xref: /linux/kernel/bpf/hashtab.c (revision 165f2d2858013253042809df082b8df7e34e86d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include "percpu_freelist.h"
13 #include "bpf_lru_list.h"
14 #include "map_in_map.h"
15 
16 #define HTAB_CREATE_FLAG_MASK						\
17 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
18 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
19 
20 #define BATCH_OPS(_name)			\
21 	.map_lookup_batch =			\
22 	_name##_map_lookup_batch,		\
23 	.map_lookup_and_delete_batch =		\
24 	_name##_map_lookup_and_delete_batch,	\
25 	.map_update_batch =			\
26 	generic_map_update_batch,		\
27 	.map_delete_batch =			\
28 	generic_map_delete_batch
29 
30 /*
31  * The bucket lock has two protection scopes:
32  *
33  * 1) Serializing concurrent operations from BPF programs on differrent
34  *    CPUs
35  *
36  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
37  *
38  * BPF programs can execute in any context including perf, kprobes and
39  * tracing. As there are almost no limits where perf, kprobes and tracing
40  * can be invoked from the lock operations need to be protected against
41  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
42  * the lock held section when functions which acquire this lock are invoked
43  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
44  * variable bpf_prog_active, which prevents BPF programs attached to perf
45  * events, kprobes and tracing to be invoked before the prior invocation
46  * from one of these contexts completed. sys_bpf() uses the same mechanism
47  * by pinning the task to the current CPU and incrementing the recursion
48  * protection accross the map operation.
49  *
50  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
51  * operations like memory allocations (even with GFP_ATOMIC) from atomic
52  * contexts. This is required because even with GFP_ATOMIC the memory
53  * allocator calls into code pathes which acquire locks with long held lock
54  * sections. To ensure the deterministic behaviour these locks are regular
55  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
56  * true atomic contexts on an RT kernel are the low level hardware
57  * handling, scheduling, low level interrupt handling, NMIs etc. None of
58  * these contexts should ever do memory allocations.
59  *
60  * As regular device interrupt handlers and soft interrupts are forced into
61  * thread context, the existing code which does
62  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
63  * just works.
64  *
65  * In theory the BPF locks could be converted to regular spinlocks as well,
66  * but the bucket locks and percpu_freelist locks can be taken from
67  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
68  * atomic contexts even on RT. These mechanisms require preallocated maps,
69  * so there is no need to invoke memory allocations within the lock held
70  * sections.
71  *
72  * BPF maps which need dynamic allocation are only used from (forced)
73  * thread context on RT and can therefore use regular spinlocks which in
74  * turn allows to invoke memory allocations from the lock held section.
75  *
76  * On a non RT kernel this distinction is neither possible nor required.
77  * spinlock maps to raw_spinlock and the extra code is optimized out by the
78  * compiler.
79  */
80 struct bucket {
81 	struct hlist_nulls_head head;
82 	union {
83 		raw_spinlock_t raw_lock;
84 		spinlock_t     lock;
85 	};
86 };
87 
88 struct bpf_htab {
89 	struct bpf_map map;
90 	struct bucket *buckets;
91 	void *elems;
92 	union {
93 		struct pcpu_freelist freelist;
94 		struct bpf_lru lru;
95 	};
96 	struct htab_elem *__percpu *extra_elems;
97 	atomic_t count;	/* number of elements in this hashtable */
98 	u32 n_buckets;	/* number of hash buckets */
99 	u32 elem_size;	/* size of each element in bytes */
100 	u32 hashrnd;
101 };
102 
103 /* each htab element is struct htab_elem + key + value */
104 struct htab_elem {
105 	union {
106 		struct hlist_nulls_node hash_node;
107 		struct {
108 			void *padding;
109 			union {
110 				struct bpf_htab *htab;
111 				struct pcpu_freelist_node fnode;
112 				struct htab_elem *batch_flink;
113 			};
114 		};
115 	};
116 	union {
117 		struct rcu_head rcu;
118 		struct bpf_lru_node lru_node;
119 	};
120 	u32 hash;
121 	char key[] __aligned(8);
122 };
123 
124 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
125 {
126 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
127 }
128 
129 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
130 {
131 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
132 }
133 
134 static void htab_init_buckets(struct bpf_htab *htab)
135 {
136 	unsigned i;
137 
138 	for (i = 0; i < htab->n_buckets; i++) {
139 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
140 		if (htab_use_raw_lock(htab))
141 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
142 		else
143 			spin_lock_init(&htab->buckets[i].lock);
144 	}
145 }
146 
147 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab,
148 					     struct bucket *b)
149 {
150 	unsigned long flags;
151 
152 	if (htab_use_raw_lock(htab))
153 		raw_spin_lock_irqsave(&b->raw_lock, flags);
154 	else
155 		spin_lock_irqsave(&b->lock, flags);
156 	return flags;
157 }
158 
159 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
160 				      struct bucket *b,
161 				      unsigned long flags)
162 {
163 	if (htab_use_raw_lock(htab))
164 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
165 	else
166 		spin_unlock_irqrestore(&b->lock, flags);
167 }
168 
169 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
170 
171 static bool htab_is_lru(const struct bpf_htab *htab)
172 {
173 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
174 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
175 }
176 
177 static bool htab_is_percpu(const struct bpf_htab *htab)
178 {
179 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
180 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
181 }
182 
183 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
184 				     void __percpu *pptr)
185 {
186 	*(void __percpu **)(l->key + key_size) = pptr;
187 }
188 
189 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
190 {
191 	return *(void __percpu **)(l->key + key_size);
192 }
193 
194 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
195 {
196 	return *(void **)(l->key + roundup(map->key_size, 8));
197 }
198 
199 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
200 {
201 	return (struct htab_elem *) (htab->elems + i * htab->elem_size);
202 }
203 
204 static void htab_free_elems(struct bpf_htab *htab)
205 {
206 	int i;
207 
208 	if (!htab_is_percpu(htab))
209 		goto free_elems;
210 
211 	for (i = 0; i < htab->map.max_entries; i++) {
212 		void __percpu *pptr;
213 
214 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
215 					 htab->map.key_size);
216 		free_percpu(pptr);
217 		cond_resched();
218 	}
219 free_elems:
220 	bpf_map_area_free(htab->elems);
221 }
222 
223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
224  * (bucket_lock). If both locks need to be acquired together, the lock
225  * order is always lru_lock -> bucket_lock and this only happens in
226  * bpf_lru_list.c logic. For example, certain code path of
227  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
228  * will acquire lru_lock first followed by acquiring bucket_lock.
229  *
230  * In hashtab.c, to avoid deadlock, lock acquisition of
231  * bucket_lock followed by lru_lock is not allowed. In such cases,
232  * bucket_lock needs to be released first before acquiring lru_lock.
