1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/rcupdate_wait.h> 11 #include <linux/random.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 #include "percpu_freelist.h" 16 #include "bpf_lru_list.h" 17 #include "map_in_map.h" 18 #include <linux/bpf_mem_alloc.h> 19 20 #define HTAB_CREATE_FLAG_MASK \ 21 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 22 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 23 24 #define BATCH_OPS(_name) \ 25 .map_lookup_batch = \ 26 _name##_map_lookup_batch, \ 27 .map_lookup_and_delete_batch = \ 28 _name##_map_lookup_and_delete_batch, \ 29 .map_update_batch = \ 30 generic_map_update_batch, \ 31 .map_delete_batch = \ 32 generic_map_delete_batch 33 34 /* 35 * The bucket lock has two protection scopes: 36 * 37 * 1) Serializing concurrent operations from BPF programs on different 38 * CPUs 39 * 40 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 41 * 42 * BPF programs can execute in any context including perf, kprobes and 43 * tracing. As there are almost no limits where perf, kprobes and tracing 44 * can be invoked from the lock operations need to be protected against 45 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 46 * the lock held section when functions which acquire this lock are invoked 47 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 48 * variable bpf_prog_active, which prevents BPF programs attached to perf 49 * events, kprobes and tracing to be invoked before the prior invocation 50 * from one of these contexts completed. sys_bpf() uses the same mechanism 51 * by pinning the task to the current CPU and incrementing the recursion 52 * protection across the map operation. 53 * 54 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 55 * operations like memory allocations (even with GFP_ATOMIC) from atomic 56 * contexts. This is required because even with GFP_ATOMIC the memory 57 * allocator calls into code paths which acquire locks with long held lock 58 * sections. To ensure the deterministic behaviour these locks are regular 59 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 60 * true atomic contexts on an RT kernel are the low level hardware 61 * handling, scheduling, low level interrupt handling, NMIs etc. None of 62 * these contexts should ever do memory allocations. 63 * 64 * As regular device interrupt handlers and soft interrupts are forced into 65 * thread context, the existing code which does 66 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 67 * just works. 68 * 69 * In theory the BPF locks could be converted to regular spinlocks as well, 70 * but the bucket locks and percpu_freelist locks can be taken from 71 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 72 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 73 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 74 * because there is no memory allocation within the lock held sections. However 75 * after hash map was fully converted to use bpf_mem_alloc, there will be 76 * non-synchronous memory allocation for non-preallocated hash map, so it is 77 * safe to always use raw spinlock for bucket lock. 78 */ 79 struct bucket { 80 struct hlist_nulls_head head; 81 raw_spinlock_t raw_lock; 82 }; 83 84 #define HASHTAB_MAP_LOCK_COUNT 8 85 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 86 87 struct bpf_htab { 88 struct bpf_map map; 89 struct bpf_mem_alloc ma; 90 struct bpf_mem_alloc pcpu_ma; 91 struct bucket *buckets; 92 void *elems; 93 union { 94 struct pcpu_freelist freelist; 95 struct bpf_lru lru; 96 }; 97 struct htab_elem *__percpu *extra_elems; 98 /* number of elements in non-preallocated hashtable are kept 99 * in either pcount or count 100 */ 101 struct percpu_counter pcount; 102 atomic_t count; 103 bool use_percpu_counter; 104 u32 n_buckets; /* number of hash buckets */ 105 u32 elem_size; /* size of each element in bytes */ 106 u32 hashrnd; 107 struct lock_class_key lockdep_key; 108 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 109 }; 110 111 /* each htab element is struct htab_elem + key + value */ 112 struct htab_elem { 113 union { 114 struct hlist_nulls_node hash_node; 115 struct { 116 void *padding; 117 union { 118 struct pcpu_freelist_node fnode; 119 struct htab_elem *batch_flink; 120 }; 121 }; 122 }; 123 union { 124 /* pointer to per-cpu pointer */ 125 void *ptr_to_pptr; 126 struct bpf_lru_node lru_node; 127 }; 128 u32 hash; 129 char key[] __aligned(8); 130 }; 131 132 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 133 { 134 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 135 } 136 137 static void htab_init_buckets(struct bpf_htab *htab) 138 { 139 unsigned int i; 140 141 for (i = 0; i < htab->n_buckets; i++) { 142 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 143 raw_spin_lock_init(&htab->buckets[i].raw_lock); 144 lockdep_set_class(&htab->buckets[i].raw_lock, 145 &htab->lockdep_key); 146 cond_resched(); 147 } 148 } 149 150 static inline int htab_lock_bucket(const struct bpf_htab *htab, 151 struct bucket *b, u32 hash, 152 unsigned long *pflags) 153 { 154 unsigned long flags; 155 156 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 157 158 preempt_disable(); 159 local_irq_save(flags); 160 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 161 __this_cpu_dec(*(htab->map_locked[hash])); 162 local_irq_restore(flags); 163 preempt_enable(); 164 return -EBUSY; 165 } 166 167 raw_spin_lock(&b->raw_lock); 168 *pflags = flags; 169 170 return 0; 171 } 172 173 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 174 struct bucket *b, u32 hash, 175 unsigned long flags) 176 { 177 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 178 raw_spin_unlock(&b->raw_lock); 179 __this_cpu_dec(*(htab->map_locked[hash])); 180 local_irq_restore(flags); 181 preempt_enable(); 182 } 183 184 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 185 186 static bool htab_is_lru(const struct bpf_htab *htab) 187 { 188 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 189 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 190 } 191 192 static bool htab_is_percpu(const struct bpf_htab *htab) 193 { 194 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 195 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 196 } 197 198 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 199 void __percpu *pptr) 200 { 201 *(void __percpu **)(l->key + key_size) = pptr; 202 } 203 204 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 205 { 206 return *(void __percpu **)(l->key + key_size); 207 } 208 209 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 210 { 211 return *(void **)(l->key + roundup(map->key_size, 8)); 212 } 213 214 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 215 { 216 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 217 } 218 219 static bool htab_has_extra_elems(struct bpf_htab *htab) 220 { 221 return !htab_is_percpu(htab) && !htab_is_lru(htab); 222 } 223 224 static void htab_free_prealloced_timers_and_wq(struct bpf_htab *htab) 225 { 226 u32 num_entries = htab->map.max_entries; 227 int i; 228 229 if (htab_has_extra_elems(htab)) 230 num_entries += num_possible_cpus(); 231 232 for (i = 0; i < num_entries; i++) { 233 struct htab_elem *elem; 234 235 elem = get_htab_elem(htab, i); 236 if (btf_record_has_field(htab->map.record, BPF_TIMER)) 237 bpf_obj_free_timer(htab->map.record, 238 elem->key + round_up(htab->map.key_size, 8)); 239 if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) 240 bpf_obj_free_workqueue(htab->map.record, 241 elem->key + round_up(htab->map.key_size, 8)); 242 cond_resched(); 243 } 244 } 245 246 static void htab_free_prealloced_fields(struct bpf_htab *htab) 247 { 248 u32 num_entries = htab->map.max_entries; 249 int i; 250 251 if (IS_ERR_OR_NULL(htab->map.record)) 252 return; 253 if (htab_has_extra_elems(htab)) 254 num_entries += num_possible_cpus(); 255 for (i = 0; i < num_entries; i++) { 256 struct htab_elem *elem; 257 258 elem = get_htab_elem(htab, i); 259 if (htab_is_percpu(htab)) { 260 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 261 int cpu; 262 263 for_each_possible_cpu(cpu) { 264 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 265 cond_resched(); 266 } 267 } else { 268 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 269 cond_resched(); 270 } 271 cond_resched(); 272 } 273 } 274 275 static void htab_free_elems(struct bpf_htab *htab) 276 { 277 int i; 278 279 if (!htab_is_percpu(htab)) 280 goto free_elems; 281 282 for (i = 0; i < htab->map.max_entries; i++) { 283 void __percpu *pptr; 284 285 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 286 htab->map.key_size); 287 free_percpu(pptr); 288 cond_resched(); 289 } 290 free_elems: 291 bpf_map_area_free(htab->elems); 292 } 293 294 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 295 * (bucket_lock). If both locks need to be acquired together, the lock 296 * order is always lru_lock -> bucket_lock and this only happens in 297 * bpf_lru_list.c logic. For example, certain code path of 298 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 299 * will acquire lru_lock first followed by acquiring bucket_lock. 300 * 301 * In hashtab.c, to avoid deadlock, lock acquisition of 302 * bucket_lock followed by lru_lock is not allowed. In such cases, 303 * bucket_lock needs to be released first before acquiring lru_lock. 304 */ 305 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 306 u32 hash) 307 { 308 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 309 struct htab_elem *l; 310 311 if (node) { 312 bpf_map_inc_elem_count(&htab->map); 