1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include <linux/rcupdate_trace.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 #include "bpf_lru_list.h" 16 #include "map_in_map.h" 17 #include <linux/bpf_mem_alloc.h> 18 19 #define HTAB_CREATE_FLAG_MASK \ 20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 22 23 #define BATCH_OPS(_name) \ 24 .map_lookup_batch = \ 25 _name##_map_lookup_batch, \ 26 .map_lookup_and_delete_batch = \ 27 _name##_map_lookup_and_delete_batch, \ 28 .map_update_batch = \ 29 generic_map_update_batch, \ 30 .map_delete_batch = \ 31 generic_map_delete_batch 32 33 /* 34 * The bucket lock has two protection scopes: 35 * 36 * 1) Serializing concurrent operations from BPF programs on different 37 * CPUs 38 * 39 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 40 * 41 * BPF programs can execute in any context including perf, kprobes and 42 * tracing. As there are almost no limits where perf, kprobes and tracing 43 * can be invoked from the lock operations need to be protected against 44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 45 * the lock held section when functions which acquire this lock are invoked 46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 47 * variable bpf_prog_active, which prevents BPF programs attached to perf 48 * events, kprobes and tracing to be invoked before the prior invocation 49 * from one of these contexts completed. sys_bpf() uses the same mechanism 50 * by pinning the task to the current CPU and incrementing the recursion 51 * protection across the map operation. 52 * 53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 54 * operations like memory allocations (even with GFP_ATOMIC) from atomic 55 * contexts. This is required because even with GFP_ATOMIC the memory 56 * allocator calls into code paths which acquire locks with long held lock 57 * sections. To ensure the deterministic behaviour these locks are regular 58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 59 * true atomic contexts on an RT kernel are the low level hardware 60 * handling, scheduling, low level interrupt handling, NMIs etc. None of 61 * these contexts should ever do memory allocations. 62 * 63 * As regular device interrupt handlers and soft interrupts are forced into 64 * thread context, the existing code which does 65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); 66 * just works. 67 * 68 * In theory the BPF locks could be converted to regular spinlocks as well, 69 * but the bucket locks and percpu_freelist locks can be taken from 70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, 72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, 73 * because there is no memory allocation within the lock held sections. However 74 * after hash map was fully converted to use bpf_mem_alloc, there will be 75 * non-synchronous memory allocation for non-preallocated hash map, so it is 76 * safe to always use raw spinlock for bucket lock. 77 */ 78 struct bucket { 79 struct hlist_nulls_head head; 80 raw_spinlock_t raw_lock; 81 }; 82 83 #define HASHTAB_MAP_LOCK_COUNT 8 84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) 85 86 struct bpf_htab { 87 struct bpf_map map; 88 struct bpf_mem_alloc ma; 89 struct bpf_mem_alloc pcpu_ma; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 /* number of elements in non-preallocated hashtable are kept 98 * in either pcount or count 99 */ 100 struct percpu_counter pcount; 101 atomic_t count; 102 bool use_percpu_counter; 103 u32 n_buckets; /* number of hash buckets */ 104 u32 elem_size; /* size of each element in bytes */ 105 u32 hashrnd; 106 struct lock_class_key lockdep_key; 107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT]; 108 }; 109 110 /* each htab element is struct htab_elem + key + value */ 111 struct htab_elem { 112 union { 113 struct hlist_nulls_node hash_node; 114 struct { 115 void *padding; 116 union { 117 struct pcpu_freelist_node fnode; 118 struct htab_elem *batch_flink; 119 }; 120 }; 121 }; 122 union { 123 /* pointer to per-cpu pointer */ 124 void *ptr_to_pptr; 125 struct bpf_lru_node lru_node; 126 }; 127 u32 hash; 128 char key[] __aligned(8); 129 }; 130 131 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 132 { 133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 134 } 135 136 static void htab_init_buckets(struct bpf_htab *htab) 137 { 138 unsigned int i; 139 140 for (i = 0; i < htab->n_buckets; i++) { 141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 142 raw_spin_lock_init(&htab->buckets[i].raw_lock); 