233  */
234 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
235 					  u32 hash)
236 {
237 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
238 	struct htab_elem *l;
239 
240 	if (node) {
241 		l = container_of(node, struct htab_elem, lru_node);
242 		memcpy(l->key, key, htab->map.key_size);
243 		return l;
244 	}
245 
246 	return NULL;
247 }
248 
249 static int prealloc_init(struct bpf_htab *htab)
250 {
251 	u32 num_entries = htab->map.max_entries;
252 	int err = -ENOMEM, i;
253 
254 	if (!htab_is_percpu(htab) && !htab_is_lru(htab))
255 		num_entries += num_possible_cpus();
256 
257 	htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries,
258 					 htab->map.numa_node);
259 	if (!htab->elems)
260 		return -ENOMEM;
261 
262 	if (!htab_is_percpu(htab))
263 		goto skip_percpu_elems;
264 
265 	for (i = 0; i < num_entries; i++) {
266 		u32 size = round_up(htab->map.value_size, 8);
267 		void __percpu *pptr;
268 
269 		pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN);
270 		if (!pptr)
271 			goto free_elems;
272 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
273 				  pptr);
274 		cond_resched();
275 	}
276 
277 skip_percpu_elems:
278 	if (htab_is_lru(htab))
279 		err = bpf_lru_init(&htab->lru,
280 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
281 				   offsetof(struct htab_elem, hash) -
282 				   offsetof(struct htab_elem, lru_node),
283 				   htab_lru_map_delete_node,
284 				   htab);
285 	else
286 		err = pcpu_freelist_init(&htab->freelist);
287 
288 	if (err)
289 		goto free_elems;
290 
291 	if (htab_is_lru(htab))
292 		bpf_lru_populate(&htab->lru, htab->elems,
293 				 offsetof(struct htab_elem, lru_node),
294 				 htab->elem_size, num_entries);
295 	else
296 		pcpu_freelist_populate(&htab->freelist,
297 				       htab->elems + offsetof(struct htab_elem, fnode),
298 				       htab->elem_size, num_entries);
299 
300 	return 0;
301 
302 free_elems:
303 	htab_free_elems(htab);
304 	return err;
305 }
306 
307 static void prealloc_destroy(struct bpf_htab *htab)
308 {
309 	htab_free_elems(htab);
310 
311 	if (htab_is_lru(htab))
312 		bpf_lru_destroy(&htab->lru);
313 	else
314 		pcpu_freelist_destroy(&htab->freelist);
315 }
316 
317 static int alloc_extra_elems(struct bpf_htab *htab)
318 {
319 	struct htab_elem *__percpu *pptr, *l_new;
320 	struct pcpu_freelist_node *l;
321 	int cpu;
322 
323 	pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8,
324 				  GFP_USER | __GFP_NOWARN);
325 	if (!pptr)
326 		return -ENOMEM;
327 
328 	for_each_possible_cpu(cpu) {
329 		l = pcpu_freelist_pop(&htab->freelist);
330 		/* pop will succeed, since prealloc_init()
331 		 * preallocated extra num_possible_cpus elements
332 		 */
333 		l_new = container_of(l, struct htab_elem, fnode);
334 		*per_cpu_ptr(pptr, cpu) = l_new;
335 	}
336 	htab->extra_elems = pptr;
337 	return 0;
338 }
339 
340 /* Called from syscall */
341 static int htab_map_alloc_check(union bpf_attr *attr)
342 {
343 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
344 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
345 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
346 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
347 	/* percpu_lru means each cpu has its own LRU list.
348 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
349 	 * the map's value itself is percpu.  percpu_lru has
350 	 * nothing to do with the map's value.
351 	 */
352 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
353 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
354 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
355 	int numa_node = bpf_map_attr_numa_node(attr);
356 
357 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
358 		     offsetof(struct htab_elem, hash_node.pprev));
359 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
360 		     offsetof(struct htab_elem, hash_node.pprev));
361 
362 	if (lru && !capable(CAP_SYS_ADMIN))
363 		/* LRU implementation is much complicated than other
364 		 * maps.  Hence, limit to CAP_SYS_ADMIN for now.
365 		 */
366 		return -EPERM;
367 
368 	if (zero_seed && !capable(CAP_SYS_ADMIN))
369 		/* Guard against local DoS, and discourage production use. */
370 		return -EPERM;
371 
372 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
373 	    !bpf_map_flags_access_ok(attr->map_flags))
374 		return -EINVAL;
375 
376 	if (!lru && percpu_lru)
377 		return -EINVAL;
378 
379 	if (lru && !prealloc)
380 		return -ENOTSUPP;
381 
382 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
383 		return -EINVAL;
384 
385 	/* check sanity of attributes.
386 	 * value_size == 0 may be allowed in the future to use map as a set
387 	 */
388 	if (attr->max_entries == 0 || attr->key_size == 0 ||
389 	    attr->value_size == 0)
390 		return -EINVAL;
391 
392 	if (attr->key_size > MAX_BPF_STACK)
393 		/* eBPF programs initialize keys on stack, so they cannot be
394 		 * larger than max stack size
395 		 */
396 		return -E2BIG;
397 
398 	if (attr->value_size >= KMALLOC_MAX_SIZE -
399 	    MAX_BPF_STACK - sizeof(struct htab_elem))
400 		/* if value_size is bigger, the user space won't be able to
401 		 * access the elements via bpf syscall. This check also makes
402 		 * sure that the elem_size doesn't overflow and it's
403 		 * kmalloc-able later in htab_map_update_elem()
404 		 */
405 		return -E2BIG;
406 
407 	return 0;
408 }
409 
410 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
411 {
412 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
413 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
414 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
415 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
416 	/* percpu_lru means each cpu has its own LRU list.
417 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 	 * the map's value itself is percpu.  percpu_lru has
419 	 * nothing to do with the map's value.
420 	 */
421 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
422 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
423 	struct bpf_htab *htab;
424 	u64 cost;
425 	int err;
426 
427 	htab = kzalloc(sizeof(*htab), GFP_USER);
428 	if (!htab)
429 		return ERR_PTR(-ENOMEM);
430 
431 	bpf_map_init_from_attr(&htab->map, attr);
432 
433 	if (percpu_lru) {
434 		/* ensure each CPU's lru list has >=1 elements.
435 		 * since we are at it, make each lru list has the same
436 		 * number of elements.
437 		 */
438 		htab->map.max_entries = roundup(attr->max_entries,
439 						num_possible_cpus());
440 		if (htab->map.max_entries < attr->max_entries)
441 			htab->map.max_entries = rounddown(attr->max_entries,
442 							  num_possible_cpus());
443 	}
444 
445 	/* hash table size must be power of 2 */
446 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
447 
448 	htab->elem_size = sizeof(struct htab_elem) +
449 			  round_up(htab->map.key_size, 8);
450 	if (percpu)
451 		htab->elem_size += sizeof(void *);
452 	else
453 		htab->elem_size += round_up(htab->map.value_size, 8);
454 
455 	err = -E2BIG;
456 	/* prevent zero size kmalloc and check for u32 overflow */
457 	if (htab->n_buckets == 0 ||
458 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
459 		goto free_htab;
460 
461 	cost = (u64) htab->n_buckets * sizeof(struct bucket) +
462 	       (u64) htab->elem_size * htab->map.max_entries;
463 
464 	if (percpu)
465 		cost += (u64) round_up(htab->map.value_size, 8) *
466 			num_possible_cpus() * htab->map.max_entries;
467 	else
468 	       cost += (u64) htab->elem_size * num_possible_cpus();
469 
470 	/* if map size is larger than memlock limit, reject it */
471 	err = bpf_map_charge_init(&htab->map.memory, cost);
472 	if (err)
473 		goto free_htab;
474 
475 	err = -ENOMEM;
476 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
477 					   sizeof(struct bucket),
478 					   htab->map.numa_node);
479 	if (!htab->buckets)
480 		goto free_charge;
481 
482 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
483 		htab->hashrnd = 0;
484 	else
485 		htab->hashrnd = get_random_int();
486 
487 	htab_init_buckets(htab);
488 
489 	if (prealloc) {
490 		err = prealloc_init(htab);
491 		if (err)
492 			goto free_buckets;
493 
494 		if (!percpu && !lru) {
495 			/* lru itself can remove the least used element, so
496 			 * there is no need for an extra elem during map_update.