313 l = container_of(node, struct htab_elem, lru_node); 314 memcpy(l->key, key, htab->map.key_size); 315 return l; 316 } 317 318 return NULL; 319 } 320 321 static int prealloc_init(struct bpf_htab *htab) 322 { 323 u32 num_entries = htab->map.max_entries; 324 int err = -ENOMEM, i; 325 326 if (htab_has_extra_elems(htab)) 327 num_entries += num_possible_cpus(); 328 329 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 330 htab->map.numa_node); 331 if (!htab->elems) 332 return -ENOMEM; 333 334 if (!htab_is_percpu(htab)) 335 goto skip_percpu_elems; 336 337 for (i = 0; i < num_entries; i++) { 338 u32 size = round_up(htab->map.value_size, 8); 339 void __percpu *pptr; 340 341 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 342 GFP_USER | __GFP_NOWARN); 343 if (!pptr) 344 goto free_elems; 345 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 346 pptr); 347 cond_resched(); 348 } 349 350 skip_percpu_elems: 351 if (htab_is_lru(htab)) 352 err = bpf_lru_init(&htab->lru, 353 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 354 offsetof(struct htab_elem, hash) - 355 offsetof(struct htab_elem, lru_node), 356 htab_lru_map_delete_node, 357 htab); 358 else 359 err = pcpu_freelist_init(&htab->freelist); 360 361 if (err) 362 goto free_elems; 363 364 if (htab_is_lru(htab)) 365 bpf_lru_populate(&htab->lru, htab->elems, 366 offsetof(struct htab_elem, lru_node), 367 htab->elem_size, num_entries); 368 else 369 pcpu_freelist_populate(&htab->freelist, 370 htab->elems + offsetof(struct htab_elem, fnode), 371 htab->elem_size, num_entries); 372 373 return 0; 374 375 free_elems: 376 htab_free_elems(htab); 377 return err; 378 } 379 380 static void prealloc_destroy(struct bpf_htab *htab) 381 { 382 htab_free_elems(htab); 383 384 if (htab_is_lru(htab)) 385 bpf_lru_destroy(&htab->lru); 386 else 387 pcpu_freelist_destroy(&htab->freelist); 388 } 389 390 static int alloc_extra_elems(struct bpf_htab *htab) 391 { 392 struct htab_elem *__percpu *pptr, *l_new; 393 struct pcpu_freelist_node *l; 394 int cpu; 395 396 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 397 GFP_USER | __GFP_NOWARN); 398 if (!pptr) 399 return -ENOMEM; 400 401 for_each_possible_cpu(cpu) { 402 l = pcpu_freelist_pop(&htab->freelist); 403 /* pop will succeed, since prealloc_init() 404 * preallocated extra num_possible_cpus elements 405 */ 406 l_new = container_of(l, struct htab_elem, fnode); 407 *per_cpu_ptr(pptr, cpu) = l_new; 408 } 409 htab->extra_elems = pptr; 410 return 0; 411 } 412 413 /* Called from syscall */ 414 static int htab_map_alloc_check(union bpf_attr *attr) 415 { 416 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 417 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 418 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 419 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 420 /* percpu_lru means each cpu has its own LRU list. 421 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 422 * the map's value itself is percpu. percpu_lru has 423 * nothing to do with the map's value. 424 */ 425 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 426 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 427 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 428 int numa_node = bpf_map_attr_numa_node(attr); 429 430 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 431 offsetof(struct htab_elem, hash_node.pprev)); 432 433 if (zero_seed && !capable(CAP_SYS_ADMIN)) 434 /* Guard against local DoS, and discourage production use. */ 435 return -EPERM; 436 437 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 438 !bpf_map_flags_access_ok(attr->map_flags)) 439 return -EINVAL; 440 441 if (!lru && percpu_lru) 442 return -EINVAL; 443 444 if (lru && !prealloc) 445 return -ENOTSUPP; 446 447 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 448 return -EINVAL; 449 450 /* check sanity of attributes. 451 * value_size == 0 may be allowed in the future to use map as a set 452 */ 453 if (attr->max_entries == 0 || attr->key_size == 0 || 454 attr->value_size == 0) 455 return -EINVAL; 456 457 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 458 sizeof(struct htab_elem)) 459 /* if key_size + value_size is bigger, the user space won't be 460 * able to access the elements via bpf syscall. This check 461 * also makes sure that the elem_size doesn't overflow and it's 462 * kmalloc-able later in htab_map_update_elem() 463 */ 464 return -E2BIG; 465 466 return 0; 467 } 468 469 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 470 { 471 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 472 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 473 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 474 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 475 /* percpu_lru means each cpu has its own LRU list. 476 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 477 * the map's value itself is percpu. percpu_lru has 478 * nothing to do with the map's value. 479 */ 480 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 481 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 482 struct bpf_htab *htab; 483 int err, i; 484 485 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 486 if (!htab) 487 return ERR_PTR(-ENOMEM); 488 489 lockdep_register_key(&htab->lockdep_key); 490 491 bpf_map_init_from_attr(&htab->map, attr); 492 493 if (percpu_lru) { 494 /* ensure each CPU's lru list has >=1 elements. 495 * since we are at it, make each lru list has the same 496 * number of elements. 497 */ 498 htab->map.max_entries = roundup(attr->max_entries, 499 num_possible_cpus()); 500 if (htab->map.max_entries < attr->max_entries) 501 htab->map.max_entries = rounddown(attr->max_entries, 502 num_possible_cpus()); 503 } 504 505 /* hash table size must be power of 2; roundup_pow_of_two() can overflow 506 * into UB on 32-bit arches, so check that first 507 */ 508 err = -E2BIG; 509 if (htab->map.max_entries > 1UL << 31) 510 goto free_htab; 511 512 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 513 514 htab->elem_size = sizeof(struct htab_elem) + 515 round_up(htab->map.key_size, 8); 516 if (percpu) 517 htab->elem_size += sizeof(void *); 518 else 519 htab->elem_size += round_up(htab->map.value_size, 8); 520 521 /* check for u32 overflow */ 522 if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) 523 goto free_htab; 524 525 err = bpf_map_init_elem_count(&htab->map); 526 if (err) 527 goto free_htab; 528 529 err = -ENOMEM; 530 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 531 sizeof(struct bucket), 532 htab->map.numa_node); 533 if (!htab->buckets) 534 goto free_elem_count; 535 536 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 537 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 538 sizeof(int), 539 sizeof(int), 540 GFP_USER); 541 if (!htab->map_locked[i]) 542 goto free_map_locked; 543 } 544 545 if (htab->map.map_flags & BPF_F_ZERO_SEED) 546 htab->hashrnd = 0; 547 else 548 htab->hashrnd = get_random_u32(); 549 550 htab_init_buckets(htab); 551 552 /* compute_batch_value() computes batch value as num_online_cpus() * 2 553 * and __percpu_counter_compare() needs 554 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 555 * for percpu_counter to be faster than atomic_t. In practice the average bpf 556 * hash map size is 10k, which means that a system with 64 cpus will fill 557 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 558 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 559 * 10k - 8k > 32 _batch_ * 64 _cpus_ 560 * and __percpu_counter_compare() will still be fast. At that point hash map 561 * collisions will dominate its performance anyway. Assume that hash map filled 562 * to 50+% isn't going to be O(1) and use the following formula to choose 563 * between percpu_counter and atomic_t. 564 */ 565 #define PERCPU_COUNTER_BATCH 32 566 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 567 htab->use_percpu_counter = true; 568 569 if (htab->use_percpu_counter) { 570 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 571 if (err) 572 goto free_map_locked; 573 } 574 575 if (prealloc) { 576 err = prealloc_init(htab); 577 if (err) 578 goto free_map_locked; 579 580 if (!percpu && !lru) { 581 /* lru itself can remove the least used element, so 582 * there is no need for an extra elem during map_update. 