xref: /linux/kernel/bpf/hashtab.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 
18 #define HTAB_CREATE_FLAG_MASK						\
19 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
20 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
21 
22 #define BATCH_OPS(_name)			\
23 	.map_lookup_batch =			\
24 	_name##_map_lookup_batch,		\
25 	.map_lookup_and_delete_batch =		\
26 	_name##_map_lookup_and_delete_batch,	\
27 	.map_update_batch =			\
28 	generic_map_update_batch,		\
29 	.map_delete_batch =			\
30 	generic_map_delete_batch
31 
32 /*
33  * The bucket lock has two protection scopes:
34  *
35  * 1) Serializing concurrent operations from BPF programs on different
36  *    CPUs
37  *
38  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
39  *
40  * BPF programs can execute in any context including perf, kprobes and
41  * tracing. As there are almost no limits where perf, kprobes and tracing
42  * can be invoked from the lock operations need to be protected against
43  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
44  * the lock held section when functions which acquire this lock are invoked
45  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
46  * variable bpf_prog_active, which prevents BPF programs attached to perf
47  * events, kprobes and tracing to be invoked before the prior invocation
48  * from one of these contexts completed. sys_bpf() uses the same mechanism
49  * by pinning the task to the current CPU and incrementing the recursion
50  * protection across the map operation.
51  *
52  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
53  * operations like memory allocations (even with GFP_ATOMIC) from atomic
54  * contexts. This is required because even with GFP_ATOMIC the memory
55  * allocator calls into code paths which acquire locks with long held lock
56  * sections. To ensure the deterministic behaviour these locks are regular
57  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
58  * true atomic contexts on an RT kernel are the low level hardware
59  * handling, scheduling, low level interrupt handling, NMIs etc. None of
60  * these contexts should ever do memory allocations.
61  *
62  * As regular device interrupt handlers and soft interrupts are forced into
63  * thread context, the existing code which does
64  *   spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
65  * just works.
66  *
67  * In theory the BPF locks could be converted to regular spinlocks as well,
68  * but the bucket locks and percpu_freelist locks can be taken from
69  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
70  * atomic contexts even on RT. These mechanisms require preallocated maps,
71  * so there is no need to invoke memory allocations within the lock held
72  * sections.
73  *
74  * BPF maps which need dynamic allocation are only used from (forced)
75  * thread context on RT and can therefore use regular spinlocks which in
76  * turn allows to invoke memory allocations from the lock held section.
77  *
78  * On a non RT kernel this distinction is neither possible nor required.
79  * spinlock maps to raw_spinlock and the extra code is optimized out by the
80  * compiler.
81  */
82 struct bucket {
83 	struct hlist_nulls_head head;
84 	union {
85 		raw_spinlock_t raw_lock;
86 		spinlock_t     lock;
87 	};
88 };
89 
90 #define HASHTAB_MAP_LOCK_COUNT 8
91 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
92 
93 struct bpf_htab {
94 	struct bpf_map map;
95 	struct bucket *buckets;
96 	void *elems;
97 	union {
98 		struct pcpu_freelist freelist;
99 		struct bpf_lru lru;
100 	};
101 	struct htab_elem *__percpu *extra_elems;
102 	atomic_t count;	/* number of elements in this hashtable */
103 	u32 n_buckets;	/* number of hash buckets */
104 	u32 elem_size;	/* size of each element in bytes */
105 	u32 hashrnd;
106 	struct lock_class_key lockdep_key;
107 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108 };
109 
110 /* each htab element is struct htab_elem + key + value */
111 struct htab_elem {
112 	union {
113 		struct hlist_nulls_node hash_node;
114 		struct {
115 			void *padding;
116 			union {
117 				struct bpf_htab *htab;
118 				struct pcpu_freelist_node fnode;
119 				struct htab_elem *batch_flink;
120 			};
121 		};
122 	};
123 	union {
124 		struct rcu_head rcu;
125 		struct bpf_lru_node lru_node;
126 	};
127 	u32 hash;
128 	char key[] __aligned(8);
129 };
130 
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132 {
133 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134 }
135 
136 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
137 {
138 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
139 }
140 
141 static void htab_init_buckets(struct bpf_htab *htab)
142 {
143 	unsigned int i;
144 
145 	for (i = 0; i < htab->n_buckets; i++) {
146 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
147 		if (htab_use_raw_lock(htab)) {
148 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
149 			lockdep_set_class(&htab->buckets[i].raw_lock,
150 					  &htab->lockdep_key);
151 		} else {
152 			spin_lock_init(&htab->buckets[i].lock);
153 			lockdep_set_class(&htab->buckets[i].lock,
154 					  &htab->lockdep_key);
155 		}
156 		cond_resched();
157 	}
158 }
159 
160 static inline int htab_lock_bucket(const struct bpf_htab *htab,
161 				   struct bucket *b, u32 hash,
162 				   unsigned long *pflags)
163 {
164 	unsigned long flags;
165 
166 	hash = hash & HASHTAB_MAP_LOCK_MASK;
167 
168 	migrate_disable();
169 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
170 		__this_cpu_dec(*(htab->map_locked[hash]));
171 		migrate_enable();
172 		return -EBUSY;
173 	}
174 
175 	if (htab_use_raw_lock(htab))
176 		raw_spin_lock_irqsave(&b->raw_lock, flags);
177 	else
178 		spin_lock_irqsave(&b->lock, flags);
179 	*pflags = flags;
180 
181 	return 0;
182 }
183 
184 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
185 				      struct bucket *b, u32 hash,
186 				      unsigned long flags)
187 {
188 	hash = hash & HASHTAB_MAP_LOCK_MASK;
189 	if (htab_use_raw_lock(htab))
190 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
191 	else
192 		spin_unlock_irqrestore(&b->lock, flags);
193 	__this_cpu_dec(*(htab->map_locked[hash]));
194 	migrate_enable();
195 }
196 
197 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
198 
199 static bool htab_is_lru(const struct bpf_htab *htab)
200 {
201 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
202 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
203 }
204 
205 static bool htab_is_percpu(const struct bpf_htab *htab)
206 {
207 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
208 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
209 }
210 
211 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
212 				     void __percpu *pptr)
213 {
214 	*(void __percpu **)(l->key + key_size) = pptr;
215 }
216 
217 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
218 {
219 	return *(void __percpu **)(l->key + key_size);
220 }
221 
222 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
223 {
224 	return *(void **)(l->key + roundup(map->key_size, 8));
225 }
226 
227 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
228 {
229 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
230 }
231 
232 static bool htab_has_extra_elems(struct bpf_htab *htab)
233 {
234 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
235 }
236 
237 static void htab_free_prealloced_timers(struct bpf_htab *htab)
238 {
239 	u32 num_entries = htab->map.max_entries;
240 	int i;
241 
242 	if (!map_value_has_timer(&htab->map))
243 		return;
244 	if (htab_has_extra_elems(htab))
245 		num_entries += num_possible_cpus();
246 
247 	for (i = 0; i < num_entries; i++) {
248 		struct htab_elem *elem;
249 
250 		elem = get_htab_elem(htab, i);
251 		bpf_timer_cancel_and_free(elem->key +
252 					  round_up(htab->map.key_size, 8) +
253 					  htab->map.timer_off);
254 		cond_resched();
255 	}
256 }
257 
258 static void htab_free_prealloced_kptrs(struct bpf_htab *htab)
259 {
260 	u32 num_entries = htab->map.max_entries;
261 	int i;
262 
263 	if (!map_value_has_kptrs(&htab->map))
264 		return;
265 	if (htab_has_extra_elems(htab))
266 		num_entries += num_possible_cpus();
267 
268 	for (i = 0; i < num_entries; i++) {
269 		struct htab_elem *elem;
270 
271 		elem = get_htab_elem(htab, i);
272 		bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8));
273 		cond_resched();
274 	}
275 }
276 
277 static void htab_free_elems(struct bpf_htab *htab)
278 {
279 	int i;
280 
281 	if (!htab_is_percpu(htab))
282 		goto free_elems;
283 
284 	for (i = 0; i < htab->map.max_entries; i++) {
285 		void __percpu *pptr;
286 
287 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
288 					 htab->map.key_size);
289 		free_percpu(pptr);
290 		cond_resched();
291 	}
292 free_elems:
293 	bpf_map_area_free(htab->elems);
294 }
295 
296 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
297  * (bucket_lock). If both locks need to be acquired together, the lock
298  * order is always lru_lock -> bucket_lock and this only happens in
299  * bpf_lru_list.c logic. For example, certain code path of
300  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
301  * will acquire lru_lock first followed by acquiring bucket_lock.
302  *
303  * In hashtab.c, to avoid deadlock, lock acquisition of
304  * bucket_lock followed by lru_lock is not allowed. In such cases,
305  * bucket_lock needs to be released first before acquiring lru_lock.