497 			 */
498 			err = alloc_extra_elems(htab);
499 			if (err)
500 				goto free_prealloc;
501 		}
502 	}
503 
504 	return &htab->map;
505 
506 free_prealloc:
507 	prealloc_destroy(htab);
508 free_buckets:
509 	bpf_map_area_free(htab->buckets);
510 free_charge:
511 	bpf_map_charge_finish(&htab->map.memory);
512 free_htab:
513 	kfree(htab);
514 	return ERR_PTR(err);
515 }
516 
517 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
518 {
519 	return jhash(key, key_len, hashrnd);
520 }
521 
522 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
523 {
524 	return &htab->buckets[hash & (htab->n_buckets - 1)];
525 }
526 
527 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
528 {
529 	return &__select_bucket(htab, hash)->head;
530 }
531 
532 /* this lookup function can only be called with bucket lock taken */
533 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
534 					 void *key, u32 key_size)
535 {
536 	struct hlist_nulls_node *n;
537 	struct htab_elem *l;
538 
539 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
540 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
541 			return l;
542 
543 	return NULL;
544 }
545 
546 /* can be called without bucket lock. it will repeat the loop in
547  * the unlikely event when elements moved from one bucket into another
548  * while link list is being walked
549  */
550 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
551 					       u32 hash, void *key,
552 					       u32 key_size, u32 n_buckets)
553 {
554 	struct hlist_nulls_node *n;
555 	struct htab_elem *l;
556 
557 again:
558 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
559 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
560 			return l;
561 
562 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
563 		goto again;
564 
565 	return NULL;
566 }
567 
568 /* Called from syscall or from eBPF program directly, so
569  * arguments have to match bpf_map_lookup_elem() exactly.
570  * The return value is adjusted by BPF instructions
571  * in htab_map_gen_lookup().
572  */
573 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
574 {
575 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
576 	struct hlist_nulls_head *head;
577 	struct htab_elem *l;
578 	u32 hash, key_size;
579 
580 	/* Must be called with rcu_read_lock. */
581 	WARN_ON_ONCE(!rcu_read_lock_held());
582 
583 	key_size = map->key_size;
584 
585 	hash = htab_map_hash(key, key_size, htab->hashrnd);
586 
587 	head = select_bucket(htab, hash);
588 
589 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
590 
591 	return l;
592 }
593 
594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
595 {
596 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
597 
598 	if (l)
599 		return l->key + round_up(map->key_size, 8);
600 
601 	return NULL;
602 }
603 
604 /* inline bpf_map_lookup_elem() call.
605  * Instead of:
606  * bpf_prog
607  *   bpf_map_lookup_elem
608  *     map->ops->map_lookup_elem
609  *       htab_map_lookup_elem
610  *         __htab_map_lookup_elem
611  * do:
612  * bpf_prog
613  *   __htab_map_lookup_elem
614  */
615 static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
616 {
617 	struct bpf_insn *insn = insn_buf;
618 	const int ret = BPF_REG_0;
619 
620 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
621 		     (void *(*)(struct bpf_map *map, void *key))NULL));
622 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
623 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
624 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
625 				offsetof(struct htab_elem, key) +
626 				round_up(map->key_size, 8));
627 	return insn - insn_buf;
628 }
629 
630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
631 							void *key, const bool mark)
632 {
633 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
634 
635 	if (l) {
636 		if (mark)
637 			bpf_lru_node_set_ref(&l->lru_node);
638 		return l->key + round_up(map->key_size, 8);
639 	}
640 
641 	return NULL;
642 }
643 
644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
645 {
646 	return __htab_lru_map_lookup_elem(map, key, true);
647 }
648 
649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
650 {
651 	return __htab_lru_map_lookup_elem(map, key, false);
652 }
653 
654 static u32 htab_lru_map_gen_lookup(struct bpf_map *map,
655 				   struct bpf_insn *insn_buf)
656 {
657 	struct bpf_insn *insn = insn_buf;
658 	const int ret = BPF_REG_0;
659 	const int ref_reg = BPF_REG_1;
660 
661 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
662 		     (void *(*)(struct bpf_map *map, void *key))NULL));
663 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
664 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
665 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
666 			      offsetof(struct htab_elem, lru_node) +
667 			      offsetof(struct bpf_lru_node, ref));
668 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
669 	*insn++ = BPF_ST_MEM(BPF_B, ret,
670 			     offsetof(struct htab_elem, lru_node) +
671 			     offsetof(struct bpf_lru_node, ref),
672 			     1);
673 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
674 				offsetof(struct htab_elem, key) +
675 				round_up(map->key_size, 8));
676 	return insn - insn_buf;
677 }
678 
679 /* It is called from the bpf_lru_list when the LRU needs to delete
680  * older elements from the htab.