143 lockdep_set_class(&htab->buckets[i].raw_lock, 144 &htab->lockdep_key); 145 cond_resched(); 146 } 147 } 148 149 static inline int htab_lock_bucket(const struct bpf_htab *htab, 150 struct bucket *b, u32 hash, 151 unsigned long *pflags) 152 { 153 unsigned long flags; 154 155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 156 157 preempt_disable(); 158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) { 159 __this_cpu_dec(*(htab->map_locked[hash])); 160 preempt_enable(); 161 return -EBUSY; 162 } 163 164 raw_spin_lock_irqsave(&b->raw_lock, flags); 165 *pflags = flags; 166 167 return 0; 168 } 169 170 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 171 struct bucket *b, u32 hash, 172 unsigned long flags) 173 { 174 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1); 175 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 176 __this_cpu_dec(*(htab->map_locked[hash])); 177 preempt_enable(); 178 } 179 180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 181 182 static bool htab_is_lru(const struct bpf_htab *htab) 183 { 184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 186 } 187 188 static bool htab_is_percpu(const struct bpf_htab *htab) 189 { 190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 192 } 193 194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 195 void __percpu *pptr) 196 { 197 *(void __percpu **)(l->key + key_size) = pptr; 198 } 199 200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 201 { 202 return *(void __percpu **)(l->key + key_size); 203 } 204 205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 206 { 207 return *(void **)(l->key + roundup(map->key_size, 8)); 208 } 209 210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 211 { 212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); 213 } 214 215 static bool htab_has_extra_elems(struct bpf_htab *htab) 216 { 217 return !htab_is_percpu(htab) && !htab_is_lru(htab); 218 } 219 220 static void htab_free_prealloced_timers(struct bpf_htab *htab) 221 { 222 u32 num_entries = htab->map.max_entries; 223 int i; 224 225 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 226 return; 227 if (htab_has_extra_elems(htab)) 228 num_entries += num_possible_cpus(); 229 230 for (i = 0; i < num_entries; i++) { 231 struct htab_elem *elem; 232 233 elem = get_htab_elem(htab, i); 234 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 235 cond_resched(); 236 } 237 } 238 239 static void htab_free_prealloced_fields(struct bpf_htab *htab) 240 { 241 u32 num_entries = htab->map.max_entries; 242 int i; 243 244 if (IS_ERR_OR_NULL(htab->map.record)) 245 return; 246 if (htab_has_extra_elems(htab)) 247 num_entries += num_possible_cpus(); 248 for (i = 0; i < num_entries; i++) { 249 struct htab_elem *elem; 250 251 elem = get_htab_elem(htab, i); 252 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8)); 253 cond_resched(); 254 } 255 } 256 257 static void htab_free_elems(struct bpf_htab *htab) 258 { 259 int i; 260 261 if (!htab_is_percpu(htab)) 262 goto free_elems; 263 264 for (i = 0; i < htab->map.max_entries; i++) { 265 void __percpu *pptr; 266 267 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 268 htab->map.key_size); 269 free_percpu(pptr); 270 cond_resched(); 271 } 272 free_elems: 273 bpf_map_area_free(htab->elems); 274 } 275 276 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 277 * (bucket_lock). If both locks need to be acquired together, the lock 278 * order is always lru_lock -> bucket_lock and this only happens in 279 * bpf_lru_list.c logic. For example, certain code path of 280 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 281 * will acquire lru_lock first followed by acquiring bucket_lock. 282 * 283 * In hashtab.c, to avoid deadlock, lock acquisition of 284 * bucket_lock followed by lru_lock is not allowed. In such cases, 285 * bucket_lock needs to be released first before acquiring lru_lock. 286 */ 287 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 288 u32 hash) 289 { 290 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 291 struct htab_elem *l; 292 293 if (node) { 294 l = container_of(node, struct htab_elem, lru_node); 295 memcpy(l->key, key, htab->map.key_size); 296 return l; 297 } 298 299 return NULL; 300 } 301 302 static int prealloc_init(struct bpf_htab *htab) 303 { 304 u32 num_entries = htab->map.max_entries; 305 int err = -ENOMEM, i; 306 307 if (htab_has_extra_elems(htab)) 308 num_entries += num_possible_cpus(); 309 310 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, 311 htab->map.numa_node); 312 