583 */ 584 err = alloc_extra_elems(htab); 585 if (err) 586 goto free_prealloc; 587 } 588 } else { 589 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 590 if (err) 591 goto free_map_locked; 592 if (percpu) { 593 err = bpf_mem_alloc_init(&htab->pcpu_ma, 594 round_up(htab->map.value_size, 8), true); 595 if (err) 596 goto free_map_locked; 597 } 598 } 599 600 return &htab->map; 601 602 free_prealloc: 603 prealloc_destroy(htab); 604 free_map_locked: 605 if (htab->use_percpu_counter) 606 percpu_counter_destroy(&htab->pcount); 607 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 608 free_percpu(htab->map_locked[i]); 609 bpf_map_area_free(htab->buckets); 610 bpf_mem_alloc_destroy(&htab->pcpu_ma); 611 bpf_mem_alloc_destroy(&htab->ma); 612 free_elem_count: 613 bpf_map_free_elem_count(&htab->map); 614 free_htab: 615 lockdep_unregister_key(&htab->lockdep_key); 616 bpf_map_area_free(htab); 617 return ERR_PTR(err); 618 } 619 620 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 621 { 622 if (likely(key_len % 4 == 0)) 623 return jhash2(key, key_len / 4, hashrnd); 624 return jhash(key, key_len, hashrnd); 625 } 626 627 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 628 { 629 return &htab->buckets[hash & (htab->n_buckets - 1)]; 630 } 631 632 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 633 { 634 return &__select_bucket(htab, hash)->head; 635 } 636 637 /* this lookup function can only be called with bucket lock taken */ 638 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 639 void *key, u32 key_size) 640 { 641 struct hlist_nulls_node *n; 642 struct htab_elem *l; 643 644 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 645 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 646 return l; 647 648 return NULL; 649 } 650 651 /* can be called without bucket lock. it will repeat the loop in 652 * the unlikely event when elements moved from one bucket into another 653 * while link list is being walked 654 */ 655 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 656 u32 hash, void *key, 657 u32 key_size, u32 n_buckets) 658 { 659 struct hlist_nulls_node *n; 660 struct htab_elem *l; 661 662 again: 663 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 664 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 665 return l; 666 667 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 668 goto again; 669 670 return NULL; 671 } 672 673 /* Called from syscall or from eBPF program directly, so 674 * arguments have to match bpf_map_lookup_elem() exactly. 675 * The return value is adjusted by BPF instructions 676 * in htab_map_gen_lookup(). 677 */ 678 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 679 { 680 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 681 struct hlist_nulls_head *head; 682 struct htab_elem *l; 683 u32 hash, key_size; 684 685 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 686 !rcu_read_lock_bh_held()); 687 688 key_size = map->key_size; 689 690 hash = htab_map_hash(key, key_size, htab->hashrnd); 691 692 head = select_bucket(htab, hash); 693 694 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 695 696 return l; 697 } 698 699 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 700 { 701 struct htab_elem *l = __htab_map_lookup_elem(map, key); 702 703 if (l) 704 return l->key + round_up(map->key_size, 8); 705 706 return NULL; 707 } 708 709 /* inline bpf_map_lookup_elem() call. 710 * Instead of: 711 * bpf_prog 712 * bpf_map_lookup_elem 713 * map->ops->map_lookup_elem 714 * htab_map_lookup_elem 715 * __htab_map_lookup_elem 716 * do: 717 * bpf_prog 718 * __htab_map_lookup_elem 719 */ 720 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 721 { 722 struct bpf_insn *insn = insn_buf; 723 const int ret = BPF_REG_0; 724 725 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 726 (void *(*)(struct bpf_map *map, void *key))NULL)); 727 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 728 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 729 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 730 offsetof(struct htab_elem, key) + 731 round_up(map->key_size, 8)); 732 return insn - insn_buf; 733 } 734 735 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 736 void *key, const bool mark) 737 { 738 struct htab_elem *l = __htab_map_lookup_elem(map, key); 739 740 if (l) { 741 if (mark) 742 bpf_lru_node_set_ref(&l->lru_node); 743 return l->key + round_up(map->key_size, 8); 744 } 745 746 return NULL; 747 } 748 749 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 750 { 751 return __htab_lru_map_lookup_elem(map, key, true); 752 } 753 754 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 755 { 756 return __htab_lru_map_lookup_elem(map, key, false); 757 } 758 759 static int htab_lru_map_gen_lookup(struct bpf_map *map, 760 struct bpf_insn *insn_buf) 761 { 762 struct bpf_insn *insn = insn_buf; 763 const int ret = BPF_REG_0; 764 const int ref_reg = BPF_REG_1; 765 766 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 767 (void *(*)(struct bpf_map *map, void *key))NULL)); 768 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 769 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 770 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 771 offsetof(struct htab_elem, lru_node) + 772 offsetof(struct bpf_lru_node, ref)); 773 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 774 *insn++ = BPF_ST_MEM(BPF_B, ret, 775 offsetof(struct htab_elem, lru_node) + 776 offsetof(struct bpf_lru_node, ref), 777 1); 778 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 779 offsetof(struct htab_elem, key) + 780 round_up(map->key_size, 8)); 781 return insn - insn_buf; 782 } 783 784 static void check_and_free_fields(struct bpf_htab *htab, 785 struct htab_elem *elem) 786 { 787 if (htab_is_percpu(htab)) { 788 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); 789 int cpu; 790 791 for_each_possible_cpu(cpu) 792 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); 793 } else { 794 void *map_value = elem->key + round_up(htab->map.key_size, 8); 795 796 bpf_obj_free_fields(htab->map.record, map_value); 797 } 798 } 799 800 /* It is called from the bpf_lru_list when the LRU needs to delete 801 * older elements from the htab. 802 */ 803 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 804 { 805 struct bpf_htab *htab = arg; 806 struct htab_elem *l = NULL, *tgt_l; 807 struct hlist_nulls_head *head; 808 struct hlist_nulls_node *n; 809 unsigned long flags; 810 struct bucket *b; 811 int ret; 812 813 tgt_l = container_of(node, struct htab_elem, lru_node); 814 b = __select_bucket(htab, tgt_l->hash); 815 head = &b->head; 816 817 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 818 if (ret) 819 return false; 820 821 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 822 if (l == tgt_l) { 823 hlist_nulls_del_rcu(&l->hash_node); 824 check_and_free_fields(htab, l); 825 bpf_map_dec_elem_count(&htab->map); 826 break; 827 } 828 829 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 830 831 return l == tgt_l; 832 } 833 834 /* Called from syscall */ 835 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 836 { 837 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 838 struct hlist_nulls_head *head; 839 struct htab_elem *l, *next_l; 840 u32 hash, key_size; 841 int i = 0; 842 843 WARN_ON_ONCE(!rcu_read_lock_held()); 844 845 key_size = map->key_size; 846 847 if (!key) 848 goto find_first_elem; 849 850 hash = htab_map_hash(key, key_size, htab->hashrnd); 851 852 head = select_bucket(htab, hash); 853 854 /* lookup the key */ 855 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 856 857 if (!l) 858 goto find_first_elem; 859 860 /* key was found, get next key in the same bucket */ 861 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 862 struct htab_elem, hash_node); 863 864 if (next_l) { 865 /* if next elem in this hash list is non-zero, just return it */ 866 memcpy(next_key, next_l->key, key_size); 867 return 0; 868 } 869 870 /* no more elements in this hash list, go to the next bucket */ 871 i = hash & (htab->n_buckets - 1); 872 i++; 873 874 find_first_elem: 875 /* iterate over buckets */ 876 for (; i < htab->n_buckets; i++) { 877 head = select_bucket(htab, i); 878 879 /* pick first element in the bucket */ 880 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 881 struct htab_elem, hash_node); 882 if (next_l) { 883 /* if it's not empty, just return it */ 884 memcpy(next_key, next_l->key, key_size); 885 return 0; 886 } 887 } 888 889 /* iterated over all buckets and all elements */ 890 return -ENOENT; 891 } 892 893 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 894 { 895 check_and_free_fields(htab, l); 896 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 897 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 898 bpf_mem_cache_free(&htab->ma, l); 899 } 900 901 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 902 { 903 struct bpf_map *map = &htab->map; 904 void *ptr; 905 906 if (map->ops->map_fd_put_ptr) { 907 ptr = fd_htab_map_get_ptr(map, l); 908 map->ops->map_fd_put_ptr(map, ptr, true); 909 } 910 } 911 912 static bool is_map_full(struct bpf_htab *htab) 913 { 914 if (htab->use_percpu_counter) 915 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 916 PERCPU_COUNTER_BATCH) >= 0; 917 return atomic_read(&htab->count) >= htab->map.max_entries; 918 } 919 920 static void inc_elem_count(struct bpf_htab *htab) 921 { 922 bpf_map_inc_elem_count(&htab->map); 923 924 if (htab->use_percpu_counter) 925 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 926 else 927 atomic_inc(&htab->count); 928 } 929 930 static void dec_elem_count(struct bpf_htab *htab) 931 { 932 bpf_map_dec_elem_count(&htab->map); 933 934 if (htab->use_percpu_counter) 935 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 936 else 937 atomic_dec(&htab->count); 938 } 939 940 941 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 942 { 943 htab_put_fd_value(htab, l); 944 945 if (htab_is_prealloc(htab)) { 946 bpf_map_dec_elem_count(&htab->map); 947 check_and_free_fields(htab, l); 948 __pcpu_freelist_push(&htab->freelist, &l->fnode); 949 } else { 950 dec_elem_count(htab); 951 htab_elem_free(htab, l); 952 } 953 } 954 955 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 956 void *value, bool onallcpus) 957 { 958 if (!onallcpus) { 959 /* copy true value_size bytes */ 960 copy_map_value(&htab->map, this_cpu_ptr(pptr), value); 961 } else { 962 u32 size = round_up(htab->map.value_size, 8); 963 int off = 0, cpu; 964 965 for_each_possible_cpu(cpu) { 966 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off); 967 off += size; 968 } 969 } 970 } 971 972 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 973 void *value, bool onallcpus) 974 { 975 /* When not setting the initial value on all cpus, zero-fill element 976 * values for other cpus. Otherwise, bpf program has no way to ensure 977 * known initial values for cpus other than current one 978 * (onallcpus=false always when coming from bpf prog). 