681  */
682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
683 {
684 	struct bpf_htab *htab = (struct bpf_htab *)arg;
685 	struct htab_elem *l = NULL, *tgt_l;
686 	struct hlist_nulls_head *head;
687 	struct hlist_nulls_node *n;
688 	unsigned long flags;
689 	struct bucket *b;
690 
691 	tgt_l = container_of(node, struct htab_elem, lru_node);
692 	b = __select_bucket(htab, tgt_l->hash);
693 	head = &b->head;
694 
695 	flags = htab_lock_bucket(htab, b);
696 
697 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
698 		if (l == tgt_l) {
699 			hlist_nulls_del_rcu(&l->hash_node);
700 			break;
701 		}
702 
703 	htab_unlock_bucket(htab, b, flags);
704 
705 	return l == tgt_l;
706 }
707 
708 /* Called from syscall */
709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
710 {
711 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
712 	struct hlist_nulls_head *head;
713 	struct htab_elem *l, *next_l;
714 	u32 hash, key_size;
715 	int i = 0;
716 
717 	WARN_ON_ONCE(!rcu_read_lock_held());
718 
719 	key_size = map->key_size;
720 
721 	if (!key)
722 		goto find_first_elem;
723 
724 	hash = htab_map_hash(key, key_size, htab->hashrnd);
725 
726 	head = select_bucket(htab, hash);
727 
728 	/* lookup the key */
729 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
730 
731 	if (!l)
732 		goto find_first_elem;
733 
734 	/* key was found, get next key in the same bucket */
735 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
736 				  struct htab_elem, hash_node);
737 
738 	if (next_l) {
739 		/* if next elem in this hash list is non-zero, just return it */
740 		memcpy(next_key, next_l->key, key_size);
741 		return 0;
742 	}
743 
744 	/* no more elements in this hash list, go to the next bucket */
745 	i = hash & (htab->n_buckets - 1);
746 	i++;
747 
748 find_first_elem:
749 	/* iterate over buckets */
750 	for (; i < htab->n_buckets; i++) {
751 		head = select_bucket(htab, i);
752 
753 		/* pick first element in the bucket */
754 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
755 					  struct htab_elem, hash_node);
756 		if (next_l) {
757 			/* if it's not empty, just return it */
758 			memcpy(next_key, next_l->key, key_size);
759 			return 0;
760 		}
761 	}
762 
763 	/* iterated over all buckets and all elements */
764 	return -ENOENT;
765 }
766 
767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
768 {
769 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
770 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
771 	kfree(l);
772 }
773 
774 static void htab_elem_free_rcu(struct rcu_head *head)
775 {
776 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
777 	struct bpf_htab *htab = l->htab;
778 
779 	htab_elem_free(htab, l);
780 }
781 
782 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
783 {
784 	struct bpf_map *map = &htab->map;
785 
786 	if (map->ops->map_fd_put_ptr) {
787 		void *ptr = fd_htab_map_get_ptr(map, l);
788 
789 		map->ops->map_fd_put_ptr(ptr);
790 	}
791 
792 	if (htab_is_prealloc(htab)) {
793 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
794 	} else {
795 		atomic_dec(&htab->count);
796 		l->htab = htab;
797 		call_rcu(&l->rcu, htab_elem_free_rcu);
798 	}
799 }
800 
801 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
802 			    void *value, bool onallcpus)
803 {
804 	if (!onallcpus) {
805 		/* copy true value_size bytes */
806 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
807 	} else {
808 		u32 size = round_up(htab->map.value_size, 8);
809 		int off = 0, cpu;
810 
811 		for_each_possible_cpu(cpu) {
812 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
813 					value + off, size);
814 			off += size;
815 		}
816 	}
817 }
818 
819 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
820 {
821 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
822 	       BITS_PER_LONG == 64;
823 }
824 
825 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
826 					 void *value, u32 key_size, u32 hash,
827 					 bool percpu, bool onallcpus,
828 					 struct htab_elem *old_elem)
829 {
830 	u32 size = htab->map.value_size;
831 	bool prealloc = htab_is_prealloc(htab);
832 	struct htab_elem *l_new, **pl_new;
833 	void __percpu *pptr;
834 
835 	if (prealloc) {
836 		if (old_elem) {
837 			/* if we're updating the existing element,
838 			 * use per-cpu extra elems to avoid freelist_pop/push
839 			 */
840 			pl_new = this_cpu_ptr(htab->extra_elems);
841 			l_new = *pl_new;
842 			*pl_new = old_elem;
843 		} else {
844 			struct pcpu_freelist_node *l;
845 
846 			l = __pcpu_freelist_pop(&htab->freelist);
847 			if (!l)
848 				return ERR_PTR(-E2BIG);
849 			l_new = container_of(l, struct htab_elem, fnode);
850 		}
851 	} else {
852 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
853 			if (!old_elem) {
854 				/* when map is full and update() is replacing
855 				 * old element, it's ok to allocate, since
856 				 * old element will be freed immediately.
857 				 * Otherwise return an error
858 				 */
859 				l_new = ERR_PTR(-E2BIG);
860 				goto dec_count;
861 			}
862 		l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
863 				     htab->map.numa_node);
864 		if (!l_new) {
865 			l_new = ERR_PTR(-ENOMEM);
866 			goto dec_count;
867 		}
868 		check_and_init_map_lock(&htab->map,
869 					l_new->key + round_up(key_size, 8));
870 	}
871 
872 	memcpy(l_new->key, key, key_size);
873 	if (percpu) {
874 		size = round_up(size, 8);
875 		if (prealloc) {
876 			pptr = htab_elem_get_ptr(l_new, key_size);
877 		} else {
878 			/* alloc_percpu zero-fills */
879 			pptr = __alloc_percpu_gfp(size, 8,
880 						  GFP_ATOMIC | __GFP_NOWARN);
881 			if (!pptr) {
882 				kfree(l_new);
883 				l_new = ERR_PTR(-ENOMEM);
884 				goto dec_count;
885 			}
886 		}
887 
888 		pcpu_copy_value(htab, pptr, value, onallcpus);
889 
890 		if (!prealloc)
891 			htab_elem_set_ptr(l_new, key_size, pptr);
892 	} else if (fd_htab_map_needs_adjust(htab)) {
893 		size = round_up(size, 8);
894 		memcpy(l_new->key + round_up(key_size, 8), value, size);
895 	} else {
896 		copy_map_value(&htab->map,
897 			       l_new->key + round_up(key_size, 8),
898 			       value);
899 	}
900 
901 	l_new->hash = hash;
902 	return l_new;
903 dec_count:
904 	atomic_dec(&htab->count);
905 	return l_new;
906 }
907 
908 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
909 		       u64 map_flags)
910 {
911 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
912 		/* elem already exists */
913 		return -EEXIST;
914 
915 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
916 		/* elem doesn't exist, cannot update it */
917 		return -ENOENT;
918 
919 	return 0;
920 }
921 
922 /* Called from syscall or from eBPF program */
923 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
924 				u64 map_flags)
925 {
926 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
927 	struct htab_elem *l_new = NULL, *l_old;
928 	struct hlist_nulls_head *head;
929 	unsigned long flags;
930 	struct bucket *b;
931 	u32 key_size, hash;
932 	int ret;
933 
934 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
935 		/* unknown flags */
936 		return -EINVAL;
937 
938 	WARN_ON_ONCE(!rcu_read_lock_held());
939 
940 	key_size = map->key_size;
941 
942 	hash = htab_map_hash(key, key_size, htab->hashrnd);
943 
944 	b = __select_bucket(htab, hash);
945 	head = &b->head;
946 
947 	if (unlikely(map_flags & BPF_F_LOCK)) {
948 		if (unlikely(!map_value_has_spin_lock(map)))
949 			return -EINVAL;
950 		/* find an element without taking the bucket lock */
951 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
952 					      htab->n_buckets);
953 		ret = check_flags(htab, l_old, map_flags);
954 		if (ret)
955 			return ret;
956 		if (l_old) {
957 			/* grab the element lock and update value in place */
958 			copy_map_value_locked(map,
959 					      l_old->key + round_up(key_size, 8),
960 					      value, false);
961 			return 0;
962 		}
963 		/* fall through, grab the bucket lock and lookup again.
964 		 * 99.9% chance that the element won't be found,
965 		 * but second lookup under lock has to be done.