if (!htab->elems) 313 return -ENOMEM; 314 315 if (!htab_is_percpu(htab)) 316 goto skip_percpu_elems; 317 318 for (i = 0; i < num_entries; i++) { 319 u32 size = round_up(htab->map.value_size, 8); 320 void __percpu *pptr; 321 322 pptr = bpf_map_alloc_percpu(&htab->map, size, 8, 323 GFP_USER | __GFP_NOWARN); 324 if (!pptr) 325 goto free_elems; 326 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 327 pptr); 328 cond_resched(); 329 } 330 331 skip_percpu_elems: 332 if (htab_is_lru(htab)) 333 err = bpf_lru_init(&htab->lru, 334 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 335 offsetof(struct htab_elem, hash) - 336 offsetof(struct htab_elem, lru_node), 337 htab_lru_map_delete_node, 338 htab); 339 else 340 err = pcpu_freelist_init(&htab->freelist); 341 342 if (err) 343 goto free_elems; 344 345 if (htab_is_lru(htab)) 346 bpf_lru_populate(&htab->lru, htab->elems, 347 offsetof(struct htab_elem, lru_node), 348 htab->elem_size, num_entries); 349 else 350 pcpu_freelist_populate(&htab->freelist, 351 htab->elems + offsetof(struct htab_elem, fnode), 352 htab->elem_size, num_entries); 353 354 return 0; 355 356 free_elems: 357 htab_free_elems(htab); 358 return err; 359 } 360 361 static void prealloc_destroy(struct bpf_htab *htab) 362 { 363 htab_free_elems(htab); 364 365 if (htab_is_lru(htab)) 366 bpf_lru_destroy(&htab->lru); 367 else 368 pcpu_freelist_destroy(&htab->freelist); 369 } 370 371 static int alloc_extra_elems(struct bpf_htab *htab) 372 { 373 struct htab_elem *__percpu *pptr, *l_new; 374 struct pcpu_freelist_node *l; 375 int cpu; 376 377 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, 378 GFP_USER | __GFP_NOWARN); 379 if (!pptr) 380 return -ENOMEM; 381 382 for_each_possible_cpu(cpu) { 383 l = pcpu_freelist_pop(&htab->freelist); 384 /* pop will succeed, since prealloc_init() 385 * preallocated extra num_possible_cpus elements 386 */ 387 l_new = container_of(l, struct htab_elem, fnode); 388 *per_cpu_ptr(pptr, cpu) = l_new; 389 } 390 htab->extra_elems = pptr; 391 return 0; 392 } 393 394 /* Called from syscall */ 395 static int htab_map_alloc_check(union bpf_attr *attr) 396 { 397 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 398 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 399 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 400 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 401 /* percpu_lru means each cpu has its own LRU list. 402 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 403 * the map's value itself is percpu. percpu_lru has 404 * nothing to do with the map's value. 405 */ 406 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 407 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 408 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 409 int numa_node = bpf_map_attr_numa_node(attr); 410 411 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 412 offsetof(struct htab_elem, hash_node.pprev)); 413 414 if (lru && !bpf_capable()) 415 /* LRU implementation is much complicated than other 416 * maps. Hence, limit to CAP_BPF. 417 */ 418 return -EPERM; 419 420 if (zero_seed && !capable(CAP_SYS_ADMIN)) 421 /* Guard against local DoS, and discourage production use. */ 422 return -EPERM; 423 424 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 425 !bpf_map_flags_access_ok(attr->map_flags)) 426 return -EINVAL; 427 428 if (!lru && percpu_lru) 429 return -EINVAL; 430 431 if (lru && !prealloc) 432 return -ENOTSUPP; 433 434 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 435 return -EINVAL; 436 437 /* check sanity of attributes. 438 * value_size == 0 may be allowed in the future to use map as a set 439 */ 440 if (attr->max_entries == 0 || attr->key_size == 0 || 441 attr->value_size == 0) 442 return -EINVAL; 443 444 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - 445 sizeof(struct htab_elem)) 446 /* if key_size + value_size is bigger, the user space won't be 447 * able to access the elements via bpf syscall. This check 448 * also makes sure that the elem_size doesn't overflow and it's 449 * kmalloc-able later in htab_map_update_elem() 450 */ 451 return -E2BIG; 452 453 return 0; 454 } 455 456 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 457 { 458 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 459 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 460 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 461 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 462 /* percpu_lru means each cpu has its own LRU list. 463 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 464 * the map's value itself is percpu. percpu_lru has 465 * nothing to do with the map's value. 