306  */
307 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
308 					  u32 hash)
309 {
310 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
311 	struct htab_elem *l;
312 
313 	if (node) {
314 		l = container_of(node, struct htab_elem, lru_node);
315 		memcpy(l->key, key, htab->map.key_size);
316 		return l;
317 	}
318 
319 	return NULL;
320 }
321 
322 static int prealloc_init(struct bpf_htab *htab)
323 {
324 	u32 num_entries = htab->map.max_entries;
325 	int err = -ENOMEM, i;
326 
327 	if (htab_has_extra_elems(htab))
328 		num_entries += num_possible_cpus();
329 
330 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
331 					 htab->map.numa_node);
332 	if (!htab->elems)
333 		return -ENOMEM;
334 
335 	if (!htab_is_percpu(htab))
336 		goto skip_percpu_elems;
337 
338 	for (i = 0; i < num_entries; i++) {
339 		u32 size = round_up(htab->map.value_size, 8);
340 		void __percpu *pptr;
341 
342 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
343 					    GFP_USER | __GFP_NOWARN);
344 		if (!pptr)
345 			goto free_elems;
346 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
347 				  pptr);
348 		cond_resched();
349 	}
350 
351 skip_percpu_elems:
352 	if (htab_is_lru(htab))
353 		err = bpf_lru_init(&htab->lru,
354 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
355 				   offsetof(struct htab_elem, hash) -
356 				   offsetof(struct htab_elem, lru_node),
357 				   htab_lru_map_delete_node,
358 				   htab);
359 	else
360 		err = pcpu_freelist_init(&htab->freelist);
361 
362 	if (err)
363 		goto free_elems;
364 
365 	if (htab_is_lru(htab))
366 		bpf_lru_populate(&htab->lru, htab->elems,
367 				 offsetof(struct htab_elem, lru_node),
368 				 htab->elem_size, num_entries);
369 	else
370 		pcpu_freelist_populate(&htab->freelist,
371 				       htab->elems + offsetof(struct htab_elem, fnode),
372 				       htab->elem_size, num_entries);
373 
374 	return 0;
375 
376 free_elems:
377 	htab_free_elems(htab);
378 	return err;
379 }
380 
381 static void prealloc_destroy(struct bpf_htab *htab)
382 {
383 	htab_free_elems(htab);
384 
385 	if (htab_is_lru(htab))
386 		bpf_lru_destroy(&htab->lru);
387 	else
388 		pcpu_freelist_destroy(&htab->freelist);
389 }
390 
391 static int alloc_extra_elems(struct bpf_htab *htab)
392 {
393 	struct htab_elem *__percpu *pptr, *l_new;
394 	struct pcpu_freelist_node *l;
395 	int cpu;
396 
397 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
398 				    GFP_USER | __GFP_NOWARN);
399 	if (!pptr)
400 		return -ENOMEM;
401 
402 	for_each_possible_cpu(cpu) {
403 		l = pcpu_freelist_pop(&htab->freelist);
404 		/* pop will succeed, since prealloc_init()
405 		 * preallocated extra num_possible_cpus elements
406 		 */
407 		l_new = container_of(l, struct htab_elem, fnode);
408 		*per_cpu_ptr(pptr, cpu) = l_new;
409 	}
410 	htab->extra_elems = pptr;
411 	return 0;
412 }
413 
414 /* Called from syscall */
415 static int htab_map_alloc_check(union bpf_attr *attr)
416 {
417 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
418 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
419 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
420 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
421 	/* percpu_lru means each cpu has its own LRU list.
422 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
423 	 * the map's value itself is percpu.  percpu_lru has
424 	 * nothing to do with the map's value.
425 	 */
426 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
427 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
428 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
429 	int numa_node = bpf_map_attr_numa_node(attr);
430 
431 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
432 		     offsetof(struct htab_elem, hash_node.pprev));
433 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
434 		     offsetof(struct htab_elem, hash_node.pprev));
435 
436 	if (lru && !bpf_capable())
437 		/* LRU implementation is much complicated than other
438 		 * maps.  Hence, limit to CAP_BPF.
439 		 */
440 		return -EPERM;
441 
442 	if (zero_seed && !capable(CAP_SYS_ADMIN))
443 		/* Guard against local DoS, and discourage production use. */
444 		return -EPERM;
445 
446 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
447 	    !bpf_map_flags_access_ok(attr->map_flags))
448 		return -EINVAL;
449 
450 	if (!lru && percpu_lru)
451 		return -EINVAL;
452 
453 	if (lru && !prealloc)
454 		return -ENOTSUPP;
455 
456 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
457 		return -EINVAL;
458 
459 	/* check sanity of attributes.
460 	 * value_size == 0 may be allowed in the future to use map as a set
461 	 */
462 	if (attr->max_entries == 0 || attr->key_size == 0 ||
463 	    attr->value_size == 0)
464 		return -EINVAL;
465 
466 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
467 	   sizeof(struct htab_elem))
468 		/* if key_size + value_size is bigger, the user space won't be
469 		 * able to access the elements via bpf syscall. This check
470 		 * also makes sure that the elem_size doesn't overflow and it's
471 		 * kmalloc-able later in htab_map_update_elem()
472 		 */
473 		return -E2BIG;
474 
475 	return 0;
476 }
477 
478 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
479 {
480 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
481 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
482 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
483 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
484 	/* percpu_lru means each cpu has its own LRU list.
485 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
486 	 * the map's value itself is percpu.  percpu_lru has
487 	 * nothing to do with the map's value.
488 	 */
489 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
490 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
491 	struct bpf_htab *htab;
492 	int err, i;
493 
494 	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
495 	if (!htab)
496 		return ERR_PTR(-ENOMEM);
497 
498 	lockdep_register_key(&htab->lockdep_key);
499 
500 	bpf_map_init_from_attr(&htab->map, attr);
501 
502 	if (percpu_lru) {
503 		/* ensure each CPU's lru list has >=1 elements.
504 		 * since we are at it, make each lru list has the same
505 		 * number of elements.
506 		 */
507 		htab->map.max_entries = roundup(attr->max_entries,
508 						num_possible_cpus());
509 		if (htab->map.max_entries < attr->max_entries)
510 			htab->map.max_entries = rounddown(attr->max_entries,
511 							  num_possible_cpus());
512 	}
513 
514 	/* hash table size must be power of 2 */
515 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
516 
517 	htab->elem_size = sizeof(struct htab_elem) +
518 			  round_up(htab->map.key_size, 8);
519 	if (percpu)
520 		htab->elem_size += sizeof(void *);
521 	else
522 		htab->elem_size += round_up(htab->map.value_size, 8);
523 
524 	err = -E2BIG;
525 	/* prevent zero size kmalloc and check for u32 overflow */
526 	if (htab->n_buckets == 0 ||
527 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
528 		goto free_htab;
529 
530 	err = -ENOMEM;
531 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
532 					   sizeof(struct bucket),
533 					   htab->map.numa_node);
534 	if (!htab->buckets)
535 		goto free_htab;
536 
537 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
538 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
539 							   sizeof(int),
540 							   sizeof(int),
541 							   GFP_USER);
542 		if (!htab->map_locked[i])
543 			goto free_map_locked;
544 	}
545 
546 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
547 		htab->hashrnd = 0;
548 	else
549 		htab->hashrnd = get_random_int();
550 
551 	htab_init_buckets(htab);
552 
553 	if (prealloc) {
554 		err = prealloc_init(htab);
555 		if (err)
556 			goto free_map_locked;
557 
558 		if (!percpu && !lru) {
559 			/* lru itself can remove the least used element, so
560 			 * there is no need for an extra elem during map_update.
561 			 */
562 			err = alloc_extra_elems(htab);
563 			if (err)
564 				goto free_prealloc;
565 		}
566 	}
567 
568 	return &htab->map;
569 
570 free_prealloc:
571 	prealloc_destroy(htab);
572 free_map_locked:
573 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
574 		free_percpu(htab->map_locked[i]);
575 	bpf_map_area_free(htab->buckets);
576 free_htab:
577 	lockdep_unregister_key(&htab->lockdep_key);
578 	kfree(htab);
579 	return ERR_PTR(err);
580 }
581 
582 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
583 {
584 	return jhash(key, key_len, hashrnd);
585 }
586 
587 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
588 {
589 	return &htab->buckets[hash & (htab->n_buckets - 1)];
590 }
591 
592 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
593 {
594 	return &__select_bucket(htab, hash)->head;
595 }
596 
597 /* this lookup function can only be called with bucket lock taken */
598 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
599 					 void *key, u32 key_size)
600 {
601 	struct hlist_nulls_node *n;
602 	struct htab_elem *l;
603 
604 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
605 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
606 			return l;
607 
608 	return NULL;
609 }
610 
611 /* can be called without bucket lock. it will repeat the loop in
612  * the unlikely event when elements moved from one bucket into another
613  * while link list is being walked
614  */
615 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
616 					       u32 hash, void *key,
617 					       u32 key_size, u32 n_buckets)
618 {
619 	struct hlist_nulls_node *n;
620 	struct htab_elem *l;
621 
622 again:
623 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
624 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
625 			return l;
626 
627 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
628 		goto again;
629 
630 	return NULL;
631 }
632 
633 /* Called from syscall or from eBPF program directly, so
634  * arguments have to match bpf_map_lookup_elem() exactly.
635  * The return value is adjusted by BPF instructions
636  * in htab_map_gen_lookup().