966 		 */
967 	}
968 
969 	flags = htab_lock_bucket(htab, b);
970 
971 	l_old = lookup_elem_raw(head, hash, key, key_size);
972 
973 	ret = check_flags(htab, l_old, map_flags);
974 	if (ret)
975 		goto err;
976 
977 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
978 		/* first lookup without the bucket lock didn't find the element,
979 		 * but second lookup with the bucket lock found it.
980 		 * This case is highly unlikely, but has to be dealt with:
981 		 * grab the element lock in addition to the bucket lock
982 		 * and update element in place
983 		 */
984 		copy_map_value_locked(map,
985 				      l_old->key + round_up(key_size, 8),
986 				      value, false);
987 		ret = 0;
988 		goto err;
989 	}
990 
991 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
992 				l_old);
993 	if (IS_ERR(l_new)) {
994 		/* all pre-allocated elements are in use or memory exhausted */
995 		ret = PTR_ERR(l_new);
996 		goto err;
997 	}
998 
999 	/* add new element to the head of the list, so that
1000 	 * concurrent search will find it before old elem
1001 	 */
1002 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1003 	if (l_old) {
1004 		hlist_nulls_del_rcu(&l_old->hash_node);
1005 		if (!htab_is_prealloc(htab))
1006 			free_htab_elem(htab, l_old);
1007 	}
1008 	ret = 0;
1009 err:
1010 	htab_unlock_bucket(htab, b, flags);
1011 	return ret;
1012 }
1013 
1014 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1015 				    u64 map_flags)
1016 {
1017 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1018 	struct htab_elem *l_new, *l_old = NULL;
1019 	struct hlist_nulls_head *head;
1020 	unsigned long flags;
1021 	struct bucket *b;
1022 	u32 key_size, hash;
1023 	int ret;
1024 
1025 	if (unlikely(map_flags > BPF_EXIST))
1026 		/* unknown flags */
1027 		return -EINVAL;
1028 
1029 	WARN_ON_ONCE(!rcu_read_lock_held());
1030 
1031 	key_size = map->key_size;
1032 
1033 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1034 
1035 	b = __select_bucket(htab, hash);
1036 	head = &b->head;
1037 
1038 	/* For LRU, we need to alloc before taking bucket's
1039 	 * spinlock because getting free nodes from LRU may need
1040 	 * to remove older elements from htab and this removal
1041 	 * operation will need a bucket lock.
1042 	 */
1043 	l_new = prealloc_lru_pop(htab, key, hash);
1044 	if (!l_new)
1045 		return -ENOMEM;
1046 	memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size);
1047 
1048 	flags = htab_lock_bucket(htab, b);
1049 
1050 	l_old = lookup_elem_raw(head, hash, key, key_size);
1051 
1052 	ret = check_flags(htab, l_old, map_flags);
1053 	if (ret)
1054 		goto err;
1055 
1056 	/* add new element to the head of the list, so that
1057 	 * concurrent search will find it before old elem
1058 	 */
1059 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1060 	if (l_old) {
1061 		bpf_lru_node_set_ref(&l_new->lru_node);
1062 		hlist_nulls_del_rcu(&l_old->hash_node);
1063 	}
1064 	ret = 0;
1065 
1066 err:
1067 	htab_unlock_bucket(htab, b, flags);
1068 
1069 	if (ret)
1070 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1071 	else if (l_old)
1072 		bpf_lru_push_free(&htab->lru, &l_old->lru_node);
1073 
1074 	return ret;
1075 }
1076 
1077 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1078 					 void *value, u64 map_flags,
1079 					 bool onallcpus)
1080 {
1081 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1082 	struct htab_elem *l_new = NULL, *l_old;
1083 	struct hlist_nulls_head *head;
1084 	unsigned long flags;
1085 	struct bucket *b;
1086 	u32 key_size, hash;
1087 	int ret;
1088 
1089 	if (unlikely(map_flags > BPF_EXIST))
1090 		/* unknown flags */
1091 		return -EINVAL;
1092 
1093 	WARN_ON_ONCE(!rcu_read_lock_held());
1094 
1095 	key_size = map->key_size;
1096 
1097 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1098 
1099 	b = __select_bucket(htab, hash);
1100 	head = &b->head;
1101 
1102 	flags = htab_lock_bucket(htab, b);
1103 
1104 	l_old = lookup_elem_raw(head, hash, key, key_size);
1105 
1106 	ret = check_flags(htab, l_old, map_flags);
1107 	if (ret)
1108 		goto err;
1109 
1110 	if (l_old) {
1111 		/* per-cpu hash map can update value in-place */
1112 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1113 				value, onallcpus);
1114 	} else {
1115 		l_new = alloc_htab_elem(htab, key, value, key_size,
1116 					hash, true, onallcpus, NULL);
1117 		if (IS_ERR(l_new)) {
1118 			ret = PTR_ERR(l_new);
1119 			goto err;
1120 		}
1121 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1122 	}
1123 	ret = 0;
1124 err:
1125 	htab_unlock_bucket(htab, b, flags);
1126 	return ret;
1127 }
1128 
1129 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1130 					     void *value, u64 map_flags,
1131 					     bool onallcpus)
1132 {
1133 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1134 	struct htab_elem *l_new = NULL, *l_old;
1135 	struct hlist_nulls_head *head;
1136 	unsigned long flags;
1137 	struct bucket *b;
1138 	u32 key_size, hash;
1139 	int ret;
1140 
1141 	if (unlikely(map_flags > BPF_EXIST))
1142 		/* unknown flags */
1143 		return -EINVAL;
1144 
1145 	WARN_ON_ONCE(!rcu_read_lock_held());
1146 
1147 	key_size = map->key_size;
1148 
1149 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1150 
1151 	b = __select_bucket(htab, hash);
1152 	head = &b->head;
1153 
1154 	/* For LRU, we need to alloc before taking bucket's
1155 	 * spinlock because LRU's elem alloc may need
1156 	 * to remove older elem from htab and this removal
1157 	 * operation will need a bucket lock.