466 */ 467 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 468 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 469 struct bpf_htab *htab; 470 int err, i; 471 472 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); 473 if (!htab) 474 return ERR_PTR(-ENOMEM); 475 476 lockdep_register_key(&htab->lockdep_key); 477 478 bpf_map_init_from_attr(&htab->map, attr); 479 480 if (percpu_lru) { 481 /* ensure each CPU's lru list has >=1 elements. 482 * since we are at it, make each lru list has the same 483 * number of elements. 484 */ 485 htab->map.max_entries = roundup(attr->max_entries, 486 num_possible_cpus()); 487 if (htab->map.max_entries < attr->max_entries) 488 htab->map.max_entries = rounddown(attr->max_entries, 489 num_possible_cpus()); 490 } 491 492 /* hash table size must be power of 2 */ 493 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 494 495 htab->elem_size = sizeof(struct htab_elem) + 496 round_up(htab->map.key_size, 8); 497 if (percpu) 498 htab->elem_size += sizeof(void *); 499 else 500 htab->elem_size += round_up(htab->map.value_size, 8); 501 502 err = -E2BIG; 503 /* prevent zero size kmalloc and check for u32 overflow */ 504 if (htab->n_buckets == 0 || 505 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 506 goto free_htab; 507 508 err = -ENOMEM; 509 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 510 sizeof(struct bucket), 511 htab->map.numa_node); 512 if (!htab->buckets) 513 goto free_htab; 514 515 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) { 516 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map, 517 sizeof(int), 518 sizeof(int), 519 GFP_USER); 520 if (!htab->map_locked[i]) 521 goto free_map_locked; 522 } 523 524 if (htab->map.map_flags & BPF_F_ZERO_SEED) 525 htab->hashrnd = 0; 526 else 527 htab->hashrnd = get_random_u32(); 528 529 htab_init_buckets(htab); 530 531 /* compute_batch_value() computes batch value as num_online_cpus() * 2 532 * and __percpu_counter_compare() needs 533 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() 534 * for percpu_counter to be faster than atomic_t. In practice the average bpf 535 * hash map size is 10k, which means that a system with 64 cpus will fill 536 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore 537 * define our own batch count as 32 then 10k hash map can be filled up to 80%: 538 * 10k - 8k > 32 _batch_ * 64 _cpus_ 539 * and __percpu_counter_compare() will still be fast. At that point hash map 540 * collisions will dominate its performance anyway. Assume that hash map filled 541 * to 50+% isn't going to be O(1) and use the following formula to choose 542 * between percpu_counter and atomic_t. 543 */ 544 #define PERCPU_COUNTER_BATCH 32 545 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) 546 htab->use_percpu_counter = true; 547 548 if (htab->use_percpu_counter) { 549 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); 550 if (err) 551 goto free_map_locked; 552 } 553 554 if (prealloc) { 555 err = prealloc_init(htab); 556 if (err) 557 goto free_map_locked; 558 559 if (!percpu && !lru) { 560 /* lru itself can remove the least used element, so 561 * there is no need for an extra elem during map_update. 562 */ 563 err = alloc_extra_elems(htab); 564 if (err) 565 goto free_prealloc; 566 } 567 } else { 568 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); 569 if (err) 570 goto free_map_locked; 571 if (percpu) { 572 err = bpf_mem_alloc_init(&htab->pcpu_ma, 573 round_up(htab->map.value_size, 8), true); 574 if (err) 575 goto free_map_locked; 576 } 577 } 578 579 return &htab->map; 580 581 free_prealloc: 582 prealloc_destroy(htab); 583 free_map_locked: 584 if (htab->use_percpu_counter) 585 percpu_counter_destroy(&htab->pcount); 586 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 587 free_percpu(htab->map_locked[i]); 588 bpf_map_area_free(htab->buckets); 589 bpf_mem_alloc_destroy(&htab->pcpu_ma); 590 bpf_mem_alloc_destroy(&htab->ma); 591 free_htab: 592 lockdep_unregister_key(&htab->lockdep_key); 593 bpf_map_area_free(htab); 594 return ERR_PTR(err); 595 } 596 597 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 598 { 599 return jhash(key, key_len, hashrnd); 600 } 601 602 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 603 { 604 return &htab->buckets[hash & (htab->n_buckets - 1)]; 605 } 606 607 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 608 { 609 return &__select_bucket(htab, hash)->head; 