637  */
638 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
639 {
640 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
641 	struct hlist_nulls_head *head;
642 	struct htab_elem *l;
643 	u32 hash, key_size;
644 
645 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
646 		     !rcu_read_lock_bh_held());
647 
648 	key_size = map->key_size;
649 
650 	hash = htab_map_hash(key, key_size, htab->hashrnd);
651 
652 	head = select_bucket(htab, hash);
653 
654 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
655 
656 	return l;
657 }
658 
659 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
660 {
661 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
662 
663 	if (l)
664 		return l->key + round_up(map->key_size, 8);
665 
666 	return NULL;
667 }
668 
669 /* inline bpf_map_lookup_elem() call.
670  * Instead of:
671  * bpf_prog
672  *   bpf_map_lookup_elem
673  *     map->ops->map_lookup_elem
674  *       htab_map_lookup_elem
675  *         __htab_map_lookup_elem
676  * do:
677  * bpf_prog
678  *   __htab_map_lookup_elem
679  */
680 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
681 {
682 	struct bpf_insn *insn = insn_buf;
683 	const int ret = BPF_REG_0;
684 
685 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
686 		     (void *(*)(struct bpf_map *map, void *key))NULL));
687 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
688 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
689 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
690 				offsetof(struct htab_elem, key) +
691 				round_up(map->key_size, 8));
692 	return insn - insn_buf;
693 }
694 
695 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
696 							void *key, const bool mark)
697 {
698 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
699 
700 	if (l) {
701 		if (mark)
702 			bpf_lru_node_set_ref(&l->lru_node);
703 		return l->key + round_up(map->key_size, 8);
704 	}
705 
706 	return NULL;
707 }
708 
709 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
710 {
711 	return __htab_lru_map_lookup_elem(map, key, true);
712 }
713 
714 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
715 {
716 	return __htab_lru_map_lookup_elem(map, key, false);
717 }
718 
719 static int htab_lru_map_gen_lookup(struct bpf_map *map,
720 				   struct bpf_insn *insn_buf)
721 {
722 	struct bpf_insn *insn = insn_buf;
723 	const int ret = BPF_REG_0;
724 	const int ref_reg = BPF_REG_1;
725 
726 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
727 		     (void *(*)(struct bpf_map *map, void *key))NULL));
728 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
729 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
730 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
731 			      offsetof(struct htab_elem, lru_node) +
732 			      offsetof(struct bpf_lru_node, ref));
733 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
734 	*insn++ = BPF_ST_MEM(BPF_B, ret,
735 			     offsetof(struct htab_elem, lru_node) +
736 			     offsetof(struct bpf_lru_node, ref),
737 			     1);
738 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
739 				offsetof(struct htab_elem, key) +
740 				round_up(map->key_size, 8));
741 	return insn - insn_buf;
742 }
743 
744 static void check_and_free_fields(struct bpf_htab *htab,
745 				  struct htab_elem *elem)
746 {
747 	void *map_value = elem->key + round_up(htab->map.key_size, 8);
748 
749 	if (map_value_has_timer(&htab->map))
750 		bpf_timer_cancel_and_free(map_value + htab->map.timer_off);
751 	if (map_value_has_kptrs(&htab->map))
752 		bpf_map_free_kptrs(&htab->map, map_value);
753 }
754 
755 /* It is called from the bpf_lru_list when the LRU needs to delete
756  * older elements from the htab.
757  */
758 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
759 {
760 	struct bpf_htab *htab = arg;
761 	struct htab_elem *l = NULL, *tgt_l;
762 	struct hlist_nulls_head *head;
763 	struct hlist_nulls_node *n;
764 	unsigned long flags;
765 	struct bucket *b;
766 	int ret;
767 
768 	tgt_l = container_of(node, struct htab_elem, lru_node);
769 	b = __select_bucket(htab, tgt_l->hash);
770 	head = &b->head;
771 
772 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
773 	if (ret)
774 		return false;
775 
776 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
777 		if (l == tgt_l) {
778 			hlist_nulls_del_rcu(&l->hash_node);
779 			check_and_free_fields(htab, l);
780 			break;
781 		}
782 
783 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
784 
785 	return l == tgt_l;
786 }
787 
788 /* Called from syscall */
789 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
790 {
791 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
792 	struct hlist_nulls_head *head;
793 	struct htab_elem *l, *next_l;
794 	u32 hash, key_size;
795 	int i = 0;
796 
797 	WARN_ON_ONCE(!rcu_read_lock_held());
798 
799 	key_size = map->key_size;
800 
801 	if (!key)
802 		goto find_first_elem;
803 
804 	hash = htab_map_hash(key, key_size, htab->hashrnd);
805 
806 	head = select_bucket(htab, hash);
807 
808 	/* lookup the key */
809 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
810 
811 	if (!l)
812 		goto find_first_elem;
813 
814 	/* key was found, get next key in the same bucket */
815 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
816 				  struct htab_elem, hash_node);
817 
818 	if (next_l) {
819 		/* if next elem in this hash list is non-zero, just return it */
820 		memcpy(next_key, next_l->key, key_size);
821 		return 0;
822 	}
823 
824 	/* no more elements in this hash list, go to the next bucket */
825 	i = hash & (htab->n_buckets - 1);
826 	i++;
827 
828 find_first_elem:
829 	/* iterate over buckets */
830 	for (; i < htab->n_buckets; i++) {
831 		head = select_bucket(htab, i);
832 
833 		/* pick first element in the bucket */
834 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
835 					  struct htab_elem, hash_node);
836 		if (next_l) {
837 			/* if it's not empty, just return it */
838 			memcpy(next_key, next_l->key, key_size);
839 			return 0;
840 		}
841 	}
842 
843 	/* iterated over all buckets and all elements */
844 	return -ENOENT;
845 }
846 
847 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
848 {
849 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
850 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
851 	check_and_free_fields(htab, l);
852 	kfree(l);
853 }
854 
855 static void htab_elem_free_rcu(struct rcu_head *head)
856 {
857 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
858 	struct bpf_htab *htab = l->htab;
859 
860 	htab_elem_free(htab, l);
861 }
862 
863 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
864 {
865 	struct bpf_map *map = &htab->map;
866 	void *ptr;
867 
868 	if (map->ops->map_fd_put_ptr) {
869 		ptr = fd_htab_map_get_ptr(map, l);
870 		map->ops->map_fd_put_ptr(ptr);
871 	}
872 }
873 
874 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
875 {
876 	htab_put_fd_value(htab, l);
877 
878 	if (htab_is_prealloc(htab)) {
879 		check_and_free_fields(htab, l);
880 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
881 	} else {
882 		atomic_dec(&htab->count);
883 		l->htab = htab;
884 		call_rcu(&l->rcu, htab_elem_free_rcu);
885 	}
886 }
887 
888 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
889 			    void *value, bool onallcpus)
890 {
891 	if (!onallcpus) {
892 		/* copy true value_size bytes */
893 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
894 	} else {
895 		u32 size = round_up(htab->map.value_size, 8);
896 		int off = 0, cpu;
897 
898 		for_each_possible_cpu(cpu) {
899 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
900 					value + off, size);
901 			off += size;
902 		}
903 	}
904 }
905 
906 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
907 			    void *value, bool onallcpus)
908 {
909 	/* When using prealloc and not setting the initial value on all cpus,
910 	 * zero-fill element values for other cpus (just as what happens when
911 	 * not using prealloc). Otherwise, bpf program has no way to ensure
912 	 * known initial values for cpus other than current one
913 	 * (onallcpus=false always when coming from bpf prog).
914 	 */
915 	if (htab_is_prealloc(htab) && !onallcpus) {
916 		u32 size = round_up(htab->map.value_size, 8);
917 		int current_cpu = raw_smp_processor_id();
918 		int cpu;
919 
920 		for_each_possible_cpu(cpu) {
921 			if (cpu == current_cpu)
922 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
923 						size);
924 			else
925 				memset(per_cpu_ptr(pptr, cpu), 0, size);
926 		}
927 	} else {
928 		pcpu_copy_value(htab, pptr, value, onallcpus);
929 	}
930 }
931 
932 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
933 {
934 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
935 	       BITS_PER_LONG == 64;
936 }
937 
938 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
939 					 void *value, u32 key_size, u32 hash,
940 					 bool percpu, bool onallcpus,
941 					 struct htab_elem *old_elem)
942 {
943 	u32 size = htab->map.value_size;
944 	bool prealloc = htab_is_prealloc(htab);
945 	struct htab_elem *l_new, **pl_new;
946 	void __percpu *pptr;
947 
948 	if (prealloc) {
949 		if (old_elem) {
950 			/* if we're updating the existing element,
951 			 * use per-cpu extra elems to avoid freelist_pop/push
952 			 */
953 			pl_new = this_cpu_ptr(htab->extra_elems);
954 			l_new = *pl_new;
955 			htab_put_fd_value(htab, old_elem);
956 			*pl_new = old_elem;
957 		} else {
958 			struct pcpu_freelist_node *l;
959 
960 			l = __pcpu_freelist_pop(&htab->freelist);
961 			if (!l)
962 				return ERR_PTR(-E2BIG);
963 			l_new = container_of(l, struct htab_elem, fnode);
964 		}
965 	} else {
966 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
967 			if (!old_elem) {
968 				/* when map is full and update() is replacing
969 				 * old element, it's ok to allocate, since
970 				 * old element will be freed immediately.