979 */ 980 if (!onallcpus) { 981 int current_cpu = raw_smp_processor_id(); 982 int cpu; 983 984 for_each_possible_cpu(cpu) { 985 if (cpu == current_cpu) 986 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); 987 else /* Since elem is preallocated, we cannot touch special fields */ 988 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); 989 } 990 } else { 991 pcpu_copy_value(htab, pptr, value, onallcpus); 992 } 993 } 994 995 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 996 { 997 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 998 BITS_PER_LONG == 64; 999 } 1000 1001 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 1002 void *value, u32 key_size, u32 hash, 1003 bool percpu, bool onallcpus, 1004 struct htab_elem *old_elem) 1005 { 1006 u32 size = htab->map.value_size; 1007 bool prealloc = htab_is_prealloc(htab); 1008 struct htab_elem *l_new, **pl_new; 1009 void __percpu *pptr; 1010 1011 if (prealloc) { 1012 if (old_elem) { 1013 /* if we're updating the existing element, 1014 * use per-cpu extra elems to avoid freelist_pop/push 1015 */ 1016 pl_new = this_cpu_ptr(htab->extra_elems); 1017 l_new = *pl_new; 1018 htab_put_fd_value(htab, old_elem); 1019 *pl_new = old_elem; 1020 } else { 1021 struct pcpu_freelist_node *l; 1022 1023 l = __pcpu_freelist_pop(&htab->freelist); 1024 if (!l) 1025 return ERR_PTR(-E2BIG); 1026 l_new = container_of(l, struct htab_elem, fnode); 1027 bpf_map_inc_elem_count(&htab->map); 1028 } 1029 } else { 1030 if (is_map_full(htab)) 1031 if (!old_elem) 1032 /* when map is full and update() is replacing 1033 * old element, it's ok to allocate, since 1034 * old element will be freed immediately. 1035 * Otherwise return an error 1036 */ 1037 return ERR_PTR(-E2BIG); 1038 inc_elem_count(htab); 1039 l_new = bpf_mem_cache_alloc(&htab->ma); 1040 if (!l_new) { 1041 l_new = ERR_PTR(-ENOMEM); 1042 goto dec_count; 1043 } 1044 } 1045 1046 memcpy(l_new->key, key, key_size); 1047 if (percpu) { 1048 if (prealloc) { 1049 pptr = htab_elem_get_ptr(l_new, key_size); 1050 } else { 1051 /* alloc_percpu zero-fills */ 1052 void *ptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1053 1054 if (!ptr) { 1055 bpf_mem_cache_free(&htab->ma, l_new); 1056 l_new = ERR_PTR(-ENOMEM); 1057 goto dec_count; 1058 } 1059 l_new->ptr_to_pptr = ptr; 1060 pptr = *(void __percpu **)ptr; 1061 } 1062 1063 pcpu_init_value(htab, pptr, value, onallcpus); 1064 1065 if (!prealloc) 1066 htab_elem_set_ptr(l_new, key_size, pptr); 1067 } else if (fd_htab_map_needs_adjust(htab)) { 1068 size = round_up(size, 8); 1069 memcpy(l_new->key + round_up(key_size, 8), value, size); 1070 } else { 1071 copy_map_value(&htab->map, 1072 l_new->key + round_up(key_size, 8), 1073 value); 1074 } 1075 1076 l_new->hash = hash; 1077 return l_new; 1078 dec_count: 1079 dec_elem_count(htab); 1080 return l_new; 1081 } 1082 1083 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1084 u64 map_flags) 1085 { 1086 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1087 /* elem already exists */ 1088 return -EEXIST; 1089 1090 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1091 /* elem doesn't exist, cannot update it */ 1092 return -ENOENT; 1093 1094 return 0; 1095 } 1096 1097 /* Called from syscall or from eBPF program */ 1098 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1099 u64 map_flags) 1100 { 1101 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1102 struct htab_elem *l_new = NULL, *l_old; 1103 struct hlist_nulls_head *head; 1104 unsigned long flags; 1105 struct bucket *b; 1106 u32 key_size, hash; 1107 int ret; 1108 1109 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1110 /* unknown flags */ 1111 return -EINVAL; 1112 1113 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1114 !rcu_read_lock_bh_held()); 1115 1116 key_size = map->key_size; 1117 1118 hash = htab_map_hash(key, key_size, htab->hashrnd); 1119 1120 b = __select_bucket(htab, hash); 1121 head = &b->head; 1122 1123 if (unlikely(map_flags & BPF_F_LOCK)) { 1124 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1125 return -EINVAL; 1126 /* find an element without taking the bucket lock */ 1127 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1128 htab->n_buckets); 1129 ret = check_flags(htab, l_old, map_flags); 1130 if (ret) 1131 return ret; 1132 if (l_old) { 1133 /* grab the element lock and update value in place */ 1134 copy_map_value_locked(map, 1135 l_old->key + round_up(key_size, 8), 1136 value, false); 1137 return 0; 1138 } 1139 /* fall through, grab the bucket lock and lookup again. 1140 * 99.9% chance that the element won't be found, 1141 * but second lookup under lock has to be done. 1142 */ 1143 } 1144 1145 ret = htab_lock_bucket(htab, b, hash, &flags); 1146 if (ret) 1147 return ret; 1148 1149 l_old = lookup_elem_raw(head, hash, key, key_size); 1150 1151 ret = check_flags(htab, l_old, map_flags); 1152 if (ret) 1153 goto err; 1154 1155 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1156 /* first lookup without the bucket lock didn't find the element, 1157 * but second lookup with the bucket lock found it. 1158 * This case is highly unlikely, but has to be dealt with: 1159 * grab the element lock in addition to the bucket lock 1160 * and update element in place 1161 */ 1162 copy_map_value_locked(map, 1163 l_old->key + round_up(key_size, 8), 1164 value, false); 1165 ret = 0; 1166 goto err; 1167 } 1168 1169 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1170 l_old); 1171 if (IS_ERR(l_new)) { 1172 /* all pre-allocated elements are in use or memory exhausted */ 1173 ret = PTR_ERR(l_new); 1174 goto err; 1175 } 1176 1177 /* add new element to the head of the list, so that 1178 * concurrent search will find it before old elem 1179 */ 1180 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1181 if (l_old) { 1182 hlist_nulls_del_rcu(&l_old->hash_node); 1183 if (!htab_is_prealloc(htab)) 1184 free_htab_elem(htab, l_old); 1185 else 1186 check_and_free_fields(htab, l_old); 1187 } 1188 ret = 0; 1189 err: 1190 htab_unlock_bucket(htab, b, hash, flags); 1191 return ret; 1192 } 1193 1194 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1195 { 1196 check_and_free_fields(htab, elem); 1197 bpf_map_dec_elem_count(&htab->map); 1198 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1199 } 1200 1201 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1202 u64 map_flags) 1203 { 1204 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1205 struct htab_elem *l_new, *l_old = NULL; 1206 struct hlist_nulls_head *head; 1207 unsigned long flags; 1208 struct bucket *b; 1209 u32 key_size, hash; 1210 int ret; 1211 1212 if (unlikely(map_flags > BPF_EXIST)) 1213 /* unknown flags */ 1214 return -EINVAL; 1215 1216 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1217 !rcu_read_lock_bh_held()); 1218 1219 key_size = map->key_size; 1220 1221 hash = htab_map_hash(key, key_size, htab->hashrnd); 1222 1223 b = __select_bucket(htab, hash); 1224 head = &b->head; 1225 1226 /* For LRU, we need to alloc before taking bucket's 1227 * spinlock because getting free nodes from LRU may need 1228 * to remove older elements from htab and this removal 1229 * operation will need a bucket lock. 1230 */ 1231 l_new = prealloc_lru_pop(htab, key, hash); 1232 if (!l_new) 1233 return -ENOMEM; 1234 copy_map_value(&htab->map, 1235 l_new->key + round_up(map->key_size, 8), value); 1236 1237 ret = htab_lock_bucket(htab, b, hash, &flags); 1238 if (ret) 1239 goto err_lock_bucket; 1240 1241 l_old = lookup_elem_raw(head, hash, key, key_size); 1242 1243 ret = check_flags(htab, l_old, map_flags); 1244 if (ret) 1245 goto err; 1246 1247 /* add new element to the head of the list, so that 1248 * concurrent search will find it before old elem 1249 */ 1250 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1251 if (l_old) { 1252 bpf_lru_node_set_ref(&l_new->lru_node); 1253 hlist_nulls_del_rcu(&l_old->hash_node); 1254 } 1255 ret = 0; 1256 1257 err: 1258 htab_unlock_bucket(htab, b, hash, flags); 1259 1260 err_lock_bucket: 1261 if (ret) 1262 htab_lru_push_free(htab, l_new); 1263 else if (l_old) 1264 htab_lru_push_free(htab, l_old); 1265 1266 return ret; 1267 } 1268 1269 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1270 void *value, u64 map_flags, 1271 bool onallcpus) 1272 { 1273 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1274 struct htab_elem *l_new = NULL, *l_old; 1275 struct hlist_nulls_head *head; 1276 unsigned long flags; 1277 struct bucket *b; 1278 u32 key_size, hash; 1279 int ret; 1280 1281 if (unlikely(map_flags > BPF_EXIST)) 1282 /* unknown flags */ 1283 return -EINVAL; 1284 1285 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1286 !rcu_read_lock_bh_held()); 1287 1288 key_size = map->key_size; 1289 1290 hash = htab_map_hash(key, key_size, htab->hashrnd); 1291 1292 b = __select_bucket(htab, hash); 1293 head = &b->head; 1294 1295 ret = htab_lock_bucket(htab, b, hash, &flags); 1296 if (ret) 1297 return ret; 1298 1299 l_old = lookup_elem_raw(head, hash, key, key_size); 1300 1301 ret = check_flags(htab, l_old, map_flags); 1302 if (ret) 1303 goto err; 1304 1305 if (l_old) { 1306 /* per-cpu hash map can update value in-place */ 1307 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1308 value, onallcpus); 1309 } else { 1310 l_new = alloc_htab_elem(htab, key, value, key_size, 1311 hash, true, onallcpus, NULL); 1312 