1158 	 */
1159 	if (map_flags != BPF_EXIST) {
1160 		l_new = prealloc_lru_pop(htab, key, hash);
1161 		if (!l_new)
1162 			return -ENOMEM;
1163 	}
1164 
1165 	flags = htab_lock_bucket(htab, b);
1166 
1167 	l_old = lookup_elem_raw(head, hash, key, key_size);
1168 
1169 	ret = check_flags(htab, l_old, map_flags);
1170 	if (ret)
1171 		goto err;
1172 
1173 	if (l_old) {
1174 		bpf_lru_node_set_ref(&l_old->lru_node);
1175 
1176 		/* per-cpu hash map can update value in-place */
1177 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1178 				value, onallcpus);
1179 	} else {
1180 		pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size),
1181 				value, onallcpus);
1182 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1183 		l_new = NULL;
1184 	}
1185 	ret = 0;
1186 err:
1187 	htab_unlock_bucket(htab, b, flags);
1188 	if (l_new)
1189 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1190 	return ret;
1191 }
1192 
1193 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1194 				       void *value, u64 map_flags)
1195 {
1196 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1197 }
1198 
1199 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1200 					   void *value, u64 map_flags)
1201 {
1202 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1203 						 false);
1204 }
1205 
1206 /* Called from syscall or from eBPF program */
1207 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1208 {
1209 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1210 	struct hlist_nulls_head *head;
1211 	struct bucket *b;
1212 	struct htab_elem *l;
1213 	unsigned long flags;
1214 	u32 hash, key_size;
1215 	int ret = -ENOENT;
1216 
1217 	WARN_ON_ONCE(!rcu_read_lock_held());
1218 
1219 	key_size = map->key_size;
1220 
1221 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1222 	b = __select_bucket(htab, hash);
1223 	head = &b->head;
1224 
1225 	flags = htab_lock_bucket(htab, b);
1226 
1227 	l = lookup_elem_raw(head, hash, key, key_size);
1228 
1229 	if (l) {
1230 		hlist_nulls_del_rcu(&l->hash_node);
1231 		free_htab_elem(htab, l);
1232 		ret = 0;
1233 	}
1234 
1235 	htab_unlock_bucket(htab, b, flags);
1236 	return ret;
1237 }
1238 
1239 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1240 {
1241 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1242 	struct hlist_nulls_head *head;
1243 	struct bucket *b;
1244 	struct htab_elem *l;
1245 	unsigned long flags;
1246 	u32 hash, key_size;
1247 	int ret = -ENOENT;
1248 
1249 	WARN_ON_ONCE(!rcu_read_lock_held());
1250 
1251 	key_size = map->key_size;
1252 
1253 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1254 	b = __select_bucket(htab, hash);
1255 	head = &b->head;
1256 
1257 	flags = htab_lock_bucket(htab, b);
1258 
1259 	l = lookup_elem_raw(head, hash, key, key_size);
1260 
1261 	if (l) {
1262 		hlist_nulls_del_rcu(&l->hash_node);
1263 		ret = 0;
1264 	}
1265 
1266 	htab_unlock_bucket(htab, b, flags);
1267 	if (l)
1268 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1269 	return ret;
1270 }
1271 
1272 static void delete_all_elements(struct bpf_htab *htab)
1273 {
1274 	int i;
1275 
1276 	for (i = 0; i < htab->n_buckets; i++) {
1277 		struct hlist_nulls_head *head = select_bucket(htab, i);
1278 		struct hlist_nulls_node *n;
1279 		struct htab_elem *l;
1280 
1281 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1282 			hlist_nulls_del_rcu(&l->hash_node);
1283 			htab_elem_free(htab, l);
1284 		}
1285 	}
1286 }
1287 
1288 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1289 static void htab_map_free(struct bpf_map *map)
1290 {
1291 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1292 
1293 	/* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
1294 	 * so the programs (can be more than one that used this map) were
1295 	 * disconnected from events. Wait for outstanding critical sections in
1296 	 * these programs to complete
1297 	 */
1298 	synchronize_rcu();
1299 
1300 	/* some of free_htab_elem() callbacks for elements of this map may
1301 	 * not have executed. Wait for them.
1302 	 */
1303 	rcu_barrier();
1304 	if (!htab_is_prealloc(htab))
1305 		delete_all_elements(htab);
1306 	else
1307 		prealloc_destroy(htab);
1308 
1309 	free_percpu(htab->extra_elems);
1310 	bpf_map_area_free(htab->buckets);
1311 	kfree(htab);
1312 }
1313 
1314 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1315 				   struct seq_file *m)
1316 {
1317 	void *value;
1318 
1319 	rcu_read_lock();
1320 
1321 	value = htab_map_lookup_elem(map, key);
1322 	if (!value) {
1323 		rcu_read_unlock();
1324 		return;
1325 	}
1326 
1327 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1328 	seq_puts(m, ": ");
1329 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1330 	seq_puts(m, "\n");
1331 
1332 	rcu_read_unlock();
1333 }
1334 
1335 static int
1336 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1337 				   const union bpf_attr *attr,
1338 				   union bpf_attr __user *uattr,
1339 				   bool do_delete, bool is_lru_map,
1340 				   bool is_percpu)
1341 {
1342 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1343 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1344 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1345 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1346 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1347 	void *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1348 	u32 batch, max_count, size, bucket_size;
1349 	struct htab_elem *node_to_free = NULL;
1350 	u64 elem_map_flags, map_flags;
1351 	struct hlist_nulls_head *head;
1352 	struct hlist_nulls_node *n;
1353 	unsigned long flags = 0;
1354 	bool locked = false;
1355 	struct htab_elem *l;
1356 	struct bucket *b;
1357 	int ret = 0;
1358 
1359 	elem_map_flags = attr->batch.elem_flags;
1360 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1361 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1362 		return -EINVAL;
1363 
1364 	map_flags = attr->batch.flags;
1365 	if (map_flags)
1366 		return -EINVAL;
1367 
1368 	max_count = attr->batch.count;
1369 	if (!max_count)
1370 		return 0;
1371 
1372 	if (put_user(0, &uattr->batch.count))
1373 		return -EFAULT;
1374 
1375 	batch = 0;
1376 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1377 		return -EFAULT;
1378 
1379 	if (batch >= htab->n_buckets)
1380 		return -ENOENT;
1381 
1382 	key_size = htab->map.key_size;
1383 	roundup_key_size = round_up(htab->map.key_size, 8);
1384 	value_size = htab->map.value_size;
1385 	size = round_up(value_size, 8);
1386 	if (is_percpu)
1387 		value_size = size * num_possible_cpus();
1388 	total = 0;
1389 	/* while experimenting with hash tables with sizes ranging from 10 to
1390 	 * 1000, it was observed that a bucket can have upto 5 entries.
1391 	 */
1392 	bucket_size = 5;
1393 
1394 alloc:
1395 	/* We cannot do copy_from_user or copy_to_user inside
1396 	 * the rcu_read_lock. Allocate enough space here.
1397 	 */
1398 	keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN);
1399 	values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN);
1400 	if (!keys || !values) {
1401 		ret = -ENOMEM;
1402 		goto after_loop;
1403 	}
1404 
1405 again:
1406 	bpf_disable_instrumentation();
1407 	rcu_read_lock();
1408 again_nocopy:
1409 	dst_key = keys;
1410 	dst_val = values;
1411 	b = &htab->buckets[batch];
1412 	head = &b->head;
1413 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1414 	if (locked)
1415 		flags = htab_lock_bucket(htab, b);
1416 
1417 	bucket_cnt = 0;
1418 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1419 		bucket_cnt++;
1420 
1421 	if (bucket_cnt && !locked) {
1422 		locked = true;
1423 		goto again_nocopy;
1424 	}
1425 
1426 	if (bucket_cnt > (max_count - total)) {
1427 		if (total == 0)
1428 			ret = -ENOSPC;
1429 		/* Note that since bucket_cnt > 0 here, it is implicit
1430 		 * that the locked was grabbed, so release it.
1431 		 */
1432 		htab_unlock_bucket(htab, b, flags);
1433 		rcu_read_unlock();
1434 		bpf_enable_instrumentation();
1435 		goto after_loop;
1436 	}
1437 
1438 	if (bucket_cnt > bucket_size) {
1439 		bucket_size = bucket_cnt;
1440 		/* Note that since bucket_cnt > 0 here, it is implicit
1441 		 * that the locked was grabbed, so release it.