610 } 611 612 /* this lookup function can only be called with bucket lock taken */ 613 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 614 void *key, u32 key_size) 615 { 616 struct hlist_nulls_node *n; 617 struct htab_elem *l; 618 619 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 620 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 621 return l; 622 623 return NULL; 624 } 625 626 /* can be called without bucket lock. it will repeat the loop in 627 * the unlikely event when elements moved from one bucket into another 628 * while link list is being walked 629 */ 630 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 631 u32 hash, void *key, 632 u32 key_size, u32 n_buckets) 633 { 634 struct hlist_nulls_node *n; 635 struct htab_elem *l; 636 637 again: 638 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 639 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 640 return l; 641 642 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 643 goto again; 644 645 return NULL; 646 } 647 648 /* Called from syscall or from eBPF program directly, so 649 * arguments have to match bpf_map_lookup_elem() exactly. 650 * The return value is adjusted by BPF instructions 651 * in htab_map_gen_lookup(). 652 */ 653 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 654 { 655 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 656 struct hlist_nulls_head *head; 657 struct htab_elem *l; 658 u32 hash, key_size; 659 660 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 661 !rcu_read_lock_bh_held()); 662 663 key_size = map->key_size; 664 665 hash = htab_map_hash(key, key_size, htab->hashrnd); 666 667 head = select_bucket(htab, hash); 668 669 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 670 671 return l; 672 } 673 674 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 675 { 676 struct htab_elem *l = __htab_map_lookup_elem(map, key); 677 678 if (l) 679 return l->key + round_up(map->key_size, 8); 680 681 return NULL; 682 } 683 684 /* inline bpf_map_lookup_elem() call. 685 * Instead of: 686 * bpf_prog 687 * bpf_map_lookup_elem 688 * map->ops->map_lookup_elem 689 * htab_map_lookup_elem 690 * __htab_map_lookup_elem 691 * do: 692 * bpf_prog 693 * __htab_map_lookup_elem 694 */ 695 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 696 { 697 struct bpf_insn *insn = insn_buf; 698 const int ret = BPF_REG_0; 699 700 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 701 (void *(*)(struct bpf_map *map, void *key))NULL)); 702 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 703 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 704 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 705 offsetof(struct htab_elem, key) + 706 round_up(map->key_size, 8)); 707 return insn - insn_buf; 708 } 709 710 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 711 void *key, const bool mark) 712 { 713 struct htab_elem *l = __htab_map_lookup_elem(map, key); 714 715 if (l) { 716 if (mark) 717 bpf_lru_node_set_ref(&l->lru_node); 718 return l->key + round_up(map->key_size, 8); 719 } 720 721 return NULL; 722 } 723 724 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 725 { 726 return __htab_lru_map_lookup_elem(map, key, true); 727 } 728 729 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 730 { 731 return __htab_lru_map_lookup_elem(map, key, false); 732 } 733 734 static int htab_lru_map_gen_lookup(struct bpf_map *map, 735 struct bpf_insn *insn_buf) 736 { 737 struct bpf_insn *insn = insn_buf; 738 const int ret = BPF_REG_0; 739 const int ref_reg = BPF_REG_1; 740 741 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 742 (void *(*)(struct bpf_map *map, void *key))NULL)); 743 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 744 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 745 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 746 offsetof(struct htab_elem, lru_node) + 747 offsetof(struct bpf_lru_node, ref)); 748 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 749 *insn++ = BPF_ST_MEM(BPF_B, ret, 750 offsetof(struct htab_elem, lru_node) + 751 offsetof(struct bpf_lru_node, ref), 752 1); 753 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 754 offsetof(struct htab_elem, key) + 755 round_up(map->key_size, 8)); 756 return insn - insn_buf; 757 } 758 759 static void check_and_free_fields(struct bpf_htab *htab, 760 struct htab_elem *elem) 761 { 762 void *map_value = elem->key + round_up(htab->map.key_size, 8); 763 764 bpf_obj_free_fields(htab->map.record, map_value); 765 } 766 767 /* It is called from the