if (IS_ERR(l_new)) { 1313 ret = PTR_ERR(l_new); 1314 goto err; 1315 } 1316 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1317 } 1318 ret = 0; 1319 err: 1320 htab_unlock_bucket(htab, b, hash, flags); 1321 return ret; 1322 } 1323 1324 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1325 void *value, u64 map_flags, 1326 bool onallcpus) 1327 { 1328 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1329 struct htab_elem *l_new = NULL, *l_old; 1330 struct hlist_nulls_head *head; 1331 unsigned long flags; 1332 struct bucket *b; 1333 u32 key_size, hash; 1334 int ret; 1335 1336 if (unlikely(map_flags > BPF_EXIST)) 1337 /* unknown flags */ 1338 return -EINVAL; 1339 1340 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1341 !rcu_read_lock_bh_held()); 1342 1343 key_size = map->key_size; 1344 1345 hash = htab_map_hash(key, key_size, htab->hashrnd); 1346 1347 b = __select_bucket(htab, hash); 1348 head = &b->head; 1349 1350 /* For LRU, we need to alloc before taking bucket's 1351 * spinlock because LRU's elem alloc may need 1352 * to remove older elem from htab and this removal 1353 * operation will need a bucket lock. 1354 */ 1355 if (map_flags != BPF_EXIST) { 1356 l_new = prealloc_lru_pop(htab, key, hash); 1357 if (!l_new) 1358 return -ENOMEM; 1359 } 1360 1361 ret = htab_lock_bucket(htab, b, hash, &flags); 1362 if (ret) 1363 goto err_lock_bucket; 1364 1365 l_old = lookup_elem_raw(head, hash, key, key_size); 1366 1367 ret = check_flags(htab, l_old, map_flags); 1368 if (ret) 1369 goto err; 1370 1371 if (l_old) { 1372 bpf_lru_node_set_ref(&l_old->lru_node); 1373 1374 /* per-cpu hash map can update value in-place */ 1375 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1376 value, onallcpus); 1377 } else { 1378 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1379 value, onallcpus); 1380 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1381 l_new = NULL; 1382 } 1383 ret = 0; 1384 err: 1385 htab_unlock_bucket(htab, b, hash, flags); 1386 err_lock_bucket: 1387 if (l_new) { 1388 bpf_map_dec_elem_count(&htab->map); 1389 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1390 } 1391 return ret; 1392 } 1393 1394 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1395 void *value, u64 map_flags) 1396 { 1397 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1398 } 1399 1400 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1401 void *value, u64 map_flags) 1402 { 1403 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1404 false); 1405 } 1406 1407 /* Called from syscall or from eBPF program */ 1408 static long htab_map_delete_elem(struct bpf_map *map, void *key) 1409 { 1410 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1411 struct hlist_nulls_head *head; 1412 struct bucket *b; 1413 struct htab_elem *l; 1414 unsigned long flags; 1415 u32 hash, key_size; 1416 int ret; 1417 1418 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1419 !rcu_read_lock_bh_held()); 1420 1421 key_size = map->key_size; 1422 1423 hash = htab_map_hash(key, key_size, htab->hashrnd); 1424 b = __select_bucket(htab, hash); 1425 head = &b->head; 1426 1427 ret = htab_lock_bucket(htab, b, hash, &flags); 1428 if (ret) 1429 return ret; 1430 1431 l = lookup_elem_raw(head, hash, key, key_size); 1432 1433 if (l) { 1434 hlist_nulls_del_rcu(&l->hash_node); 1435 free_htab_elem(htab, l); 1436 } else { 1437 ret = -ENOENT; 1438 } 1439 1440 htab_unlock_bucket(htab, b, hash, flags); 1441 return ret; 1442 } 1443 1444 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1445 { 1446 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1447 struct hlist_nulls_head *head; 1448 struct bucket *b; 1449 struct htab_elem *l; 1450 unsigned long flags; 1451 u32 hash, key_size; 1452 int ret; 1453 1454 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1455 !rcu_read_lock_bh_held()); 1456 1457 key_size = map->key_size; 1458 1459 hash = htab_map_hash(key, key_size, htab->hashrnd); 1460 b = __select_bucket(htab, hash); 1461 head = &b->head; 1462 1463 ret = htab_lock_bucket(htab, b, hash, &flags); 1464 if (ret) 1465 return ret; 1466 1467 l = lookup_elem_raw(head, hash, key, key_size); 1468 1469 if (l) 1470 hlist_nulls_del_rcu(&l->hash_node); 1471 else 1472 ret = -ENOENT; 1473 1474 htab_unlock_bucket(htab, b, hash, flags); 1475 if (l) 1476 htab_lru_push_free(htab, l); 1477 return ret; 1478 } 1479 1480 static void delete_all_elements(struct bpf_htab *htab) 1481 { 1482 int i; 1483 1484 /* It's called from a worker thread, so disable migration here, 1485 * since bpf_mem_cache_free() relies on that. 1486 */ 1487 migrate_disable(); 1488 for (i = 0; i < htab->n_buckets; i++) { 1489 struct hlist_nulls_head *head = select_bucket(htab, i); 1490 struct hlist_nulls_node *n; 1491 struct htab_elem *l; 1492 1493 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1494 hlist_nulls_del_rcu(&l->hash_node); 1495 htab_elem_free(htab, l); 1496 } 1497 cond_resched(); 1498 } 1499 migrate_enable(); 1500 } 1501 1502 static void htab_free_malloced_timers_and_wq(struct bpf_htab *htab) 1503 { 1504 int i; 1505 1506 rcu_read_lock(); 1507 for (i = 0; i < htab->n_buckets; i++) { 1508 struct hlist_nulls_head *head = select_bucket(htab, i); 1509 struct hlist_nulls_node *n; 1510 struct htab_elem *l; 1511 1512 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1513 /* We only free timer on uref dropping to zero */ 1514 if (btf_record_has_field(htab->map.record, BPF_TIMER)) 1515 bpf_obj_free_timer(htab->map.record, 1516 l->key + round_up(htab->map.key_size, 8)); 1517 if (btf_record_has_field(htab->map.record, BPF_WORKQUEUE)) 1518 bpf_obj_free_workqueue(htab->map.record, 1519 l->key + round_up(htab->map.key_size, 8)); 1520 } 1521 cond_resched_rcu(); 1522 } 1523 rcu_read_unlock(); 1524 } 1525 1526 static void htab_map_free_timers_and_wq(struct bpf_map *map) 1527 { 1528 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1529 1530 /* We only free timer and workqueue on uref dropping to zero */ 1531 if (btf_record_has_field(htab->map.record, BPF_TIMER | BPF_WORKQUEUE)) { 1532 if (!htab_is_prealloc(htab)) 1533 htab_free_malloced_timers_and_wq(htab); 1534 else 1535 htab_free_prealloced_timers_and_wq(htab); 1536 } 1537 } 1538 1539 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1540 static void htab_map_free(struct bpf_map *map) 1541 { 1542 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1543 int i; 1544 1545 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1546 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1547 * There is no need to synchronize_rcu() here to protect map elements. 1548 */ 1549 1550 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1551 * underneath and is responsible for waiting for callbacks to finish 1552 * during bpf_mem_alloc_destroy(). 1553 */ 1554 if (!htab_is_prealloc(htab)) { 1555 delete_all_elements(htab); 1556 } else { 1557 htab_free_prealloced_fields(htab); 1558 prealloc_destroy(htab); 1559 } 1560 1561 bpf_map_free_elem_count(map); 1562 free_percpu(htab->extra_elems); 1563 bpf_map_area_free(htab->buckets); 1564 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1565 bpf_mem_alloc_destroy(&htab->ma); 1566 if (htab->use_percpu_counter) 1567 percpu_counter_destroy(&htab->pcount); 1568 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1569 free_percpu(htab->map_locked[i]); 1570 lockdep_unregister_key(&htab->lockdep_key); 1571 bpf_map_area_free(htab); 1572 } 1573 1574 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1575 struct seq_file *m) 1576 { 1577 void *value; 1578 1579 rcu_read_lock(); 1580 1581 value = htab_map_lookup_elem(map, key); 1582 if (!value) { 1583 rcu_read_unlock(); 1584 return; 1585 } 1586 1587 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1588 seq_puts(m, ": "); 1589 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1590 seq_putc(m, '\n'); 1591 1592 rcu_read_unlock(); 1593 } 1594 1595 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1596 void *value, bool is_lru_map, 1597 bool is_percpu, u64 flags) 1598 { 1599 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1600 struct hlist_nulls_head *head; 1601 unsigned long bflags; 1602 struct htab_elem *l; 1603 u32 hash, key_size; 1604 struct bucket *b; 1605 int ret; 1606 1607 key_size = map->key_size; 1608 1609 hash = htab_map_hash(key, key_size, htab->hashrnd); 1610 b = __select_bucket(htab, hash); 1611 head = &b->head; 1612 1613 ret = htab_lock_bucket(htab, b, hash, &bflags); 1614 if (ret) 1615 return ret; 1616 1617 l = lookup_elem_raw(head, hash, key, key_size); 1618 if (!l) { 1619 ret = -ENOENT; 1620 } else { 1621 if (is_percpu) { 1622 u32 roundup_value_size = round_up(map->value_size, 8); 1623 void __percpu *pptr; 1624 int off = 0, cpu; 1625 1626 pptr = htab_elem_get_ptr(l, key_size); 1627 for_each_possible_cpu(cpu) { 1628 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); 1629 check_and_init_map_value(&htab->map, value + off); 1630 off += roundup_value_size; 1631 } 1632 } else { 1633 u32 roundup_key_size = round_up(map->key_size, 8); 1634 1635 if (flags & BPF_F_LOCK) 1636 copy_map_value_locked(map, value, l->key + 1637 roundup_key_size, 1638 true); 1639 else 1640 copy_map_value(map, value, l->key + 1641 roundup_key_size); 1642 /* Zeroing special fields in the temp buffer */ 1643 check_and_init_map_value(map, value); 1644 } 1645 1646 hlist_nulls_del_rcu(&l->hash_node); 1647 if (!is_lru_map) 1648 free_htab_elem(htab, l); 1649 } 1650 1651 htab_unlock_bucket(htab, b, hash, bflags); 1652 1653 if (is_lru_map && l) 1654 htab_lru_push_free(htab, l); 1655 1656 return ret; 