971 				 * Otherwise return an error
972 				 */
973 				l_new = ERR_PTR(-E2BIG);
974 				goto dec_count;
975 			}
976 		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
977 					     GFP_NOWAIT | __GFP_NOWARN,
978 					     htab->map.numa_node);
979 		if (!l_new) {
980 			l_new = ERR_PTR(-ENOMEM);
981 			goto dec_count;
982 		}
983 		check_and_init_map_value(&htab->map,
984 					 l_new->key + round_up(key_size, 8));
985 	}
986 
987 	memcpy(l_new->key, key, key_size);
988 	if (percpu) {
989 		size = round_up(size, 8);
990 		if (prealloc) {
991 			pptr = htab_elem_get_ptr(l_new, key_size);
992 		} else {
993 			/* alloc_percpu zero-fills */
994 			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
995 						    GFP_NOWAIT | __GFP_NOWARN);
996 			if (!pptr) {
997 				kfree(l_new);
998 				l_new = ERR_PTR(-ENOMEM);
999 				goto dec_count;
1000 			}
1001 		}
1002 
1003 		pcpu_init_value(htab, pptr, value, onallcpus);
1004 
1005 		if (!prealloc)
1006 			htab_elem_set_ptr(l_new, key_size, pptr);
1007 	} else if (fd_htab_map_needs_adjust(htab)) {
1008 		size = round_up(size, 8);
1009 		memcpy(l_new->key + round_up(key_size, 8), value, size);
1010 	} else {
1011 		copy_map_value(&htab->map,
1012 			       l_new->key + round_up(key_size, 8),
1013 			       value);
1014 	}
1015 
1016 	l_new->hash = hash;
1017 	return l_new;
1018 dec_count:
1019 	atomic_dec(&htab->count);
1020 	return l_new;
1021 }
1022 
1023 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1024 		       u64 map_flags)
1025 {
1026 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1027 		/* elem already exists */
1028 		return -EEXIST;
1029 
1030 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1031 		/* elem doesn't exist, cannot update it */
1032 		return -ENOENT;
1033 
1034 	return 0;
1035 }
1036 
1037 /* Called from syscall or from eBPF program */
1038 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1039 				u64 map_flags)
1040 {
1041 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1042 	struct htab_elem *l_new = NULL, *l_old;
1043 	struct hlist_nulls_head *head;
1044 	unsigned long flags;
1045 	struct bucket *b;
1046 	u32 key_size, hash;
1047 	int ret;
1048 
1049 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1050 		/* unknown flags */
1051 		return -EINVAL;
1052 
1053 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1054 		     !rcu_read_lock_bh_held());
1055 
1056 	key_size = map->key_size;
1057 
1058 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1059 
1060 	b = __select_bucket(htab, hash);
1061 	head = &b->head;
1062 
1063 	if (unlikely(map_flags & BPF_F_LOCK)) {
1064 		if (unlikely(!map_value_has_spin_lock(map)))
1065 			return -EINVAL;
1066 		/* find an element without taking the bucket lock */
1067 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1068 					      htab->n_buckets);
1069 		ret = check_flags(htab, l_old, map_flags);
1070 		if (ret)
1071 			return ret;
1072 		if (l_old) {
1073 			/* grab the element lock and update value in place */
1074 			copy_map_value_locked(map,
1075 					      l_old->key + round_up(key_size, 8),
1076 					      value, false);
1077 			return 0;
1078 		}
1079 		/* fall through, grab the bucket lock and lookup again.
1080 		 * 99.9% chance that the element won't be found,
1081 		 * but second lookup under lock has to be done.
1082 		 */
1083 	}
1084 
1085 	ret = htab_lock_bucket(htab, b, hash, &flags);
1086 	if (ret)
1087 		return ret;
1088 
1089 	l_old = lookup_elem_raw(head, hash, key, key_size);
1090 
1091 	ret = check_flags(htab, l_old, map_flags);
1092 	if (ret)
1093 		goto err;
1094 
1095 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1096 		/* first lookup without the bucket lock didn't find the element,
1097 		 * but second lookup with the bucket lock found it.
1098 		 * This case is highly unlikely, but has to be dealt with:
1099 		 * grab the element lock in addition to the bucket lock
1100 		 * and update element in place
1101 		 */
1102 		copy_map_value_locked(map,
1103 				      l_old->key + round_up(key_size, 8),
1104 				      value, false);
1105 		ret = 0;
1106 		goto err;
1107 	}
1108 
1109 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1110 				l_old);
1111 	if (IS_ERR(l_new)) {
1112 		/* all pre-allocated elements are in use or memory exhausted */
1113 		ret = PTR_ERR(l_new);
1114 		goto err;
1115 	}
1116 
1117 	/* add new element to the head of the list, so that
1118 	 * concurrent search will find it before old elem
1119 	 */
1120 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1121 	if (l_old) {
1122 		hlist_nulls_del_rcu(&l_old->hash_node);
1123 		if (!htab_is_prealloc(htab))
1124 			free_htab_elem(htab, l_old);
1125 		else
1126 			check_and_free_fields(htab, l_old);
1127 	}
1128 	ret = 0;
1129 err:
1130 	htab_unlock_bucket(htab, b, hash, flags);
1131 	return ret;
1132 }
1133 
1134 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1135 {
1136 	check_and_free_fields(htab, elem);
1137 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1138 }
1139 
1140 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1141 				    u64 map_flags)
1142 {
1143 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1144 	struct htab_elem *l_new, *l_old = NULL;
1145 	struct hlist_nulls_head *head;
1146 	unsigned long flags;
1147 	struct bucket *b;
1148 	u32 key_size, hash;
1149 	int ret;
1150 
1151 	if (unlikely(map_flags > BPF_EXIST))
1152 		/* unknown flags */
1153 		return -EINVAL;
1154 
1155 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1156 		     !rcu_read_lock_bh_held());
1157 
1158 	key_size = map->key_size;
1159 
1160 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1161 
1162 	b = __select_bucket(htab, hash);
1163 	head = &b->head;
1164 
1165 	/* For LRU, we need to alloc before taking bucket's
1166 	 * spinlock because getting free nodes from LRU may need
1167 	 * to remove older elements from htab and this removal
1168 	 * operation will need a bucket lock.
1169 	 */
1170 	l_new = prealloc_lru_pop(htab, key, hash);
1171 	if (!l_new)
1172 		return -ENOMEM;
1173 	copy_map_value(&htab->map,
1174 		       l_new->key + round_up(map->key_size, 8), value);
1175 
1176 	ret = htab_lock_bucket(htab, b, hash, &flags);
1177 	if (ret)
1178 		return ret;
1179 
1180 	l_old = lookup_elem_raw(head, hash, key, key_size);
1181 
1182 	ret = check_flags(htab, l_old, map_flags);
1183 	if (ret)
1184 		goto err;
1185 
1186 	/* add new element to the head of the list, so that
1187 	 * concurrent search will find it before old elem
1188 	 */
1189 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1190 	if (l_old) {
1191 		bpf_lru_node_set_ref(&l_new->lru_node);
1192 		hlist_nulls_del_rcu(&l_old->hash_node);
1193 	}
1194 	ret = 0;
1195 
1196 err:
1197 	htab_unlock_bucket(htab, b, hash, flags);
1198 
1199 	if (ret)
1200 		htab_lru_push_free(htab, l_new);
1201 	else if (l_old)
1202 		htab_lru_push_free(htab, l_old);
1203 
1204 	return ret;
1205 }
1206 
1207 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1208 					 void *value, u64 map_flags,
1209 					 bool onallcpus)
1210 {
1211 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1212 	struct htab_elem *l_new = NULL, *l_old;
1213 	struct hlist_nulls_head *head;
1214 	unsigned long flags;
1215 	struct bucket *b;
1216 	u32 key_size, hash;
1217 	int ret;
1218 
1219 	if (unlikely(map_flags > BPF_EXIST))
1220 		/* unknown flags */
1221 		return -EINVAL;
1222 
1223 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1224 		     !rcu_read_lock_bh_held());
1225 
1226 	key_size = map->key_size;
1227 
1228 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1229 
1230 	b = __select_bucket(htab, hash);
1231 	head = &b->head;
1232 
1233 	ret = htab_lock_bucket(htab, b, hash, &flags);
1234 	if (ret)
1235 		return ret;
1236 
1237 	l_old = lookup_elem_raw(head, hash, key, key_size);
1238 
1239 	ret = check_flags(htab, l_old, map_flags);
1240 	if (ret)
1241 		goto err;
1242 
1243 	if (l_old) {
1244 		/* per-cpu hash map can update value in-place */
1245 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1246 				value, onallcpus);
1247 	} else {
1248 		l_new = alloc_htab_elem(htab, key, value, key_size,
1249 					hash, true, onallcpus, NULL);
1250 		if (IS_ERR(l_new)) {
1251 			ret = PTR_ERR(l_new);
1252 			goto err;
1253 		}
1254 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1255 	}
1256 	ret = 0;
1257 err:
1258 	htab_unlock_bucket(htab, b, hash, flags);
1259 	return ret;
1260 }
1261 
1262 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1263 					     void *value, u64 map_flags,
1264 					     bool onallcpus)
1265 {
1266 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1267 	struct htab_elem *l_new = NULL, *l_old;
1268 	struct hlist_nulls_head *head;
1269 	unsigned long flags;
1270 	struct bucket *b;
1271 	u32 key_size, hash;
1272 	int ret;
1273 
1274 	if (unlikely(map_flags > BPF_EXIST))
1275 		/* unknown flags */
1276 		return -EINVAL;
1277 
1278 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1279 		     !rcu_read_lock_bh_held());
1280 
1281 	key_size = map->key_size;
1282 
1283 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1284 
1285 	b = __select_bucket(htab, hash);
1286 	head = &b->head;
1287 
1288 	/* For LRU, we need to alloc before taking bucket's
1289 	 * spinlock because LRU's elem alloc may need
1290 	 * to remove older elem from htab and this removal
1291 	 * operation will need a bucket lock.