bpf_lru_list when the LRU needs to delete 768 * older elements from the htab. 769 */ 770 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 771 { 772 struct bpf_htab *htab = arg; 773 struct htab_elem *l = NULL, *tgt_l; 774 struct hlist_nulls_head *head; 775 struct hlist_nulls_node *n; 776 unsigned long flags; 777 struct bucket *b; 778 int ret; 779 780 tgt_l = container_of(node, struct htab_elem, lru_node); 781 b = __select_bucket(htab, tgt_l->hash); 782 head = &b->head; 783 784 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags); 785 if (ret) 786 return false; 787 788 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 789 if (l == tgt_l) { 790 hlist_nulls_del_rcu(&l->hash_node); 791 check_and_free_fields(htab, l); 792 break; 793 } 794 795 htab_unlock_bucket(htab, b, tgt_l->hash, flags); 796 797 return l == tgt_l; 798 } 799 800 /* Called from syscall */ 801 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 802 { 803 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 804 struct hlist_nulls_head *head; 805 struct htab_elem *l, *next_l; 806 u32 hash, key_size; 807 int i = 0; 808 809 WARN_ON_ONCE(!rcu_read_lock_held()); 810 811 key_size = map->key_size; 812 813 if (!key) 814 goto find_first_elem; 815 816 hash = htab_map_hash(key, key_size, htab->hashrnd); 817 818 head = select_bucket(htab, hash); 819 820 /* lookup the key */ 821 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 822 823 if (!l) 824 goto find_first_elem; 825 826 /* key was found, get next key in the same bucket */ 827 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 828 struct htab_elem, hash_node); 829 830 if (next_l) { 831 /* if next elem in this hash list is non-zero, just return it */ 832 memcpy(next_key, next_l->key, key_size); 833 return 0; 834 } 835 836 /* no more elements in this hash list, go to the next bucket */ 837 i = hash & (htab->n_buckets - 1); 838 i++; 839 840 find_first_elem: 841 /* iterate over buckets */ 842 for (; i < htab->n_buckets; i++) { 843 head = select_bucket(htab, i); 844 845 /* pick first element in the bucket */ 846 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 847 struct htab_elem, hash_node); 848 if (next_l) { 849 /* if it's not empty, just return it */ 850 memcpy(next_key, next_l->key, key_size); 851 return 0; 852 } 853 } 854 855 /* iterated over all buckets and all elements */ 856 return -ENOENT; 857 } 858 859 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 860 { 861 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 862 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); 863 check_and_free_fields(htab, l); 864 bpf_mem_cache_free(&htab->ma, l); 865 } 866 867 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 868 { 869 struct bpf_map *map = &htab->map; 870 void *ptr; 871 872 if (map->ops->map_fd_put_ptr) { 873 ptr = fd_htab_map_get_ptr(map, l); 874 map->ops->map_fd_put_ptr(ptr); 875 } 876 } 877 878 static bool is_map_full(struct bpf_htab *htab) 879 { 880 if (htab->use_percpu_counter) 881 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, 882 PERCPU_COUNTER_BATCH) >= 0; 883 return atomic_read(&htab->count) >= htab->map.max_entries; 884 } 885 886 static void inc_elem_count(struct bpf_htab *htab) 887 { 888 if (htab->use_percpu_counter) 889 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); 890 else 891 atomic_inc(&htab->count); 892 } 893 894 static void dec_elem_count(struct bpf_htab *htab) 895 { 896 if (htab->use_percpu_counter) 897 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); 898 else 899 atomic_dec(&htab->count); 900 } 901 902 903 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 904 { 905 htab_put_fd_value(htab, l); 906 907 if (htab_is_prealloc(htab)) { 908 check_and_free_fields(htab, l); 909 __pcpu_freelist_push(&htab->freelist, &l->fnode); 910 } else { 911 dec_elem_count(htab); 912 htab_elem_free(htab, l); 913 } 914 } 915 916 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 917 void *value, bool onallcpus) 918 { 919 if (!onallcpus) { 920 /* copy true value_size bytes */ 921 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 922 } else { 923 u32 size = round_up(htab->map.value_size, 8); 924 int off = 0, cpu; 925 926 for_each_possible_cpu(cpu) { 927 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 928 value + off, size); 929 off += size; 930 } 931 } 932 } 933 934 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, 935 void *value, bool onallcpus) 936 { 937 /* When not setting the initial value on all cpus, zero-fill element 938 * values for other cpus. Otherwise, bpf program has no way to ensure 939 * known initial values for cpus other than current one 940 * (onallcpus=false always when coming from bpf prog). 