1657 } 1658 1659 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1660 void *value, u64 flags) 1661 { 1662 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1663 flags); 1664 } 1665 1666 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1667 void *key, void *value, 1668 u64 flags) 1669 { 1670 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1671 flags); 1672 } 1673 1674 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1675 void *value, u64 flags) 1676 { 1677 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1678 flags); 1679 } 1680 1681 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1682 void *key, void *value, 1683 u64 flags) 1684 { 1685 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1686 flags); 1687 } 1688 1689 static int 1690 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1691 const union bpf_attr *attr, 1692 union bpf_attr __user *uattr, 1693 bool do_delete, bool is_lru_map, 1694 bool is_percpu) 1695 { 1696 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1697 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1698 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1699 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1700 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1701 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1702 u32 batch, max_count, size, bucket_size, map_id; 1703 struct htab_elem *node_to_free = NULL; 1704 u64 elem_map_flags, map_flags; 1705 struct hlist_nulls_head *head; 1706 struct hlist_nulls_node *n; 1707 unsigned long flags = 0; 1708 bool locked = false; 1709 struct htab_elem *l; 1710 struct bucket *b; 1711 int ret = 0; 1712 1713 elem_map_flags = attr->batch.elem_flags; 1714 if ((elem_map_flags & ~BPF_F_LOCK) || 1715 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1716 return -EINVAL; 1717 1718 map_flags = attr->batch.flags; 1719 if (map_flags) 1720 return -EINVAL; 1721 1722 max_count = attr->batch.count; 1723 if (!max_count) 1724 return 0; 1725 1726 if (put_user(0, &uattr->batch.count)) 1727 return -EFAULT; 1728 1729 batch = 0; 1730 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1731 return -EFAULT; 1732 1733 if (batch >= htab->n_buckets) 1734 return -ENOENT; 1735 1736 key_size = htab->map.key_size; 1737 roundup_key_size = round_up(htab->map.key_size, 8); 1738 value_size = htab->map.value_size; 1739 size = round_up(value_size, 8); 1740 if (is_percpu) 1741 value_size = size * num_possible_cpus(); 1742 total = 0; 1743 /* while experimenting with hash tables with sizes ranging from 10 to 1744 * 1000, it was observed that a bucket can have up to 5 entries. 1745 */ 1746 bucket_size = 5; 1747 1748 alloc: 1749 /* We cannot do copy_from_user or copy_to_user inside 1750 * the rcu_read_lock. Allocate enough space here. 1751 */ 1752 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1753 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1754 if (!keys || !values) { 1755 ret = -ENOMEM; 1756 goto after_loop; 1757 } 1758 1759 again: 1760 bpf_disable_instrumentation(); 1761 rcu_read_lock(); 1762 again_nocopy: 1763 dst_key = keys; 1764 dst_val = values; 1765 b = &htab->buckets[batch]; 1766 head = &b->head; 1767 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1768 if (locked) { 1769 ret = htab_lock_bucket(htab, b, batch, &flags); 1770 if (ret) { 1771 rcu_read_unlock(); 1772 bpf_enable_instrumentation(); 1773 goto after_loop; 1774 } 1775 } 1776 1777 bucket_cnt = 0; 1778 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1779 bucket_cnt++; 1780 1781 if (bucket_cnt && !locked) { 1782 locked = true; 1783 goto again_nocopy; 1784 } 1785 1786 if (bucket_cnt > (max_count - total)) { 1787 if (total == 0) 1788 ret = -ENOSPC; 1789 /* Note that since bucket_cnt > 0 here, it is implicit 1790 * that the locked was grabbed, so release it. 1791 */ 1792 htab_unlock_bucket(htab, b, batch, flags); 1793 rcu_read_unlock(); 1794 bpf_enable_instrumentation(); 1795 goto after_loop; 1796 } 1797 1798 if (bucket_cnt > bucket_size) { 1799 bucket_size = bucket_cnt; 1800 /* Note that since bucket_cnt > 0 here, it is implicit 1801 * that the locked was grabbed, so release it. 1802 */ 1803 htab_unlock_bucket(htab, b, batch, flags); 1804 rcu_read_unlock(); 1805 bpf_enable_instrumentation(); 1806 kvfree(keys); 1807 kvfree(values); 1808 goto alloc; 1809 } 1810 1811 /* Next block is only safe to run if you have grabbed the lock */ 1812 if (!locked) 1813 goto next_batch; 1814 1815 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1816 memcpy(dst_key, l->key, key_size); 1817 1818 if (is_percpu) { 1819 int off = 0, cpu; 1820 void __percpu *pptr; 1821 1822 pptr = htab_elem_get_ptr(l, map->key_size); 1823 for_each_possible_cpu(cpu) { 1824 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); 1825 check_and_init_map_value(&htab->map, dst_val + off); 1826 off += size; 1827 } 1828 } else { 1829 value = l->key + roundup_key_size; 1830 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1831 struct bpf_map **inner_map = value; 1832 1833 /* Actual value is the id of the inner map */ 1834 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1835 value = &map_id; 1836 } 1837 1838 if (elem_map_flags & BPF_F_LOCK) 1839 copy_map_value_locked(map, dst_val, value, 1840 true); 1841 else 1842 copy_map_value(map, dst_val, value); 1843 /* Zeroing special fields in the temp buffer */ 1844 check_and_init_map_value(map, dst_val); 1845 } 1846 if (do_delete) { 1847 hlist_nulls_del_rcu(&l->hash_node); 1848 1849 /* bpf_lru_push_free() will acquire lru_lock, which 1850 * may cause deadlock. See comments in function 1851 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1852 * after releasing the bucket lock. 1853 */ 1854 if (is_lru_map) { 1855 l->batch_flink = node_to_free; 1856 node_to_free = l; 1857 } else { 1858 free_htab_elem(htab, l); 1859 } 1860 } 1861 dst_key += key_size; 1862 dst_val += value_size; 1863 } 1864 1865 htab_unlock_bucket(htab, b, batch, flags); 1866 locked = false; 1867 1868 while (node_to_free) { 1869 l = node_to_free; 1870 node_to_free = node_to_free->batch_flink; 1871 htab_lru_push_free(htab, l); 1872 } 1873 1874 next_batch: 1875 /* If we are not copying data, we can go to next bucket and avoid 1876 * unlocking the rcu. 1877 */ 1878 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1879 batch++; 1880 goto again_nocopy; 1881 } 1882 1883 rcu_read_unlock(); 1884 bpf_enable_instrumentation(); 1885 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1886 key_size * bucket_cnt) || 1887 copy_to_user(uvalues + total * value_size, values, 1888 value_size * bucket_cnt))) { 1889 ret = -EFAULT; 1890 goto after_loop; 1891 } 1892 1893 total += bucket_cnt; 1894 batch++; 1895 if (batch >= htab->n_buckets) { 1896 ret = -ENOENT; 1897 goto after_loop; 1898 } 1899 goto again; 1900 1901 after_loop: 1902 if (ret == -EFAULT) 1903 goto out; 1904 1905 /* copy # of entries and next batch */ 1906 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1907 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1908 put_user(total, &uattr->batch.count)) 1909 ret = -EFAULT; 1910 1911 out: 1912 kvfree(keys); 1913 kvfree(values); 1914 return ret; 1915 } 1916 1917 static int 1918 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1919 union bpf_attr __user *uattr) 1920 { 1921 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1922 false, true); 1923 } 1924 1925 static int 1926 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1927 const union bpf_attr *attr, 1928 union bpf_attr __user *uattr) 1929 { 1930 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1931 false, true); 1932 } 1933 1934 static int 1935 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1936 union bpf_attr __user *uattr) 1937 { 1938 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1939 false, false); 1940 } 1941 1942 static int 1943 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1944 const union bpf_attr *attr, 1945 union bpf_attr __user *uattr) 1946 { 1947 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1948 false, false); 1949 } 1950 1951 static int 1952 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1953 const union bpf_attr *attr, 1954 union bpf_attr __user *uattr) 1955 { 1956 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1957 true, true); 1958 } 1959 1960 static int 1961 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1962 const union bpf_attr *attr, 1963 union bpf_attr __user *uattr) 1964 { 1965 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1966 true, true); 1967 } 1968 1969 static int 1970 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1971 union bpf_attr __user *uattr) 1972 { 1973 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1974 true, false); 1975 } 1976 1977 static int 1978 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1979 const union bpf_attr *attr, 1980 union bpf_attr __user *uattr) 1981 { 1982 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1983 true, false); 1984 } 1985 1986 struct bpf_iter_seq_hash_map_info { 1987 struct bpf_map *map; 1988 struct bpf_htab *htab; 1989 void *percpu_value_buf; // non-zero means percpu hash 1990 u32 bucket_id; 1991 u32 skip_elems; 1992 }; 1993 1994 static struct htab_elem * 1995 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1996 struct htab_elem *prev_elem) 1997 { 1998 const struct bpf_htab *htab = info->htab; 1999 u32 skip_elems = info->skip_elems; 2000 u32 bucket_id = info->bucket_id; 2001 struct hlist_nulls_head *head; 2002 struct hlist_nulls_node *n; 2003 struct htab_elem *elem; 2004 struct bucket *b; 2005 u32 i, count; 2006 2007 if (bucket_id >= htab->n_buckets) 2008 return NULL; 2009 2010 /* try to find next elem in the same bucket */ 2011 if (prev_elem) { 2012 /* no update/deletion on this bucket, prev_elem should be still valid 2013 * and we won't skip elements. 