1292 	 */
1293 	if (map_flags != BPF_EXIST) {
1294 		l_new = prealloc_lru_pop(htab, key, hash);
1295 		if (!l_new)
1296 			return -ENOMEM;
1297 	}
1298 
1299 	ret = htab_lock_bucket(htab, b, hash, &flags);
1300 	if (ret)
1301 		return ret;
1302 
1303 	l_old = lookup_elem_raw(head, hash, key, key_size);
1304 
1305 	ret = check_flags(htab, l_old, map_flags);
1306 	if (ret)
1307 		goto err;
1308 
1309 	if (l_old) {
1310 		bpf_lru_node_set_ref(&l_old->lru_node);
1311 
1312 		/* per-cpu hash map can update value in-place */
1313 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1314 				value, onallcpus);
1315 	} else {
1316 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1317 				value, onallcpus);
1318 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1319 		l_new = NULL;
1320 	}
1321 	ret = 0;
1322 err:
1323 	htab_unlock_bucket(htab, b, hash, flags);
1324 	if (l_new)
1325 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1326 	return ret;
1327 }
1328 
1329 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1330 				       void *value, u64 map_flags)
1331 {
1332 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1333 }
1334 
1335 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1336 					   void *value, u64 map_flags)
1337 {
1338 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1339 						 false);
1340 }
1341 
1342 /* Called from syscall or from eBPF program */
1343 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1344 {
1345 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1346 	struct hlist_nulls_head *head;
1347 	struct bucket *b;
1348 	struct htab_elem *l;
1349 	unsigned long flags;
1350 	u32 hash, key_size;
1351 	int ret;
1352 
1353 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1354 		     !rcu_read_lock_bh_held());
1355 
1356 	key_size = map->key_size;
1357 
1358 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1359 	b = __select_bucket(htab, hash);
1360 	head = &b->head;
1361 
1362 	ret = htab_lock_bucket(htab, b, hash, &flags);
1363 	if (ret)
1364 		return ret;
1365 
1366 	l = lookup_elem_raw(head, hash, key, key_size);
1367 
1368 	if (l) {
1369 		hlist_nulls_del_rcu(&l->hash_node);
1370 		free_htab_elem(htab, l);
1371 	} else {
1372 		ret = -ENOENT;
1373 	}
1374 
1375 	htab_unlock_bucket(htab, b, hash, flags);
1376 	return ret;
1377 }
1378 
1379 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1380 {
1381 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1382 	struct hlist_nulls_head *head;
1383 	struct bucket *b;
1384 	struct htab_elem *l;
1385 	unsigned long flags;
1386 	u32 hash, key_size;
1387 	int ret;
1388 
1389 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1390 		     !rcu_read_lock_bh_held());
1391 
1392 	key_size = map->key_size;
1393 
1394 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1395 	b = __select_bucket(htab, hash);
1396 	head = &b->head;
1397 
1398 	ret = htab_lock_bucket(htab, b, hash, &flags);
1399 	if (ret)
1400 		return ret;
1401 
1402 	l = lookup_elem_raw(head, hash, key, key_size);
1403 
1404 	if (l)
1405 		hlist_nulls_del_rcu(&l->hash_node);
1406 	else
1407 		ret = -ENOENT;
1408 
1409 	htab_unlock_bucket(htab, b, hash, flags);
1410 	if (l)
1411 		htab_lru_push_free(htab, l);
1412 	return ret;
1413 }
1414 
1415 static void delete_all_elements(struct bpf_htab *htab)
1416 {
1417 	int i;
1418 
1419 	for (i = 0; i < htab->n_buckets; i++) {
1420 		struct hlist_nulls_head *head = select_bucket(htab, i);
1421 		struct hlist_nulls_node *n;
1422 		struct htab_elem *l;
1423 
1424 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1425 			hlist_nulls_del_rcu(&l->hash_node);
1426 			htab_elem_free(htab, l);
1427 		}
1428 	}
1429 }
1430 
1431 static void htab_free_malloced_timers(struct bpf_htab *htab)
1432 {
1433 	int i;
1434 
1435 	rcu_read_lock();
1436 	for (i = 0; i < htab->n_buckets; i++) {
1437 		struct hlist_nulls_head *head = select_bucket(htab, i);
1438 		struct hlist_nulls_node *n;
1439 		struct htab_elem *l;
1440 
1441 		hlist_nulls_for_each_entry(l, n, head, hash_node) {
1442 			/* We don't reset or free kptr on uref dropping to zero,
1443 			 * hence just free timer.
1444 			 */
1445 			bpf_timer_cancel_and_free(l->key +
1446 						  round_up(htab->map.key_size, 8) +
1447 						  htab->map.timer_off);
1448 		}
1449 		cond_resched_rcu();
1450 	}
1451 	rcu_read_unlock();
1452 }
1453 
1454 static void htab_map_free_timers(struct bpf_map *map)
1455 {
1456 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1457 
1458 	/* We don't reset or free kptr on uref dropping to zero. */
1459 	if (!map_value_has_timer(&htab->map))
1460 		return;
1461 	if (!htab_is_prealloc(htab))
1462 		htab_free_malloced_timers(htab);
1463 	else
1464 		htab_free_prealloced_timers(htab);
1465 }
1466 
1467 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1468 static void htab_map_free(struct bpf_map *map)
1469 {
1470 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1471 	int i;
1472 
1473 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1474 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1475 	 * There is no need to synchronize_rcu() here to protect map elements.
1476 	 */
1477 
1478 	/* some of free_htab_elem() callbacks for elements of this map may
1479 	 * not have executed. Wait for them.
1480 	 */
1481 	rcu_barrier();
1482 	if (!htab_is_prealloc(htab)) {
1483 		delete_all_elements(htab);
1484 	} else {
1485 		htab_free_prealloced_kptrs(htab);
1486 		prealloc_destroy(htab);
1487 	}
1488 
1489 	bpf_map_free_kptr_off_tab(map);
1490 	free_percpu(htab->extra_elems);
1491 	bpf_map_area_free(htab->buckets);
1492 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1493 		free_percpu(htab->map_locked[i]);
1494 	lockdep_unregister_key(&htab->lockdep_key);
1495 	kfree(htab);
1496 }
1497 
1498 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1499 				   struct seq_file *m)
1500 {
1501 	void *value;
1502 
1503 	rcu_read_lock();
1504 
1505 	value = htab_map_lookup_elem(map, key);
1506 	if (!value) {
1507 		rcu_read_unlock();
1508 		return;
1509 	}
1510 
1511 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1512 	seq_puts(m, ": ");
1513 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1514 	seq_puts(m, "\n");
1515 
1516 	rcu_read_unlock();
1517 }
1518 
1519 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1520 					     void *value, bool is_lru_map,
1521 					     bool is_percpu, u64 flags)
1522 {
1523 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1524 	struct hlist_nulls_head *head;
1525 	unsigned long bflags;
1526 	struct htab_elem *l;
1527 	u32 hash, key_size;
1528 	struct bucket *b;
1529 	int ret;
1530 
1531 	key_size = map->key_size;
1532 
1533 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1534 	b = __select_bucket(htab, hash);
1535 	head = &b->head;
1536 
1537 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1538 	if (ret)
1539 		return ret;
1540 
1541 	l = lookup_elem_raw(head, hash, key, key_size);
1542 	if (!l) {
1543 		ret = -ENOENT;
1544 	} else {
1545 		if (is_percpu) {
1546 			u32 roundup_value_size = round_up(map->value_size, 8);
1547 			void __percpu *pptr;
1548 			int off = 0, cpu;
1549 
1550 			pptr = htab_elem_get_ptr(l, key_size);
1551 			for_each_possible_cpu(cpu) {
1552 				bpf_long_memcpy(value + off,
1553 						per_cpu_ptr(pptr, cpu),
1554 						roundup_value_size);
1555 				off += roundup_value_size;
1556 			}
1557 		} else {
1558 			u32 roundup_key_size = round_up(map->key_size, 8);
1559 
1560 			if (flags & BPF_F_LOCK)
1561 				copy_map_value_locked(map, value, l->key +
1562 						      roundup_key_size,
1563 						      true);
1564 			else
1565 				copy_map_value(map, value, l->key +
1566 					       roundup_key_size);
1567 			check_and_init_map_value(map, value);
1568 		}
1569 
1570 		hlist_nulls_del_rcu(&l->hash_node);
1571 		if (!is_lru_map)
1572 			free_htab_elem(htab, l);
1573 	}
1574 
1575 	htab_unlock_bucket(htab, b, hash, bflags);
1576 
1577 	if (is_lru_map && l)
1578 		htab_lru_push_free(htab, l);
1579 
1580 	return ret;
1581 }
1582 
1583 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1584 					   void *value, u64 flags)
1585 {
1586 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1587 						 flags);
1588 }
1589 
1590 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1591 						  void *key, void *value,
1592 						  u64 flags)
1593 {
1594 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1595 						 flags);
1596 }
1597 
1598 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1599 					       void *value, u64 flags)
1600 {
1601 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1602 						 flags);
1603 }
1604 
1605 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1606 						      void *key, void *value,
1607 						      u64 flags)
1608 {
1609 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1610 						 flags);
1611 }
1612 
1613 static int
1614 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1615 				   const union bpf_attr *attr,
1616 				   union bpf_attr __user *uattr,
1617 				   bool do_delete, bool is_lru_map,
1618 				   bool is_percpu)
1619 {
1620 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1621 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1622 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1623 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1624 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1625 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1626 	u32 batch, max_count, size, bucket_size, map_id;
1627 	struct htab_elem *node_to_free = NULL;
1628 	u64 elem_map_flags, map_flags;
1629 	struct hlist_nulls_head *head;
1630 	struct hlist_nulls_node *n;
1631 	unsigned long flags = 0;
1632 	bool locked = false;
1633 	struct htab_elem *l;
1634 	struct bucket *b;
1635 	int ret = 0;
1636 
1637 	elem_map_flags = attr->batch.elem_flags;
1638 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1639 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1640 		return -EINVAL;
1641 
1642 	map_flags = attr->batch.flags;
1643 	if (map_flags)
1644 		return -EINVAL;
1645 
1646 	max_count = attr->batch.count;
1647 	if (!max_count)
1648 		return 0;
1649 
1650 	if (put_user(0, &uattr->batch.count))
1651 		return -EFAULT;
1652 
1653 	batch = 0;
1654 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1655 		return -EFAULT;
1656 
1657 	if (batch >= htab->n_buckets)
1658 		return -ENOENT;
1659 
1660 	key_size = htab->map.key_size;
1661 	roundup_key_size = round_up(htab->map.key_size, 8);
1662 	value_size = htab->map.value_size;
1663 	size = round_up(value_size, 8);
1664 	if (is_percpu)
1665 		value_size = size * num_possible_cpus();
1666 	total = 0;
1667 	/* while experimenting with hash tables with sizes ranging from 10 to
1668 	 * 1000, it was observed that a bucket can have up to 5 entries.