941 */ 942 if (!onallcpus) { 943 u32 size = round_up(htab->map.value_size, 8); 944 int current_cpu = raw_smp_processor_id(); 945 int cpu; 946 947 for_each_possible_cpu(cpu) { 948 if (cpu == current_cpu) 949 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value, 950 size); 951 else 952 memset(per_cpu_ptr(pptr, cpu), 0, size); 953 } 954 } else { 955 pcpu_copy_value(htab, pptr, value, onallcpus); 956 } 957 } 958 959 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 960 { 961 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 962 BITS_PER_LONG == 64; 963 } 964 965 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 966 void *value, u32 key_size, u32 hash, 967 bool percpu, bool onallcpus, 968 struct htab_elem *old_elem) 969 { 970 u32 size = htab->map.value_size; 971 bool prealloc = htab_is_prealloc(htab); 972 struct htab_elem *l_new, **pl_new; 973 void __percpu *pptr; 974 975 if (prealloc) { 976 if (old_elem) { 977 /* if we're updating the existing element, 978 * use per-cpu extra elems to avoid freelist_pop/push 979 */ 980 pl_new = this_cpu_ptr(htab->extra_elems); 981 l_new = *pl_new; 982 htab_put_fd_value(htab, old_elem); 983 *pl_new = old_elem; 984 } else { 985 struct pcpu_freelist_node *l; 986 987 l = __pcpu_freelist_pop(&htab->freelist); 988 if (!l) 989 return ERR_PTR(-E2BIG); 990 l_new = container_of(l, struct htab_elem, fnode); 991 } 992 } else { 993 if (is_map_full(htab)) 994 if (!old_elem) 995 /* when map is full and update() is replacing 996 * old element, it's ok to allocate, since 997 * old element will be freed immediately. 998 * Otherwise return an error 999 */ 1000 return ERR_PTR(-E2BIG); 1001 inc_elem_count(htab); 1002 l_new = bpf_mem_cache_alloc(&htab->ma); 1003 if (!l_new) { 1004 l_new = ERR_PTR(-ENOMEM); 1005 goto dec_count; 1006 } 1007 } 1008 1009 memcpy(l_new->key, key, key_size); 1010 if (percpu) { 1011 if (prealloc) { 1012 pptr = htab_elem_get_ptr(l_new, key_size); 1013 } else { 1014 /* alloc_percpu zero-fills */ 1015 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma); 1016 if (!pptr) { 1017 bpf_mem_cache_free(&htab->ma, l_new); 1018 l_new = ERR_PTR(-ENOMEM); 1019 goto dec_count; 1020 } 1021 l_new->ptr_to_pptr = pptr; 1022 pptr = *(void **)pptr; 1023 } 1024 1025 pcpu_init_value(htab, pptr, value, onallcpus); 1026 1027 if (!prealloc) 1028 htab_elem_set_ptr(l_new, key_size, pptr); 1029 } else if (fd_htab_map_needs_adjust(htab)) { 1030 size = round_up(size, 8); 1031 memcpy(l_new->key + round_up(key_size, 8), value, size); 1032 } else { 1033 copy_map_value(&htab->map, 1034 l_new->key + round_up(key_size, 8), 1035 value); 1036 } 1037 1038 l_new->hash = hash; 1039 return l_new; 1040 dec_count: 1041 dec_elem_count(htab); 1042 return l_new; 1043 } 1044 1045 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 1046 u64 map_flags) 1047 { 1048 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 1049 /* elem already exists */ 1050 return -EEXIST; 1051 1052 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 1053 /* elem doesn't exist, cannot update it */ 1054 return -ENOENT; 1055 1056 return 0; 1057 } 1058 1059 /* Called from syscall or from eBPF program */ 1060 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 1061 u64 map_flags) 1062 { 1063 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1064 struct htab_elem *l_new = NULL, *l_old; 1065 struct hlist_nulls_head *head; 1066 unsigned long flags; 1067 struct bucket *b; 1068 u32 key_size, hash; 1069 int ret; 1070 1071 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 1072 /* unknown flags */ 1073 return -EINVAL; 1074 1075 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1076 !rcu_read_lock_bh_held()); 1077 1078 key_size = map->key_size; 1079 1080 hash = htab_map_hash(key, key_size, htab->hashrnd); 1081 1082 b = __select_bucket(htab, hash); 1083 head = &b->head; 1084 1085 if (unlikely(map_flags & BPF_F_LOCK)) { 1086 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1087 return -EINVAL; 1088 /* find an element without taking the bucket lock */ 1089 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 1090 htab->n_buckets); 1091 ret = check_flags(htab, l_old, map_flags); 1092 if (ret) 1093 return ret; 1094 if (l_old) { 1095 /* grab the element lock and update value in place */ 1096 copy_map_value_locked(map, 1097 l_old->key + round_up(key_size, 8), 1098 value, false); 1099 return 0; 1100 } 1101 /* fall through, grab the bucket lock and lookup again. 