2014 */ 2015 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 2016 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 2017 if (elem) 2018 return elem; 2019 2020 /* not found, unlock and go to the next bucket */ 2021 b = &htab->buckets[bucket_id++]; 2022 rcu_read_unlock(); 2023 skip_elems = 0; 2024 } 2025 2026 for (i = bucket_id; i < htab->n_buckets; i++) { 2027 b = &htab->buckets[i]; 2028 rcu_read_lock(); 2029 2030 count = 0; 2031 head = &b->head; 2032 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2033 if (count >= skip_elems) { 2034 info->bucket_id = i; 2035 info->skip_elems = count; 2036 return elem; 2037 } 2038 count++; 2039 } 2040 2041 rcu_read_unlock(); 2042 skip_elems = 0; 2043 } 2044 2045 info->bucket_id = i; 2046 info->skip_elems = 0; 2047 return NULL; 2048 } 2049 2050 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2051 { 2052 struct bpf_iter_seq_hash_map_info *info = seq->private; 2053 struct htab_elem *elem; 2054 2055 elem = bpf_hash_map_seq_find_next(info, NULL); 2056 if (!elem) 2057 return NULL; 2058 2059 if (*pos == 0) 2060 ++*pos; 2061 return elem; 2062 } 2063 2064 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2065 { 2066 struct bpf_iter_seq_hash_map_info *info = seq->private; 2067 2068 ++*pos; 2069 ++info->skip_elems; 2070 return bpf_hash_map_seq_find_next(info, v); 2071 } 2072 2073 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2074 { 2075 struct bpf_iter_seq_hash_map_info *info = seq->private; 2076 u32 roundup_key_size, roundup_value_size; 2077 struct bpf_iter__bpf_map_elem ctx = {}; 2078 struct bpf_map *map = info->map; 2079 struct bpf_iter_meta meta; 2080 int ret = 0, off = 0, cpu; 2081 struct bpf_prog *prog; 2082 void __percpu *pptr; 2083 2084 meta.seq = seq; 2085 prog = bpf_iter_get_info(&meta, elem == NULL); 2086 if (prog) { 2087 ctx.meta = &meta; 2088 ctx.map = info->map; 2089 if (elem) { 2090 roundup_key_size = round_up(map->key_size, 8); 2091 ctx.key = elem->key; 2092 if (!info->percpu_value_buf) { 2093 ctx.value = elem->key + roundup_key_size; 2094 } else { 2095 roundup_value_size = round_up(map->value_size, 8); 2096 pptr = htab_elem_get_ptr(elem, map->key_size); 2097 for_each_possible_cpu(cpu) { 2098 copy_map_value_long(map, info->percpu_value_buf + off, 2099 per_cpu_ptr(pptr, cpu)); 2100 check_and_init_map_value(map, info->percpu_value_buf + off); 2101 off += roundup_value_size; 2102 } 2103 ctx.value = info->percpu_value_buf; 2104 } 2105 } 2106 ret = bpf_iter_run_prog(prog, &ctx); 2107 } 2108 2109 return ret; 2110 } 2111 2112 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2113 { 2114 return __bpf_hash_map_seq_show(seq, v); 2115 } 2116 2117 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2118 { 2119 if (!v) 2120 (void)__bpf_hash_map_seq_show(seq, NULL); 2121 else 2122 rcu_read_unlock(); 2123 } 2124 2125 static int bpf_iter_init_hash_map(void *priv_data, 2126 struct bpf_iter_aux_info *aux) 2127 { 2128 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2129 struct bpf_map *map = aux->map; 2130 void *value_buf; 2131 u32 buf_size; 2132 2133 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2134 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2135 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2136 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2137 if (!value_buf) 2138 return -ENOMEM; 2139 2140 seq_info->percpu_value_buf = value_buf; 2141 } 2142 2143 bpf_map_inc_with_uref(map); 2144 seq_info->map = map; 2145 seq_info->htab = container_of(map, struct bpf_htab, map); 2146 return 0; 2147 } 2148 2149 static void bpf_iter_fini_hash_map(void *priv_data) 2150 { 2151 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2152 2153 bpf_map_put_with_uref(seq_info->map); 2154 kfree(seq_info->percpu_value_buf); 2155 } 2156 2157 static const struct seq_operations bpf_hash_map_seq_ops = { 2158 .start = bpf_hash_map_seq_start, 2159 .next = bpf_hash_map_seq_next, 2160 .stop = bpf_hash_map_seq_stop, 2161 .show = bpf_hash_map_seq_show, 2162 }; 2163 2164 static const struct bpf_iter_seq_info iter_seq_info = { 2165 .seq_ops = &bpf_hash_map_seq_ops, 2166 .init_seq_private = bpf_iter_init_hash_map, 2167 .fini_seq_private = bpf_iter_fini_hash_map, 2168 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2169 }; 2170 2171 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2172 void *callback_ctx, u64 flags) 2173 { 2174 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2175 struct hlist_nulls_head *head; 2176 struct hlist_nulls_node *n; 2177 struct htab_elem *elem; 2178 u32 roundup_key_size; 2179 int i, num_elems = 0; 2180 void __percpu *pptr; 2181 struct bucket *b; 2182 void *key, *val; 2183 bool is_percpu; 2184 u64 ret = 0; 2185 2186 if (flags != 0) 2187 return -EINVAL; 2188 2189 is_percpu = htab_is_percpu(htab); 2190 2191 roundup_key_size = round_up(map->key_size, 8); 2192 /* disable migration so percpu value prepared here will be the 2193 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2194 */ 2195 if (is_percpu) 2196 migrate_disable(); 2197 for (i = 0; i < htab->n_buckets; i++) { 2198 b = &htab->buckets[i]; 2199 rcu_read_lock(); 2200 head = &b->head; 2201 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2202 key = elem->key; 2203 if (is_percpu) { 2204 /* current cpu value for percpu map */ 2205 pptr = htab_elem_get_ptr(elem, map->key_size); 2206 val = this_cpu_ptr(pptr); 2207 } else { 2208 val = elem->key + roundup_key_size; 2209 } 2210 num_elems++; 2211 ret = callback_fn((u64)(long)map, (u64)(long)key, 2212 (u64)(long)val, (u64)(long)callback_ctx, 0); 2213 /* return value: 0 - continue, 1 - stop and return */ 2214 if (ret) { 2215 rcu_read_unlock(); 2216 goto out; 2217 } 2218 } 2219 rcu_read_unlock(); 2220 } 2221 out: 2222 if (is_percpu) 2223 migrate_enable(); 2224 return num_elems; 2225 } 2226 2227 static u64 htab_map_mem_usage(const struct bpf_map *map) 2228 { 2229 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2230 u32 value_size = round_up(htab->map.value_size, 8); 2231 bool prealloc = htab_is_prealloc(htab); 2232 bool percpu = htab_is_percpu(htab); 2233 bool lru = htab_is_lru(htab); 2234 u64 num_entries; 2235 u64 usage = sizeof(struct bpf_htab); 2236 2237 usage += sizeof(struct bucket) * htab->n_buckets; 2238 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; 2239 if (prealloc) { 2240 num_entries = map->max_entries; 2241 if (htab_has_extra_elems(htab)) 2242 num_entries += num_possible_cpus(); 2243 2244 usage += htab->elem_size * num_entries; 2245 2246 if (percpu) 2247 usage += value_size * num_possible_cpus() * num_entries; 2248 else if (!lru) 2249 usage += sizeof(struct htab_elem *) * num_possible_cpus(); 2250 } else { 2251 #define LLIST_NODE_SZ sizeof(struct llist_node) 2252 2253 num_entries = htab->use_percpu_counter ? 2254 percpu_counter_sum(&htab->pcount) : 2255 atomic_read(&htab->count); 2256 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; 2257 if (percpu) { 2258 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; 2259 usage += value_size * num_possible_cpus() * num_entries; 2260 } 2261 } 2262 return usage; 2263 } 2264 2265 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2266 const struct bpf_map_ops htab_map_ops = { 2267 .map_meta_equal = bpf_map_meta_equal, 2268 .map_alloc_check = htab_map_alloc_check, 2269 .map_alloc = htab_map_alloc, 2270 .map_free = htab_map_free, 2271 .map_get_next_key = htab_map_get_next_key, 2272 .map_release_uref = htab_map_free_timers_and_wq, 2273 .map_lookup_elem = htab_map_lookup_elem, 2274 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2275 .map_update_elem = htab_map_update_elem, 2276 .map_delete_elem = htab_map_delete_elem, 2277 .map_gen_lookup = htab_map_gen_lookup, 2278 .map_seq_show_elem = htab_map_seq_show_elem, 2279 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2280 .map_for_each_callback = bpf_for_each_hash_elem, 2281 .map_mem_usage = htab_map_mem_usage, 2282 BATCH_OPS(htab), 2283 .map_btf_id = &htab_map_btf_ids[0], 2284 .iter_seq_info = &iter_seq_info, 2285 }; 2286 2287 const struct bpf_map_ops htab_lru_map_ops = { 2288 .map_meta_equal = bpf_map_meta_equal, 2289 .map_alloc_check = htab_map_alloc_check, 2290 .map_alloc = htab_map_alloc, 2291 .map_free = htab_map_free, 2292 .map_get_next_key = htab_map_get_next_key, 2293 .map_release_uref = htab_map_free_timers_and_wq, 2294 .map_lookup_elem = htab_lru_map_lookup_elem, 2295 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2296 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2297 .map_update_elem = htab_lru_map_update_elem, 2298 .map_delete_elem = htab_lru_map_delete_elem, 2299 .map_gen_lookup = htab_lru_map_gen_lookup, 2300 .map_seq_show_elem = htab_map_seq_show_elem, 2301 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2302 .map_for_each_callback = bpf_for_each_hash_elem, 2303 .map_mem_usage = htab_map_mem_usage, 2304 BATCH_OPS(htab_lru), 2305 .map_btf_id = &htab_map_btf_ids[0], 2306 .iter_seq_info = &iter_seq_info, 2307 }; 2308 2309 /* Called from eBPF program */ 2310 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2311 { 2312 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2313 2314 if (l) 2315 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2316 else 2317 return NULL; 2318 } 2319 2320 /* inline bpf_map_lookup_elem() call