1669 	 */
1670 	bucket_size = 5;
1671 
1672 alloc:
1673 	/* We cannot do copy_from_user or copy_to_user inside
1674 	 * the rcu_read_lock. Allocate enough space here.
1675 	 */
1676 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1677 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1678 	if (!keys || !values) {
1679 		ret = -ENOMEM;
1680 		goto after_loop;
1681 	}
1682 
1683 again:
1684 	bpf_disable_instrumentation();
1685 	rcu_read_lock();
1686 again_nocopy:
1687 	dst_key = keys;
1688 	dst_val = values;
1689 	b = &htab->buckets[batch];
1690 	head = &b->head;
1691 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1692 	if (locked) {
1693 		ret = htab_lock_bucket(htab, b, batch, &flags);
1694 		if (ret)
1695 			goto next_batch;
1696 	}
1697 
1698 	bucket_cnt = 0;
1699 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1700 		bucket_cnt++;
1701 
1702 	if (bucket_cnt && !locked) {
1703 		locked = true;
1704 		goto again_nocopy;
1705 	}
1706 
1707 	if (bucket_cnt > (max_count - total)) {
1708 		if (total == 0)
1709 			ret = -ENOSPC;
1710 		/* Note that since bucket_cnt > 0 here, it is implicit
1711 		 * that the locked was grabbed, so release it.
1712 		 */
1713 		htab_unlock_bucket(htab, b, batch, flags);
1714 		rcu_read_unlock();
1715 		bpf_enable_instrumentation();
1716 		goto after_loop;
1717 	}
1718 
1719 	if (bucket_cnt > bucket_size) {
1720 		bucket_size = bucket_cnt;
1721 		/* Note that since bucket_cnt > 0 here, it is implicit
1722 		 * that the locked was grabbed, so release it.
1723 		 */
1724 		htab_unlock_bucket(htab, b, batch, flags);
1725 		rcu_read_unlock();
1726 		bpf_enable_instrumentation();
1727 		kvfree(keys);
1728 		kvfree(values);
1729 		goto alloc;
1730 	}
1731 
1732 	/* Next block is only safe to run if you have grabbed the lock */
1733 	if (!locked)
1734 		goto next_batch;
1735 
1736 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1737 		memcpy(dst_key, l->key, key_size);
1738 
1739 		if (is_percpu) {
1740 			int off = 0, cpu;
1741 			void __percpu *pptr;
1742 
1743 			pptr = htab_elem_get_ptr(l, map->key_size);
1744 			for_each_possible_cpu(cpu) {
1745 				bpf_long_memcpy(dst_val + off,
1746 						per_cpu_ptr(pptr, cpu), size);
1747 				off += size;
1748 			}
1749 		} else {
1750 			value = l->key + roundup_key_size;
1751 			if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1752 				struct bpf_map **inner_map = value;
1753 
1754 				 /* Actual value is the id of the inner map */
1755 				map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1756 				value = &map_id;
1757 			}
1758 
1759 			if (elem_map_flags & BPF_F_LOCK)
1760 				copy_map_value_locked(map, dst_val, value,
1761 						      true);
1762 			else
1763 				copy_map_value(map, dst_val, value);
1764 			check_and_init_map_value(map, dst_val);
1765 		}
1766 		if (do_delete) {
1767 			hlist_nulls_del_rcu(&l->hash_node);
1768 
1769 			/* bpf_lru_push_free() will acquire lru_lock, which
1770 			 * may cause deadlock. See comments in function
1771 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1772 			 * after releasing the bucket lock.
1773 			 */
1774 			if (is_lru_map) {
1775 				l->batch_flink = node_to_free;
1776 				node_to_free = l;
1777 			} else {
1778 				free_htab_elem(htab, l);
1779 			}
1780 		}
1781 		dst_key += key_size;
1782 		dst_val += value_size;
1783 	}
1784 
1785 	htab_unlock_bucket(htab, b, batch, flags);
1786 	locked = false;
1787 
1788 	while (node_to_free) {
1789 		l = node_to_free;
1790 		node_to_free = node_to_free->batch_flink;
1791 		htab_lru_push_free(htab, l);
1792 	}
1793 
1794 next_batch:
1795 	/* If we are not copying data, we can go to next bucket and avoid
1796 	 * unlocking the rcu.
1797 	 */
1798 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1799 		batch++;
1800 		goto again_nocopy;
1801 	}
1802 
1803 	rcu_read_unlock();
1804 	bpf_enable_instrumentation();
1805 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1806 	    key_size * bucket_cnt) ||
1807 	    copy_to_user(uvalues + total * value_size, values,
1808 	    value_size * bucket_cnt))) {
1809 		ret = -EFAULT;
1810 		goto after_loop;
1811 	}
1812 
1813 	total += bucket_cnt;
1814 	batch++;
1815 	if (batch >= htab->n_buckets) {
1816 		ret = -ENOENT;
1817 		goto after_loop;
1818 	}
1819 	goto again;
1820 
1821 after_loop:
1822 	if (ret == -EFAULT)
1823 		goto out;
1824 
1825 	/* copy # of entries and next batch */
1826 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1827 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1828 	    put_user(total, &uattr->batch.count))
1829 		ret = -EFAULT;
1830 
1831 out:
1832 	kvfree(keys);
1833 	kvfree(values);
1834 	return ret;
1835 }
1836 
1837 static int
1838 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1839 			     union bpf_attr __user *uattr)
1840 {
1841 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1842 						  false, true);
1843 }
1844 
1845 static int
1846 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1847 					const union bpf_attr *attr,
1848 					union bpf_attr __user *uattr)
1849 {
1850 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1851 						  false, true);
1852 }
1853 
1854 static int
1855 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1856 		      union bpf_attr __user *uattr)
1857 {
1858 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1859 						  false, false);
1860 }
1861 
1862 static int
1863 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1864 				 const union bpf_attr *attr,
1865 				 union bpf_attr __user *uattr)
1866 {
1867 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1868 						  false, false);
1869 }
1870 
1871 static int
1872 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1873 				 const union bpf_attr *attr,
1874 				 union bpf_attr __user *uattr)
1875 {
1876 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1877 						  true, true);
1878 }
1879 
1880 static int
1881 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1882 					    const union bpf_attr *attr,
1883 					    union bpf_attr __user *uattr)
1884 {
1885 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1886 						  true, true);
1887 }
1888 
1889 static int
1890 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1891 			  union bpf_attr __user *uattr)
1892 {
1893 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1894 						  true, false);
1895 }
1896 
1897 static int
1898 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1899 				     const union bpf_attr *attr,
1900 				     union bpf_attr __user *uattr)
1901 {
1902 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1903 						  true, false);
1904 }
1905 
1906 struct bpf_iter_seq_hash_map_info {
1907 	struct bpf_map *map;
1908 	struct bpf_htab *htab;
1909 	void *percpu_value_buf; // non-zero means percpu hash
1910 	u32 bucket_id;
1911 	u32 skip_elems;
1912 };
1913 
1914 static struct htab_elem *
1915 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1916 			   struct htab_elem *prev_elem)
1917 {
1918 	const struct bpf_htab *htab = info->htab;
1919 	u32 skip_elems = info->skip_elems;
1920 	u32 bucket_id = info->bucket_id;
1921 	struct hlist_nulls_head *head;
1922 	struct hlist_nulls_node *n;
1923 	struct htab_elem *elem;
1924 	struct bucket *b;
1925 	u32 i, count;
1926 
1927 	if (bucket_id >= htab->n_buckets)
1928 		return NULL;
1929 
1930 	/* try to find next elem in the same bucket */
1931 	if (prev_elem) {
1932 		/* no update/deletion on this bucket, prev_elem should be still valid
1933 		 * and we won't skip elements.
