL); 2055 if (!elem) 2056 return NULL; 2057 2058 if (*pos == 0) 2059 ++*pos; 2060 return elem; 2061 } 2062 2063 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2064 { 2065 struct bpf_iter_seq_hash_map_info *info = seq->private; 2066 2067 ++*pos; 2068 ++info->skip_elems; 2069 return bpf_hash_map_seq_find_next(info, v); 2070 } 2071 2072 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2073 { 2074 struct bpf_iter_seq_hash_map_info *info = seq->private; 2075 u32 roundup_key_size, roundup_value_size; 2076 struct bpf_iter__bpf_map_elem ctx = {}; 2077 struct bpf_map *map = info->map; 2078 struct bpf_iter_meta meta; 2079 int ret = 0, off = 0, cpu; 2080 struct bpf_prog *prog; 2081 void __percpu *pptr; 2082 2083 meta.seq = seq; 2084 prog = bpf_iter_get_info(&meta, elem == NULL); 2085 if (prog) { 2086 ctx.meta = &meta; 2087 ctx.map = info->map; 2088 if (elem) { 2089 roundup_key_size = round_up(map->key_size, 8); 2090 ctx.key = elem->key; 2091 if (!info->percpu_value_buf) { 2092 ctx.value = elem->key + roundup_key_size; 2093 } else { 2094 roundup_value_size = round_up(map->value_size, 8); 2095 pptr = htab_elem_get_ptr(elem, map->key_size); 2096 for_each_possible_cpu(cpu) { 2097 copy_map_value_long(map, info->percpu_value_buf + off, 2098 per_cpu_ptr(pptr, cpu)); 2099 check_and_init_map_value(map, info->percpu_value_buf + off); 2100 off += roundup_value_size; 2101 } 2102 ctx.value = info->percpu_value_buf; 2103 } 2104 } 2105 ret = bpf_iter_run_prog(prog, &ctx); 2106 } 2107 2108 return ret; 2109 } 2110 2111 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2112 { 2113 return __bpf_hash_map_seq_show(seq, v); 2114 } 2115 2116 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2117 { 2118 if (!v) 2119 (void)__bpf_hash_map_seq_show(seq, NULL); 2120 else 2121 rcu_read_unlock(); 2122 } 2123 2124 static int bpf_iter_init_hash_map(void *priv_data, 2125 struct bpf_iter_aux_info *aux) 2126 { 2127 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2128 struct bpf_map *map = aux->map; 2129 void *value_buf; 2130 u32 buf_size; 2131 2132 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2133 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2134 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2135 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2136 if (!value_buf) 2137 return -ENOMEM; 2138 2139 seq_info->percpu_value_buf = value_buf; 2140 } 2141 2142 bpf_map_inc_with_uref(map); 2143 seq_info->map = map; 2144 seq_info->htab = container_of(map, struct bpf_htab, map); 2145 return 0; 2146 } 2147 2148 static void bpf_iter_fini_hash_map(void *priv_data) 2149 { 2150 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2151 2152 bpf_map_put_with_uref(seq_info->map); 2153 kfree(seq_info->percpu_value_buf); 2154 } 2155 2156 static const struct seq_operations bpf_hash_map_seq_ops = { 2157 .start = bpf_hash_map_seq_start, 2158 .next = bpf_hash_map_seq_next, 2159 .stop = bpf_hash_map_seq_stop, 2160 .show = bpf_hash_map_seq_show, 2161 }; 2162 2163 static const struct bpf_iter_seq_info iter_seq_info = { 2164 .seq_ops = &bpf_hash_map_seq_ops, 2165 .init_seq_private = bpf_iter_init_hash_map, 2166 .fini_seq_private = bpf_iter_fini_hash_map, 2167 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2168 }; 2169 2170 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2171 void *callback_ctx, u64 flags) 2172 { 2173 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2174 struct hlist_nulls_head *head; 2175 struct hlist_nulls_node *n; 2176 struct htab_elem *elem; 2177 u32 roundup_key_size; 2178 int i, num_elems = 0; 2179 void __percpu *pptr; 2180 struct bucket *b; 2181 void *key, *val; 2182 bool is_percpu; 2183 u64 ret = 0; 2184 2185 if (flags != 0) 2186 return -EINVAL; 2187 2188 is_percpu = htab_is_percpu(htab); 2189 2190 roundup_key_size = round_up(map->key_size, 8); 2191 /* disable migration so percpu value prepared here will be the 2192 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2193 */ 2194 if (is_percpu) 2195 migrate_disable(); 2196 for (i = 0; i < htab->n_buckets; i++) { 2197 b = &htab->buckets[i]; 2198 rcu_read_lock(); 2199 head = &b->head; 2200 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2201 key = elem->key; 2202 if (is_percpu) { 2203 /* current cpu value for percpu map */ 2204 pptr = htab_elem_get_ptr(elem, map->key_size); 2205 val = this_cpu_ptr(pptr); 2206 } else { 2207 val = elem->key + roundup_key_size; 2208 } 2209 num_elems++; 2210 