for per-CPU hashmap */ 2321 static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 2322 { 2323 struct bpf_insn *insn = insn_buf; 2324 2325 if (!bpf_jit_supports_percpu_insn()) 2326 return -EOPNOTSUPP; 2327 2328 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2329 (void *(*)(struct bpf_map *map, void *key))NULL)); 2330 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2331 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3); 2332 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2333 offsetof(struct htab_elem, key) + map->key_size); 2334 *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); 2335 *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 2336 2337 return insn - insn_buf; 2338 } 2339 2340 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2341 { 2342 struct htab_elem *l; 2343 2344 if (cpu >= nr_cpu_ids) 2345 return NULL; 2346 2347 l = __htab_map_lookup_elem(map, key); 2348 if (l) 2349 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2350 else 2351 return NULL; 2352 } 2353 2354 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2355 { 2356 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2357 2358 if (l) { 2359 bpf_lru_node_set_ref(&l->lru_node); 2360 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2361 } 2362 2363 return NULL; 2364 } 2365 2366 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2367 { 2368 struct htab_elem *l; 2369 2370 if (cpu >= nr_cpu_ids) 2371 return NULL; 2372 2373 l = __htab_map_lookup_elem(map, key); 2374 if (l) { 2375 bpf_lru_node_set_ref(&l->lru_node); 2376 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2377 } 2378 2379 return NULL; 2380 } 2381 2382 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2383 { 2384 struct htab_elem *l; 2385 void __percpu *pptr; 2386 int ret = -ENOENT; 2387 int cpu, off = 0; 2388 u32 size; 2389 2390 /* per_cpu areas are zero-filled and bpf programs can only 2391 * access 'value_size' of them, so copying rounded areas 2392 * will not leak any kernel data 2393 */ 2394 size = round_up(map->value_size, 8); 2395 rcu_read_lock(); 2396 l = __htab_map_lookup_elem(map, key); 2397 if (!l) 2398 goto out; 2399 /* We do not mark LRU map element here in order to not mess up 2400 * eviction heuristics when user space does a map walk. 2401 */ 2402 pptr = htab_elem_get_ptr(l, map->key_size); 2403 for_each_possible_cpu(cpu) { 2404 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); 2405 check_and_init_map_value(map, value + off); 2406 off += size; 2407 } 2408 ret = 0; 2409 out: 2410 rcu_read_unlock(); 2411 return ret; 2412 } 2413 2414 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2415 u64 map_flags) 2416 { 2417 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2418 int ret; 2419 2420 rcu_read_lock(); 2421 if (htab_is_lru(htab)) 2422 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2423 map_flags, true); 2424 else 2425 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2426 true); 2427 rcu_read_unlock(); 2428 2429 return ret; 2430 } 2431 2432 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2433 struct seq_file *m) 2434 { 2435 struct htab_elem *l; 2436 void __percpu *pptr; 2437 int cpu; 2438 2439 rcu_read_lock(); 2440 2441 l = __htab_map_lookup_elem(map, key); 2442 if (!l) { 2443 rcu_read_unlock(); 2444 return; 2445 } 2446 2447 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2448 seq_puts(m, ": {\n"); 2449 pptr = htab_elem_get_ptr(l, map->key_size); 2450 for_each_possible_cpu(cpu) { 2451 seq_printf(m, "\tcpu%d: ", cpu); 2452 btf_type_seq_show(map->btf, map->btf_value_type_id, 2453 per_cpu_ptr(pptr, cpu), m); 2454 seq_putc(m, '\n'); 2455 } 2456 seq_puts(m, "}\n"); 2457 2458 rcu_read_unlock(); 2459 } 2460 2461 const struct bpf_map_ops htab_percpu_map_ops = { 2462 .map_meta_equal = bpf_map_meta_equal, 2463 .map_alloc_check = htab_map_alloc_check, 2464 .map_alloc = htab_map_alloc, 2465 .map_free = htab_map_free, 2466 .map_get_next_key = htab_map_get_next_key, 2467 .map_lookup_elem = htab_percpu_map_lookup_elem, 2468 .map_gen_lookup = htab_percpu_map_gen_lookup, 2469 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2470 .map_update_elem = htab_percpu_map_update_elem, 2471 .map_delete_elem = htab_map_delete_elem, 2472 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2473 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2474 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2475 .map_for_each_callback = bpf_for_each_hash_elem, 2476 .map_mem_usage = htab_map_mem_usage, 2477 BATCH_OPS(htab_percpu), 2478 .map_btf_id = &htab_map_btf_ids[0], 2479 .iter_seq_info = &iter_seq_info, 2480 }; 2481 2482 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2483 .map_meta_equal = bpf_map_meta_equal, 2484 .map_alloc_check = htab_map_alloc_check, 2485 .map_alloc = htab_map_alloc, 2486 .map_free = htab_map_free, 2487 .map_get_next_key = htab_map_get_next_key, 2488 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2489 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2490 .map_update_elem = htab_lru_percpu_map_update_elem, 2491 .map_delete_elem = htab_lru_map_delete_elem, 2492 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2493 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2494 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2495 .map_for_each_callback = bpf_for_each_hash_elem, 2496 .map_mem_usage = htab_map_mem_usage, 2497 BATCH_OPS(htab_lru_percpu), 2498 .map_btf_id = &htab_map_btf_ids[0], 2499 .iter_seq_info = &iter_seq_info, 2500 }; 2501 2502 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2503 { 2504 if (attr->value_size != sizeof(u32)) 2505 return -EINVAL; 2506 return htab_map_alloc_check(attr); 2507 } 2508 2509 static void fd_htab_map_free(struct bpf_map *map) 2510 { 2511 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2512 struct hlist_nulls_node *n; 2513 struct hlist_nulls_head *head; 2514 struct htab_elem *l; 2515 int i; 2516 2517 for (i = 0; i < htab->n_buckets; i++) { 2518 head = select_bucket(htab, i); 2519 2520 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2521 void *ptr = fd_htab_map_get_ptr(map, l); 2522 2523 map->ops->map_fd_put_ptr(map, ptr, false); 2524 } 2525 } 2526 2527 htab_map_free(map); 2528 } 2529 2530 /* only called from syscall */ 2531 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2532 { 2533 void **ptr; 2534 int ret = 0; 2535 2536 if (!map->ops->map_fd_sys_lookup_elem) 2537 return -ENOTSUPP; 2538 2539 rcu_read_lock(); 2540 ptr = htab_map_lookup_elem(map, key); 2541 if (ptr) 2542 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2543 else 2544 ret = -ENOENT; 2545 rcu_read_unlock(); 2546 2547 return ret; 2548 } 2549 2550 /* only called from syscall */ 2551 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2552 void *key, void *value, u64 map_flags) 2553 { 2554 void *ptr; 2555 int ret; 2556 u32 ufd = *(u32 *)value; 2557 2558 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2559 if (IS_ERR(ptr)) 2560 return PTR_ERR(ptr); 2561 2562 /* The htab bucket lock is always held during update operations in fd 2563 * htab map, and the following rcu_read_lock() is only used to avoid 2564 * the WARN_ON_ONCE in htab_map_update_elem(). 2565 */ 2566 rcu_read_lock(); 2567 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2568 rcu_read_unlock(); 2569 if (ret) 2570 map->ops->map_fd_put_ptr(map, ptr, false); 2571 2572 return ret; 2573 } 2574 2575 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2576 { 2577 struct bpf_map *map, *inner_map_meta; 2578 2579 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2580 if (IS_ERR(inner_map_meta)) 2581 return inner_map_meta; 2582 2583 map = htab_map_alloc(attr); 2584 if (IS_ERR(map)) { 2585 bpf_map_meta_free(inner_map_meta); 2586 return map; 2587 } 2588 2589 map->inner_map_meta = inner_map_meta; 2590 2591 return map; 2592 } 2593 2594 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2595 { 2596 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2597 2598 if (!inner_map) 2599 return NULL; 2600 2601 return READ_ONCE(*inner_map); 2602 } 2603 2604 static int htab_of_map_gen_lookup(struct bpf_map *map, 2605 struct bpf_insn *insn_buf) 2606 { 2607 struct bpf_insn *insn = insn_buf; 2608 const int ret = BPF_REG_0; 2609 2610 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2611 (void *(*)(struct bpf_map *map, void *key))NULL)); 2612 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2613 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2614 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2615 offsetof(struct htab_elem, key) + 2616 round_up(map->key_size, 8)); 2617 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2618 2619 return insn - insn_buf; 2620 } 2621 2622 static void htab_of_map_free(struct bpf_map *map) 2623 { 2624 bpf_map_meta_free(map->inner_map_meta); 2625 fd_htab_map_free(map); 2626 } 2627 2628 const struct bpf_map_ops htab_of_maps_map_ops = { 2629 .map_alloc_check = fd_htab_map_alloc_check, 2630 .map_alloc = htab_of_map_alloc, 2631 .map_free = htab_of_map_free, 2632 .map_get_next_key = htab_map_get_next_key, 2633 .map_lookup_elem = htab_of_map_lookup_elem, 2634 .map_delete_elem = htab_map_delete_elem, 2635 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2636 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2637 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2638 .map_gen_lookup = htab_of_map_gen_lookup, 2639 .map_check_btf = map_check_no_btf, 2640 .map_mem_usage = htab_map_mem_usage, 2641 BATCH_OPS(htab), 2642 .map_btf_id = &htab_map_btf_ids[0], 2643 }; 2644