1934 		 */
1935 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1936 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1937 		if (elem)
1938 			return elem;
1939 
1940 		/* not found, unlock and go to the next bucket */
1941 		b = &htab->buckets[bucket_id++];
1942 		rcu_read_unlock();
1943 		skip_elems = 0;
1944 	}
1945 
1946 	for (i = bucket_id; i < htab->n_buckets; i++) {
1947 		b = &htab->buckets[i];
1948 		rcu_read_lock();
1949 
1950 		count = 0;
1951 		head = &b->head;
1952 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1953 			if (count >= skip_elems) {
1954 				info->bucket_id = i;
1955 				info->skip_elems = count;
1956 				return elem;
1957 			}
1958 			count++;
1959 		}
1960 
1961 		rcu_read_unlock();
1962 		skip_elems = 0;
1963 	}
1964 
1965 	info->bucket_id = i;
1966 	info->skip_elems = 0;
1967 	return NULL;
1968 }
1969 
1970 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1971 {
1972 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1973 	struct htab_elem *elem;
1974 
1975 	elem = bpf_hash_map_seq_find_next(info, NULL);
1976 	if (!elem)
1977 		return NULL;
1978 
1979 	if (*pos == 0)
1980 		++*pos;
1981 	return elem;
1982 }
1983 
1984 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1985 {
1986 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1987 
1988 	++*pos;
1989 	++info->skip_elems;
1990 	return bpf_hash_map_seq_find_next(info, v);
1991 }
1992 
1993 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1994 {
1995 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1996 	u32 roundup_key_size, roundup_value_size;
1997 	struct bpf_iter__bpf_map_elem ctx = {};
1998 	struct bpf_map *map = info->map;
1999 	struct bpf_iter_meta meta;
2000 	int ret = 0, off = 0, cpu;
2001 	struct bpf_prog *prog;
2002 	void __percpu *pptr;
2003 
2004 	meta.seq = seq;
2005 	prog = bpf_iter_get_info(&meta, elem == NULL);
2006 	if (prog) {
2007 		ctx.meta = &meta;
2008 		ctx.map = info->map;
2009 		if (elem) {
2010 			roundup_key_size = round_up(map->key_size, 8);
2011 			ctx.key = elem->key;
2012 			if (!info->percpu_value_buf) {
2013 				ctx.value = elem->key + roundup_key_size;
2014 			} else {
2015 				roundup_value_size = round_up(map->value_size, 8);
2016 				pptr = htab_elem_get_ptr(elem, map->key_size);
2017 				for_each_possible_cpu(cpu) {
2018 					bpf_long_memcpy(info->percpu_value_buf + off,
2019 							per_cpu_ptr(pptr, cpu),
2020 							roundup_value_size);
2021 					off += roundup_value_size;
2022 				}
2023 				ctx.value = info->percpu_value_buf;
2024 			}
2025 		}
2026 		ret = bpf_iter_run_prog(prog, &ctx);
2027 	}
2028 
2029 	return ret;
2030 }
2031 
2032 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2033 {
2034 	return __bpf_hash_map_seq_show(seq, v);
2035 }
2036 
2037 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2038 {
2039 	if (!v)
2040 		(void)__bpf_hash_map_seq_show(seq, NULL);
2041 	else
2042 		rcu_read_unlock();
2043 }
2044 
2045 static int bpf_iter_init_hash_map(void *priv_data,
2046 				  struct bpf_iter_aux_info *aux)
2047 {
2048 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2049 	struct bpf_map *map = aux->map;
2050 	void *value_buf;
2051 	u32 buf_size;
2052 
2053 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2054 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2055 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2056 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2057 		if (!value_buf)
2058 			return -ENOMEM;
2059 
2060 		seq_info->percpu_value_buf = value_buf;
2061 	}
2062 
2063 	bpf_map_inc_with_uref(map);
2064 	seq_info->map = map;
2065 	seq_info->htab = container_of(map, struct bpf_htab, map);
2066 	return 0;
2067 }
2068 
2069 static void bpf_iter_fini_hash_map(void *priv_data)
2070 {
2071 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2072 
2073 	bpf_map_put_with_uref(seq_info->map);
2074 	kfree(seq_info->percpu_value_buf);
2075 }
2076 
2077 static const struct seq_operations bpf_hash_map_seq_ops = {
2078 	.start	= bpf_hash_map_seq_start,
2079 	.next	= bpf_hash_map_seq_next,
2080 	.stop	= bpf_hash_map_seq_stop,
2081 	.show	= bpf_hash_map_seq_show,
2082 };
2083 
2084 static const struct bpf_iter_seq_info iter_seq_info = {
2085 	.seq_ops		= &bpf_hash_map_seq_ops,
2086 	.init_seq_private	= bpf_iter_init_hash_map,
2087 	.fini_seq_private	= bpf_iter_fini_hash_map,
2088 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2089 };
2090 
2091 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2092 				  void *callback_ctx, u64 flags)
2093 {
2094 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2095 	struct hlist_nulls_head *head;
2096 	struct hlist_nulls_node *n;
2097 	struct htab_elem *elem;
2098 	u32 roundup_key_size;
2099 	int i, num_elems = 0;
2100 	void __percpu *pptr;
2101 	struct bucket *b;
2102 	void *key, *val;
2103 	bool is_percpu;
2104 	u64 ret = 0;
2105 
2106 	if (flags != 0)
2107 		return -EINVAL;
2108 
2109 	is_percpu = htab_is_percpu(htab);
2110 
2111 	roundup_key_size = round_up(map->key_size, 8);
2112 	/* disable migration so percpu value prepared here will be the
2113 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2114 	 */
2115 	if (is_percpu)
2116 		migrate_disable();
2117 	for (i = 0; i < htab->n_buckets; i++) {
2118 		b = &htab->buckets[i];
2119 		rcu_read_lock();
2120 		head = &b->head;
2121 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2122 			key = elem->key;
2123 			if (is_percpu) {
2124 				/* current cpu value for percpu map */
2125 				pptr = htab_elem_get_ptr(elem, map->key_size);
2126 				val = this_cpu_ptr(pptr);
2127 			} else {
2128 				val = elem->key + roundup_key_size;
2129 			}
2130 			num_elems++;
2131 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2132 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2133 			/* return value: 0 - continue, 1 - stop and return */
2134 			if (ret) {
2135 				rcu_read_unlock();
2136 				goto out;
2137 			}
2138 		}
2139 		rcu_read_unlock();
2140 	}
2141 out:
2142 	if (is_percpu)
2143 		migrate_enable();
2144 	return num_elems;
2145 }
2146 
2147 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2148 const struct bpf_map_ops htab_map_ops = {
2149 	.map_meta_equal = bpf_map_meta_equal,
2150 	.map_alloc_check = htab_map_alloc_check,
2151 	.map_alloc = htab_map_alloc,
2152 	.map_free = htab_map_free,
2153 	.map_get_next_key = htab_map_get_next_key,
2154 	.map_release_uref = htab_map_free_timers,
2155 	.map_lookup_elem = htab_map_lookup_elem,
2156 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2157 	.map_update_elem = htab_map_update_elem,
2158 	.map_delete_elem = htab_map_delete_elem,
2159 	.map_gen_lookup = htab_map_gen_lookup,
2160 	.map_seq_show_elem = htab_map_seq_show_elem,
2161 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2162 	.map_for_each_callback = bpf_for_each_hash_elem,
2163 	BATCH_OPS(htab),
2164 	.map_btf_id = &htab_map_btf_ids[0],
2165 	.iter_seq_info = &iter_seq_info,
2166 };
2167 
2168 const struct bpf_map_ops htab_lru_map_ops = {
2169 	.map_meta_equal = bpf_map_meta_equal,
2170 	.map_alloc_check = htab_map_alloc_check,
2171 	.map_alloc = htab_map_alloc,
2172 	.map_free = htab_map_free,
2173 	.map_get_next_key = htab_map_get_next_key,
2174 	.map_release_uref = htab_map_free_timers,
2175 	.map_lookup_elem = htab_lru_map_lookup_elem,
2176 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2177 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2178 	.map_update_elem = htab_lru_map_update_elem,
2179 	.map_delete_elem = htab_lru_map_delete_elem,
2180 	.map_gen_lookup = htab_lru_map_gen_lookup,
2181 	.map_seq_show_elem = htab_map_seq_show_elem,
2182 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2183 	.map_for_each_callback = bpf_for_each_hash_elem,
2184 	BATCH_OPS(htab_lru),
2185 	.map_btf_id = &htab_map_btf_ids[0],
2186 	.iter_seq_info = &iter_seq_info,
2187 };
2188 
2189 /* Called from eBPF program */
2190 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2191 {
2192 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2193 
2194 	if (l)
2195 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2196 	else
2197 		return NULL;
2198 }
2199 
2200 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2201 {
2202 	struct htab_elem *l;
2203 
2204 	if (cpu >= nr_cpu_ids)
2205 		return NULL;
2206 
2207 	l = __htab_map_lookup_elem(map, key);
2208 	if (l)
2209 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2210 	else
2211 		return NULL;
2212 }
2213 
2214 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2215 {
2216 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2217 
2218 	if (l) {
2219 		bpf_lru_node_set_ref(&l->lru_node);
2220 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2221 	}
2222 
2223 	return NULL;
2224 }
2225 
2226 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2227 {
2228 	struct htab_elem *l;
2229 
2230 	if (cpu >= nr_cpu_ids)
2231 		return NULL;
2232 
2233 	l = __htab_map_lookup_elem(map, key);
2234 	if (l) {
2235 		bpf_lru_node_set_ref(&l->lru_node);
2236 		return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2237 	}
2238 
2239 	return NULL;
2240 }
2241 
2242 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2243 {
2244 	struct htab_elem *l;
2245 	void __percpu *pptr;
2246 	int ret = -ENOENT;
2247 	int cpu, off = 0;
2248 	u32 size;
2249 
2250 	/* per_cpu areas are zero-filled and bpf programs can only
2251 	 * access 'value_size' of them, so copying rounded areas
2252 	 * will not leak any kernel data
2253 	 */
2254 	size = round_up(map->value_size, 8);
2255 	rcu_read_lock();
2256 	l = __htab_map_lookup_elem(map, key);
2257 	if (!l)
2258 		goto out;
2259 	/* We do not mark LRU map element here in order to not mess up
2260 	 * eviction heuristics when user space does a map walk.