ret = callback_fn((u64)(long)map, (u64)(long)key, 2211 (u64)(long)val, (u64)(long)callback_ctx, 0); 2212 /* return value: 0 - continue, 1 - stop and return */ 2213 if (ret) { 2214 rcu_read_unlock(); 2215 goto out; 2216 } 2217 } 2218 rcu_read_unlock(); 2219 } 2220 out: 2221 if (is_percpu) 2222 migrate_enable(); 2223 return num_elems; 2224 } 2225 2226 static u64 htab_map_mem_usage(const struct bpf_map *map) 2227 { 2228 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2229 u32 value_size = round_up(htab->map.value_size, 8); 2230 bool prealloc = htab_is_prealloc(htab); 2231 bool percpu = htab_is_percpu(htab); 2232 bool lru = htab_is_lru(htab); 2233 u64 num_entries; 2234 u64 usage = sizeof(struct bpf_htab); 2235 2236 usage += sizeof(struct bucket) * htab->n_buckets; 2237 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2238 if (prealloc) { 2239 num_entries = map->max_entries; 2240 if (htab_has_extra_elems(htab)) 2241 num_entries += num_possible_cpus(); 2242 2243 usage += htab->elem_size * num_entries; 2244 2245 if (percpu) 2246 usage += value_size * num_possible_cpus() * num_entries; 2247 else if (!lru) 2248 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2249 } else { 2250 #define LLIST_NODE_SZ sizeof(struct llist_node) 2251 2252 num_entries = htab->use_percpu_counter ? 2253 percpu_counter_sum(&htab->pcount) : 2254 atomic_read(&htab->count); 2255 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2256 if (percpu) { 2257 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2258 usage += value_size * num_possible_cpus() * num_entries; 2259 } 2260 } 2261 return usage; 2262 } 2263 2264 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2265 const struct bpf_map_ops htab_map_ops = { 2266 .map_meta_equal = bpf_map_meta_equal, 2267 .map_alloc_check = htab_map_alloc_check, 2268 .map_alloc = htab_map_alloc, 2269 .map_free = htab_map_free, 2270 .map_get_next_key = htab_map_get_next_key, 2271 .map_release_uref = htab_map_free_timers_and_wq, 2272 .map_lookup_elem = htab_map_lookup_elem, 2273 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2274 .map_update_elem = htab_map_update_elem, 2275 .map_delete_elem = htab_map_delete_elem, 2276 .map_gen_lookup = htab_map_gen_lookup, 2277 .map_seq_show_elem = htab_map_seq_show_elem, 2278 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2279 .map_for_each_callback = bpf_for_each_hash_elem, 2280 .map_mem_usage = htab_map_mem_usage, 2281 BATCH_OPS(htab), 2282 .map_btf_id = &htab_map_btf_ids[0], 2283 .iter_seq_info = &iter_seq_info, 2284 }; 2285 2286 const struct bpf_map_ops htab_lru_map_ops = { 2287 .map_meta_equal = bpf_map_meta_equal, 2288 .map_alloc_check = htab_map_alloc_check, 2289 .map_alloc = htab_map_alloc, 2290 .map_free = htab_map_free, 2291 .map_get_next_key = htab_map_get_next_key, 2292 .map_release_uref = htab_map_free_timers_and_wq, 2293 .map_lookup_elem = htab_lru_map_lookup_elem, 2294 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2295 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2296 .map_update_elem = htab_lru_map_update_elem, 2297 .map_delete_elem = htab_lru_map_delete_elem, 2298 .map_gen_lookup = htab_lru_map_gen_lookup, 2299 .map_seq_show_elem = htab_map_seq_show_elem, 2300 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2301 .map_for_each_callback = bpf_for_each_hash_elem, 2302 .map_mem_usage = htab_map_mem_usage, 2303 BATCH_OPS(htab_lru), 2304 .map_btf_id = &htab_map_btf_ids[0], 2305 .iter_seq_info = &iter_seq_info, 2306 }; 2307 2308 /* Called from eBPF program */ 2309 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2310 { 2311 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2312 2313 if (l) 2314 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2315 else 2316 return NULL; 2317 } 2318 2319 /* inline bpf_map_lookup_elem() call for per-CPU hashmap */ 2320 static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 2321 { 2322 struct bpf_insn *insn = insn_buf; 2323 2324 if (!bpf_jit_supports_percpu_insn()) 2325 return -EOPNOTSUPP; 2326 2327 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2328 (void *(*)(struct bpf_map *map, void *key))NULL)); 2329 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2330 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3); 2331 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2332 offsetof(struct htab_elem, key) + map->key_size); 2333 *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 2334 *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 2335 2336 return insn - insn_buf; 2337 } 2338 2339 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2340 { 2341 struct htab_elem *l; 2342 2343 if (cpu >= nr_cpu_ids) 2344 return NULL; 2345 2346 l = __htab_map_lookup_elem(map, key); 2347 if (l) 2348 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2349 else 2350 return NULL; 2351 } 2352 2353 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2354 { 2355 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2356 2357 if (l) { 2358 bpf_lru_node_set_ref(&l->lru_node); 2359 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2360 } 2361 2362 return NULL; 2363 } 2364 2365 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2366 { 2367 struct htab_elem *l; 2368 2369 if (cpu >= nr_cpu_ids) 2370 return NULL; 2371 2372 l = __htab_map_lookup_elem(map, key); 2373 if (l) { 2374 bpf_lru_node_set_ref(&l->lru_node); 2375 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2376 } 2377 2378 return NULL; 2379 } 2380 2381 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2382 { 2383 struct htab_elem *l; 2384 void __percpu *pptr; 2385 int ret = -ENOENT; 2386 int cpu, off = 0; 2387 u32 size; 2388 2389 /* per_cpu areas are zero-filled and bpf programs can only 2390 * access 'value_size' of them, so copying rounded areas 2391 * will not leak any kernel data 2392 */ 2393 size = round_up(map->value_size, 8); 2394 rcu_read_lock(); 2395 l = __htab_map_lookup_elem(map, key); 2396 if (!l) 2397 goto out; 2398 /* We do not mark LRU map element here in order to not mess up 2399 * eviction heuristics when user space does a map walk. 2400 */ 2401 pptr = htab_elem_get_ptr(l, map->key_size); 2402 for_each_possible_cpu(cpu) { 2403 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2404 check_and_init_map_value(map, value + off); 2405 off += size; 2406 } 2407 ret = 0; 2408 out: 2409 rcu_read_unlock(); 2410 return ret; 2411 } 2412 2413 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2414 u64 map_flags) 2415 { 2416 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2417 int ret; 2418 2419 rcu_read_lock(); 2420 if (htab_is_lru(htab)) 2421 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2422 map_flags, true); 2423 else 2424 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2425 true); 2426 rcu_read_unlock(); 2427 2428 return ret; 2429 } 2430 2431 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2432 struct seq_file *m) 2433 { 2434 struct htab_elem *l; 2435 void __percpu *pptr; 2436 int cpu; 2437 2438 rcu_read_lock(); 2439 2440 l = __htab_map_lookup_elem(map, key); 2441 if (!l) { 2442 rcu_read_unlock(); 2443 return; 2444 } 2445 2446 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2447 seq_puts(m, ": {\n"); 2448 pptr = htab_elem_get_ptr(l, map->key_size); 2449 for_each_possible_cpu(cpu) { 2450 seq_printf(m, "\tcpu%d: ", cpu); 2451 btf_type_seq_show(map->btf, map->btf_value_type_id, 2452 per_cpu_ptr(pptr, cpu), m); 2453 seq_puts(m, "\n"); 2454 } 2455 seq_puts(m, "}\n"); 2456 2457 rcu_read_unlock(); 2458 } 2459 2460 const struct bpf_map_ops htab_percpu_map_ops = { 2461 .map_meta_equal = bpf_map_meta_equal, 2462 .map_alloc_check = htab_map_alloc_check, 2463 .map_alloc = htab_map_alloc, 2464 .map_free = htab_map_free, 2465 .map_get_next_key = htab_map_get_next_key, 2466 .map_lookup_elem = htab_percpu_map_lookup_elem, 2467 .map_gen_lookup = htab_percpu_map_gen_lookup, 2468 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2469 .map_update_elem = htab_percpu_map_update_elem, 2470 .map_delete_elem = htab_map_delete_elem, 2471 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2472 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2473 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2474 .map_for_each_callback = bpf_for_each_hash_elem, 2475 .map_mem_usage = htab_map_mem_usage, 2476 BATCH_OPS(htab_percpu), 2477 .map_btf_id = &htab_map_btf_ids[0], 2478 .iter_seq_info = &iter_seq_info, 2479 }; 2480 2481 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2482 .map_meta_equal = bpf_map_meta_equal, 2483 .map_alloc_check = htab_map_alloc_check, 2484 .map_alloc = htab_map_alloc, 2485 .map_free = htab_map_free, 2486 .map_get_next_key = htab_map_get_next_key, 2487 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2488 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2489 .map_update_elem = htab_lru_percpu_map_update_elem, 2490 .map_delete_elem = htab_lru_map_delete_elem, 2491 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2492 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2493 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2494 .map_for_each_callback = bpf_for_each_hash_elem, 2495 .map_mem_usage = htab_map_mem_usage, 2496 BATCH_OPS(htab_lru_percpu), 2497 .map_btf_id = &htab_map_btf_ids[0], 2498 .iter_seq_info = &iter_seq_info, 2499 }; 2500 2501 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2502 { 2503 if (attr->value_size != sizeof(u32)) 2504 return -EINVAL; 2505 return htab_map_alloc_check(attr); 2506 } 2507 2508 static void fd_htab_map_free(struct bpf_map *map) 2509 { 2510 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2511 struct hlist_nulls_node *n; 2512 struct hlist_nulls_head *head; 2513 struct htab_elem *l; 2514 int i; 2515 2516 for (i = 0; i < htab->n_buckets; i++) { 2517 head = select_bucket(htab, i); 2518 2519 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2520 void *ptr = fd_htab_map_get_ptr(map, l); 2521 2522 map->ops->map_fd_put_ptr(map, ptr, false); 2523 } 2524 } 2525 2526 htab_map_free(map); 2527 } 2528 2529 /* only called from syscall */ 2530 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2531 { 2532 void **ptr; 2533 int ret = 0; 2534 2535 if (!map->ops->map_fd_sys_lookup_elem) 2536 return -ENOTSUPP; 2537 2538 rcu_read_lock(); 2539 ptr = htab_map_lookup_elem(map, key); 2540 if (ptr) 2541 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2542 else 2543 ret = -ENOENT; 2544 rcu_read_unlock(); 2545 2546 return ret; 2547 } 2548 2549 /* only called from syscall */ 2550 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2551 void *key, void *value, u64 map_flags) 2552 { 2553 void *ptr; 2554 int ret; 2555 u32 ufd = *(u32 *)value; 2556 2557 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2558 if (IS_ERR(ptr)) 2559 return PTR_ERR(ptr); 2560 2561 /* The htab bucket lock is always held during update operations in fd 2562 * htab map, and the following rcu_read_lock() is only used to avoid 2563 * the WARN_ON_ONCE in htab_map_update_elem(). 2564 */ 2565 rcu_read_lock(); 2566 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2567 rcu_read_unlock(); 2568 if (ret) 2569 map->ops->map_fd_put_ptr(map, ptr, false); 2570 2571 return ret; 2572 } 2573 2574 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2575 { 2576 struct bpf_map *map, *inner_map_meta; 2577 2578 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2579 if (IS_ERR(inner_map_meta)) 2580 return inner_map_meta; 2581 2582 map = htab_map_alloc(attr); 2583 if (IS_ERR(map)) { 2584 bpf_map_meta_free(inner_map_meta); 2585 return map; 2586 } 2587 2588 map->inner_map_meta = inner_map_meta; 2589 2590 return map; 2591 } 2592 2593 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2594 { 2595 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2596 2597 if (!inner_map) 2598 return NULL; 2599 2600 return READ_ONCE(*inner_map); 2601 } 2602 2603 static int htab_of_map_gen_lookup(struct bpf_map *map, 2604 struct bpf_insn *insn_buf) 2605 { 2606 struct bpf_insn *insn = insn_buf; 2607 const int ret = BPF_REG_0; 2608 2609 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2610 (void *(*)(struct bpf_map *map, void *key))NULL)); 2611 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2612 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2613 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2614 offsetof(struct htab_elem, key) + 2615 round_up(map->key_size, 8)); 2616 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2617 2618 return insn - insn_buf; 2619 } 2620 2621 static void htab_of_map_free(struct bpf_map *map) 2622 { 2623 bpf_map_meta_free(map->inner_map_meta); 2624 fd_htab_map_free(map); 2625 } 2626 2627 const struct bpf_map_ops htab_of_maps_map_ops = { 2628 .map_alloc_check = fd_htab_map_alloc_check, 2629 .map_alloc = htab_of_map_alloc, 2630 .map_free = htab_of_map_free, 2631 .map_get_next_key = htab_map_get_next_key, 2632 .map_lookup_elem = htab_of_map_lookup_elem, 2633 .map_delete_elem = htab_map_delete_elem, 2634 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2635 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2636 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2637 .map_gen_lookup = htab_of_map_gen_lookup, 2638 .map_check_btf = map_check_no_btf, 2639 .map_mem_usage = htab_map_mem_usage, 2640 BATCH_OPS(htab), 2641 .map_btf_id = &htab_map_btf_ids[0], 2642 }; 2643