1442 		 */
1443 		htab_unlock_bucket(htab, b, flags);
1444 		rcu_read_unlock();
1445 		bpf_enable_instrumentation();
1446 		kvfree(keys);
1447 		kvfree(values);
1448 		goto alloc;
1449 	}
1450 
1451 	/* Next block is only safe to run if you have grabbed the lock */
1452 	if (!locked)
1453 		goto next_batch;
1454 
1455 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1456 		memcpy(dst_key, l->key, key_size);
1457 
1458 		if (is_percpu) {
1459 			int off = 0, cpu;
1460 			void __percpu *pptr;
1461 
1462 			pptr = htab_elem_get_ptr(l, map->key_size);
1463 			for_each_possible_cpu(cpu) {
1464 				bpf_long_memcpy(dst_val + off,
1465 						per_cpu_ptr(pptr, cpu), size);
1466 				off += size;
1467 			}
1468 		} else {
1469 			value = l->key + roundup_key_size;
1470 			if (elem_map_flags & BPF_F_LOCK)
1471 				copy_map_value_locked(map, dst_val, value,
1472 						      true);
1473 			else
1474 				copy_map_value(map, dst_val, value);
1475 			check_and_init_map_lock(map, dst_val);
1476 		}
1477 		if (do_delete) {
1478 			hlist_nulls_del_rcu(&l->hash_node);
1479 
1480 			/* bpf_lru_push_free() will acquire lru_lock, which
1481 			 * may cause deadlock. See comments in function
1482 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1483 			 * after releasing the bucket lock.
1484 			 */
1485 			if (is_lru_map) {
1486 				l->batch_flink = node_to_free;
1487 				node_to_free = l;
1488 			} else {
1489 				free_htab_elem(htab, l);
1490 			}
1491 		}
1492 		dst_key += key_size;
1493 		dst_val += value_size;
1494 	}
1495 
1496 	htab_unlock_bucket(htab, b, flags);
1497 	locked = false;
1498 
1499 	while (node_to_free) {
1500 		l = node_to_free;
1501 		node_to_free = node_to_free->batch_flink;
1502 		bpf_lru_push_free(&htab->lru, &l->lru_node);
1503 	}
1504 
1505 next_batch:
1506 	/* If we are not copying data, we can go to next bucket and avoid
1507 	 * unlocking the rcu.
1508 	 */
1509 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1510 		batch++;
1511 		goto again_nocopy;
1512 	}
1513 
1514 	rcu_read_unlock();
1515 	bpf_enable_instrumentation();
1516 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1517 	    key_size * bucket_cnt) ||
1518 	    copy_to_user(uvalues + total * value_size, values,
1519 	    value_size * bucket_cnt))) {
1520 		ret = -EFAULT;
1521 		goto after_loop;
1522 	}
1523 
1524 	total += bucket_cnt;
1525 	batch++;
1526 	if (batch >= htab->n_buckets) {
1527 		ret = -ENOENT;
1528 		goto after_loop;
1529 	}
1530 	goto again;
1531 
1532 after_loop:
1533 	if (ret == -EFAULT)
1534 		goto out;
1535 
1536 	/* copy # of entries and next batch */
1537 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1538 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1539 	    put_user(total, &uattr->batch.count))
1540 		ret = -EFAULT;
1541 
1542 out:
1543 	kvfree(keys);
1544 	kvfree(values);
1545 	return ret;
1546 }
1547 
1548 static int
1549 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1550 			     union bpf_attr __user *uattr)
1551 {
1552 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1553 						  false, true);
1554 }
1555 
1556 static int
1557 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1558 					const union bpf_attr *attr,
1559 					union bpf_attr __user *uattr)
1560 {
1561 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1562 						  false, true);
1563 }
1564 
1565 static int
1566 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1567 		      union bpf_attr __user *uattr)
1568 {
1569 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1570 						  false, false);
1571 }
1572 
1573 static int
1574 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1575 				 const union bpf_attr *attr,
1576 				 union bpf_attr __user *uattr)
1577 {
1578 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1579 						  false, false);
1580 }
1581 
1582 static int
1583 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1584 				 const union bpf_attr *attr,
1585 				 union bpf_attr __user *uattr)
1586 {
1587 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1588 						  true, true);
1589 }
1590 
1591 static int
1592 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1593 					    const union bpf_attr *attr,
1594 					    union bpf_attr __user *uattr)
1595 {
1596 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1597 						  true, true);
1598 }
1599 
1600 static int
1601 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1602 			  union bpf_attr __user *uattr)
1603 {
1604 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1605 						  true, false);
1606 }
1607 
1608 static int
1609 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1610 				     const union bpf_attr *attr,
1611 				     union bpf_attr __user *uattr)
1612 {
1613 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1614 						  true, false);
1615 }
1616 
1617 const struct bpf_map_ops htab_map_ops = {
1618 	.map_alloc_check = htab_map_alloc_check,
1619 	.map_alloc = htab_map_alloc,
1620 	.map_free = htab_map_free,
1621 	.map_get_next_key = htab_map_get_next_key,
1622 	.map_lookup_elem = htab_map_lookup_elem,
1623 	.map_update_elem = htab_map_update_elem,
1624 	.map_delete_elem = htab_map_delete_elem,
1625 	.map_gen_lookup = htab_map_gen_lookup,
1626 	.map_seq_show_elem = htab_map_seq_show_elem,
1627 	BATCH_OPS(htab),
1628 };
1629 
1630 const struct bpf_map_ops htab_lru_map_ops = {
1631 	.map_alloc_check = htab_map_alloc_check,
1632 	.map_alloc = htab_map_alloc,
1633 	.map_free = htab_map_free,
1634 	.map_get_next_key = htab_map_get_next_key,
1635 	.map_lookup_elem = htab_lru_map_lookup_elem,
1636 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
1637 	.map_update_elem = htab_lru_map_update_elem,
1638 	.map_delete_elem = htab_lru_map_delete_elem,
1639 	.map_gen_lookup = htab_lru_map_gen_lookup,
1640 	.map_seq_show_elem = htab_map_seq_show_elem,
1641 	BATCH_OPS(htab_lru),
1642 };
1643 
1644 /* Called from eBPF program */
1645 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1646 {
1647 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1648 
1649 	if (l)
1650 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1651 	else
1652 		return NULL;
1653 }
1654 
1655 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
1656 {
1657 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
1658 
1659 	if (l) {
1660 		bpf_lru_node_set_ref(&l->lru_node);
1661 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
1662 	}
1663 
1664 	return NULL;
1665 }
1666 
1667 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
1668 {
1669 	struct htab_elem *l;
1670 	void __percpu *pptr;
1671 	int ret = -ENOENT;
1672 	int cpu, off = 0;
1673 	u32 size;
1674 
1675 	/* per_cpu areas are zero-filled and bpf programs can only
1676 	 * access 'value_size' of them, so copying rounded areas
1677 	 * will not leak any kernel data
1678 	 */
1679 	size = round_up(map->value_size, 8);
1680 	rcu_read_lock();
1681 	l = __htab_map_lookup_elem(map, key);
1682 	if (!l)
1683 		goto out;
1684 	/* We do not mark LRU map element here in order to not mess up
1685 	 * eviction heuristics when user space does a map walk.