2261 	 */
2262 	pptr = htab_elem_get_ptr(l, map->key_size);
2263 	for_each_possible_cpu(cpu) {
2264 		bpf_long_memcpy(value + off,
2265 				per_cpu_ptr(pptr, cpu), size);
2266 		off += size;
2267 	}
2268 	ret = 0;
2269 out:
2270 	rcu_read_unlock();
2271 	return ret;
2272 }
2273 
2274 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2275 			   u64 map_flags)
2276 {
2277 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2278 	int ret;
2279 
2280 	rcu_read_lock();
2281 	if (htab_is_lru(htab))
2282 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2283 							map_flags, true);
2284 	else
2285 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2286 						    true);
2287 	rcu_read_unlock();
2288 
2289 	return ret;
2290 }
2291 
2292 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2293 					  struct seq_file *m)
2294 {
2295 	struct htab_elem *l;
2296 	void __percpu *pptr;
2297 	int cpu;
2298 
2299 	rcu_read_lock();
2300 
2301 	l = __htab_map_lookup_elem(map, key);
2302 	if (!l) {
2303 		rcu_read_unlock();
2304 		return;
2305 	}
2306 
2307 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2308 	seq_puts(m, ": {\n");
2309 	pptr = htab_elem_get_ptr(l, map->key_size);
2310 	for_each_possible_cpu(cpu) {
2311 		seq_printf(m, "\tcpu%d: ", cpu);
2312 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2313 				  per_cpu_ptr(pptr, cpu), m);
2314 		seq_puts(m, "\n");
2315 	}
2316 	seq_puts(m, "}\n");
2317 
2318 	rcu_read_unlock();
2319 }
2320 
2321 const struct bpf_map_ops htab_percpu_map_ops = {
2322 	.map_meta_equal = bpf_map_meta_equal,
2323 	.map_alloc_check = htab_map_alloc_check,
2324 	.map_alloc = htab_map_alloc,
2325 	.map_free = htab_map_free,
2326 	.map_get_next_key = htab_map_get_next_key,
2327 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2328 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2329 	.map_update_elem = htab_percpu_map_update_elem,
2330 	.map_delete_elem = htab_map_delete_elem,
2331 	.map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2332 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2333 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2334 	.map_for_each_callback = bpf_for_each_hash_elem,
2335 	BATCH_OPS(htab_percpu),
2336 	.map_btf_id = &htab_map_btf_ids[0],
2337 	.iter_seq_info = &iter_seq_info,
2338 };
2339 
2340 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2341 	.map_meta_equal = bpf_map_meta_equal,
2342 	.map_alloc_check = htab_map_alloc_check,
2343 	.map_alloc = htab_map_alloc,
2344 	.map_free = htab_map_free,
2345 	.map_get_next_key = htab_map_get_next_key,
2346 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2347 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2348 	.map_update_elem = htab_lru_percpu_map_update_elem,
2349 	.map_delete_elem = htab_lru_map_delete_elem,
2350 	.map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2351 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2352 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2353 	.map_for_each_callback = bpf_for_each_hash_elem,
2354 	BATCH_OPS(htab_lru_percpu),
2355 	.map_btf_id = &htab_map_btf_ids[0],
2356 	.iter_seq_info = &iter_seq_info,
2357 };
2358 
2359 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2360 {
2361 	if (attr->value_size != sizeof(u32))
2362 		return -EINVAL;
2363 	return htab_map_alloc_check(attr);
2364 }
2365 
2366 static void fd_htab_map_free(struct bpf_map *map)
2367 {
2368 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2369 	struct hlist_nulls_node *n;
2370 	struct hlist_nulls_head *head;
2371 	struct htab_elem *l;
2372 	int i;
2373 
2374 	for (i = 0; i < htab->n_buckets; i++) {
2375 		head = select_bucket(htab, i);
2376 
2377 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2378 			void *ptr = fd_htab_map_get_ptr(map, l);
2379 
2380 			map->ops->map_fd_put_ptr(ptr);
2381 		}
2382 	}
2383 
2384 	htab_map_free(map);
2385 }
2386 
2387 /* only called from syscall */
2388 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2389 {
2390 	void **ptr;
2391 	int ret = 0;
2392 
2393 	if (!map->ops->map_fd_sys_lookup_elem)
2394 		return -ENOTSUPP;
2395 
2396 	rcu_read_lock();
2397 	ptr = htab_map_lookup_elem(map, key);
2398 	if (ptr)
2399 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2400 	else
2401 		ret = -ENOENT;
2402 	rcu_read_unlock();
2403 
2404 	return ret;
2405 }
2406 
2407 /* only called from syscall */
2408 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2409 				void *key, void *value, u64 map_flags)
2410 {
2411 	void *ptr;
2412 	int ret;
2413 	u32 ufd = *(u32 *)value;
2414 
2415 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2416 	if (IS_ERR(ptr))
2417 		return PTR_ERR(ptr);
2418 
2419 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2420 	if (ret)
2421 		map->ops->map_fd_put_ptr(ptr);
2422 
2423 	return ret;
2424 }
2425 
2426 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2427 {
2428 	struct bpf_map *map, *inner_map_meta;
2429 
2430 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2431 	if (IS_ERR(inner_map_meta))
2432 		return inner_map_meta;
2433 
2434 	map = htab_map_alloc(attr);
2435 	if (IS_ERR(map)) {
2436 		bpf_map_meta_free(inner_map_meta);
2437 		return map;
2438 	}
2439 
2440 	map->inner_map_meta = inner_map_meta;
2441 
2442 	return map;
2443 }
2444 
2445 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2446 {
2447 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2448 
2449 	if (!inner_map)
2450 		return NULL;
2451 
2452 	return READ_ONCE(*inner_map);
2453 }
2454 
2455 static int htab_of_map_gen_lookup(struct bpf_map *map,
2456 				  struct bpf_insn *insn_buf)
2457 {
2458 	struct bpf_insn *insn = insn_buf;
2459 	const int ret = BPF_REG_0;
2460 
2461 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2462 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2463 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2464 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2465 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2466 				offsetof(struct htab_elem, key) +
2467 				round_up(map->key_size, 8));
2468 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2469 
2470 	return insn - insn_buf;
2471 }
2472 
2473 static void htab_of_map_free(struct bpf_map *map)
2474 {
2475 	bpf_map_meta_free(map->inner_map_meta);
2476 	fd_htab_map_free(map);
2477 }
2478 
2479 const struct bpf_map_ops htab_of_maps_map_ops = {
2480 	.map_alloc_check = fd_htab_map_alloc_check,
2481 	.map_alloc = htab_of_map_alloc,
2482 	.map_free = htab_of_map_free,
2483 	.map_get_next_key = htab_map_get_next_key,
2484 	.map_lookup_elem = htab_of_map_lookup_elem,
2485 	.map_delete_elem = htab_map_delete_elem,
2486 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2487 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2488 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2489 	.map_gen_lookup = htab_of_map_gen_lookup,
2490 	.map_check_btf = map_check_no_btf,
2491 	BATCH_OPS(htab),
2492 	.map_btf_id = &htab_map_btf_ids[0],
2493 };
2494