1686 	 */
1687 	pptr = htab_elem_get_ptr(l, map->key_size);
1688 	for_each_possible_cpu(cpu) {
1689 		bpf_long_memcpy(value + off,
1690 				per_cpu_ptr(pptr, cpu), size);
1691 		off += size;
1692 	}
1693 	ret = 0;
1694 out:
1695 	rcu_read_unlock();
1696 	return ret;
1697 }
1698 
1699 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
1700 			   u64 map_flags)
1701 {
1702 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1703 	int ret;
1704 
1705 	rcu_read_lock();
1706 	if (htab_is_lru(htab))
1707 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
1708 							map_flags, true);
1709 	else
1710 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
1711 						    true);
1712 	rcu_read_unlock();
1713 
1714 	return ret;
1715 }
1716 
1717 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
1718 					  struct seq_file *m)
1719 {
1720 	struct htab_elem *l;
1721 	void __percpu *pptr;
1722 	int cpu;
1723 
1724 	rcu_read_lock();
1725 
1726 	l = __htab_map_lookup_elem(map, key);
1727 	if (!l) {
1728 		rcu_read_unlock();
1729 		return;
1730 	}
1731 
1732 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1733 	seq_puts(m, ": {\n");
1734 	pptr = htab_elem_get_ptr(l, map->key_size);
1735 	for_each_possible_cpu(cpu) {
1736 		seq_printf(m, "\tcpu%d: ", cpu);
1737 		btf_type_seq_show(map->btf, map->btf_value_type_id,
1738 				  per_cpu_ptr(pptr, cpu), m);
1739 		seq_puts(m, "\n");
1740 	}
1741 	seq_puts(m, "}\n");
1742 
1743 	rcu_read_unlock();
1744 }
1745 
1746 const struct bpf_map_ops htab_percpu_map_ops = {
1747 	.map_alloc_check = htab_map_alloc_check,
1748 	.map_alloc = htab_map_alloc,
1749 	.map_free = htab_map_free,
1750 	.map_get_next_key = htab_map_get_next_key,
1751 	.map_lookup_elem = htab_percpu_map_lookup_elem,
1752 	.map_update_elem = htab_percpu_map_update_elem,
1753 	.map_delete_elem = htab_map_delete_elem,
1754 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
1755 	BATCH_OPS(htab_percpu),
1756 };
1757 
1758 const struct bpf_map_ops htab_lru_percpu_map_ops = {
1759 	.map_alloc_check = htab_map_alloc_check,
1760 	.map_alloc = htab_map_alloc,
1761 	.map_free = htab_map_free,
1762 	.map_get_next_key = htab_map_get_next_key,
1763 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
1764 	.map_update_elem = htab_lru_percpu_map_update_elem,
1765 	.map_delete_elem = htab_lru_map_delete_elem,
1766 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
1767 	BATCH_OPS(htab_lru_percpu),
1768 };
1769 
1770 static int fd_htab_map_alloc_check(union bpf_attr *attr)
1771 {
1772 	if (attr->value_size != sizeof(u32))
1773 		return -EINVAL;
1774 	return htab_map_alloc_check(attr);
1775 }
1776 
1777 static void fd_htab_map_free(struct bpf_map *map)
1778 {
1779 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1780 	struct hlist_nulls_node *n;
1781 	struct hlist_nulls_head *head;
1782 	struct htab_elem *l;
1783 	int i;
1784 
1785 	for (i = 0; i < htab->n_buckets; i++) {
1786 		head = select_bucket(htab, i);
1787 
1788 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1789 			void *ptr = fd_htab_map_get_ptr(map, l);
1790 
1791 			map->ops->map_fd_put_ptr(ptr);
1792 		}
1793 	}
1794 
1795 	htab_map_free(map);
1796 }
1797 
1798 /* only called from syscall */
1799 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
1800 {
1801 	void **ptr;
1802 	int ret = 0;
1803 
1804 	if (!map->ops->map_fd_sys_lookup_elem)
1805 		return -ENOTSUPP;
1806 
1807 	rcu_read_lock();
1808 	ptr = htab_map_lookup_elem(map, key);
1809 	if (ptr)
1810 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
1811 	else
1812 		ret = -ENOENT;
1813 	rcu_read_unlock();
1814 
1815 	return ret;
1816 }
1817 
1818 /* only called from syscall */
1819 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
1820 				void *key, void *value, u64 map_flags)
1821 {
1822 	void *ptr;
1823 	int ret;
1824 	u32 ufd = *(u32 *)value;
1825 
1826 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
1827 	if (IS_ERR(ptr))
1828 		return PTR_ERR(ptr);
1829 
1830 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
1831 	if (ret)
1832 		map->ops->map_fd_put_ptr(ptr);
1833 
1834 	return ret;
1835 }
1836 
1837 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
1838 {
1839 	struct bpf_map *map, *inner_map_meta;
1840 
1841 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1842 	if (IS_ERR(inner_map_meta))
1843 		return inner_map_meta;
1844 
1845 	map = htab_map_alloc(attr);
1846 	if (IS_ERR(map)) {
1847 		bpf_map_meta_free(inner_map_meta);
1848 		return map;
1849 	}
1850 
1851 	map->inner_map_meta = inner_map_meta;
1852 
1853 	return map;
1854 }
1855 
1856 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
1857 {
1858 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
1859 
1860 	if (!inner_map)
1861 		return NULL;
1862 
1863 	return READ_ONCE(*inner_map);
1864 }
1865 
1866 static u32 htab_of_map_gen_lookup(struct bpf_map *map,
1867 				  struct bpf_insn *insn_buf)
1868 {
1869 	struct bpf_insn *insn = insn_buf;
1870 	const int ret = BPF_REG_0;
1871 
1872 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
1873 		     (void *(*)(struct bpf_map *map, void *key))NULL));
1874 	*insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem));
1875 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
1876 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
1877 				offsetof(struct htab_elem, key) +
1878 				round_up(map->key_size, 8));
1879 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1880 
1881 	return insn - insn_buf;
1882 }
1883 
1884 static void htab_of_map_free(struct bpf_map *map)
1885 {
1886 	bpf_map_meta_free(map->inner_map_meta);
1887 	fd_htab_map_free(map);
1888 }
1889 
1890 const struct bpf_map_ops htab_of_maps_map_ops = {
1891 	.map_alloc_check = fd_htab_map_alloc_check,
1892 	.map_alloc = htab_of_map_alloc,
1893 	.map_free = htab_of_map_free,
1894 	.map_get_next_key = htab_map_get_next_key,
1895 	.map_lookup_elem = htab_of_map_lookup_elem,
1896 	.map_delete_elem = htab_map_delete_elem,
1897 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1898 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1899 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1900 	.map_gen_lookup = htab_of_map_gen_lookup,
1901 	.map_check_btf = map_check_no_btf,
1902 };
1903