1102 * 99.9% chance that the element won't be found, 1103 * but second lookup under lock has to be done. 1104 */ 1105 } 1106 1107 ret = htab_lock_bucket(htab, b, hash, &flags); 1108 if (ret) 1109 return ret; 1110 1111 l_old = lookup_elem_raw(head, hash, key, key_size); 1112 1113 ret = check_flags(htab, l_old, map_flags); 1114 if (ret) 1115 goto err; 1116 1117 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 1118 /* first lookup without the bucket lock didn't find the element, 1119 * but second lookup with the bucket lock found it. 1120 * This case is highly unlikely, but has to be dealt with: 1121 * grab the element lock in addition to the bucket lock 1122 * and update element in place 1123 */ 1124 copy_map_value_locked(map, 1125 l_old->key + round_up(key_size, 8), 1126 value, false); 1127 ret = 0; 1128 goto err; 1129 } 1130 1131 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 1132 l_old); 1133 if (IS_ERR(l_new)) { 1134 /* all pre-allocated elements are in use or memory exhausted */ 1135 ret = PTR_ERR(l_new); 1136 goto err; 1137 } 1138 1139 /* add new element to the head of the list, so that 1140 * concurrent search will find it before old elem 1141 */ 1142 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1143 if (l_old) { 1144 hlist_nulls_del_rcu(&l_old->hash_node); 1145 if (!htab_is_prealloc(htab)) 1146 free_htab_elem(htab, l_old); 1147 else 1148 check_and_free_fields(htab, l_old); 1149 } 1150 ret = 0; 1151 err: 1152 htab_unlock_bucket(htab, b, hash, flags); 1153 return ret; 1154 } 1155 1156 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) 1157 { 1158 check_and_free_fields(htab, elem); 1159 bpf_lru_push_free(&htab->lru, &elem->lru_node); 1160 } 1161 1162 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1163 u64 map_flags) 1164 { 1165 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1166 struct htab_elem *l_new, *l_old = NULL; 1167 struct hlist_nulls_head *head; 1168 unsigned long flags; 1169 struct bucket *b; 1170 u32 key_size, hash; 1171 int ret; 1172 1173 if (unlikely(map_flags > BPF_EXIST)) 1174 /* unknown flags */ 1175 return -EINVAL; 1176 1177 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1178 !rcu_read_lock_bh_held()); 1179 1180 key_size = map->key_size; 1181 1182 hash = htab_map_hash(key, key_size, htab->hashrnd); 1183 1184 b = __select_bucket(htab, hash); 1185 head = &b->head; 1186 1187 /* For LRU, we need to alloc before taking bucket's 1188 * spinlock because getting free nodes from LRU may need 1189 * to remove older elements from htab and this removal 1190 * operation will need a bucket lock. 1191 */ 1192 l_new = prealloc_lru_pop(htab, key, hash); 1193 if (!l_new) 1194 return -ENOMEM; 1195 copy_map_value(&htab->map, 1196 l_new->key + round_up(map->key_size, 8), value); 1197 1198 ret = htab_lock_bucket(htab, b, hash, &flags); 1199 if (ret) 1200 return ret; 1201 1202 l_old = lookup_elem_raw(head, hash, key, key_size); 1203 1204 ret = check_flags(htab, l_old, map_flags); 1205 if (ret) 1206 goto err; 1207 1208 /* add new element to the head of the list, so that 1209 * concurrent search will find it before old elem 1210 */ 1211 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1212 if (l_old) { 1213 bpf_lru_node_set_ref(&l_new->lru_node); 1214 hlist_nulls_del_rcu(&l_old->hash_node); 1215 } 1216 ret = 0; 1217 1218 err: 1219 htab_unlock_bucket(htab, b, hash, flags); 1220 1221 if (ret) 1222 htab_lru_push_free(htab, l_new); 1223 else if (l_old) 1224 htab_lru_push_free(htab, l_old); 1225 1226 return ret; 1227 } 1228 1229 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1230 void *value, u64 map_flags, 1231 bool onallcpus) 1232 { 1233 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1234 struct htab_elem *l_new = NULL, *l_old; 1235 struct hlist_nulls_head *head; 1236 unsigned long flags; 1237 struct bucket *b; 1238 u32 key_size, hash; 1239 int ret; 1240 1241 if (unlikely(map_flags > BPF_EXIST)) 1242 /* unknown flags */ 1243 return -EINVAL; 1244 1245 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1246 !rcu_read_lock_bh_held()); 1247 1248 key_size = map->key_size; 1249 1250 hash = htab_map_hash(key, key_size, htab->hashrnd); 1251 1252 b = __select_bucket(htab, hash); 1253 head = &b->head; 1254 1255 ret = htab_lock_bucket(htab, b, hash, &flags); 1256 if (ret) 1257 return ret; 1258 1259 l_old = lookup_elem_raw(head, hash, key, key_size); 1260 1261 ret = check_flags(htab, l_old, map_flags); 1262 if (ret) 1263 goto err; 1264 1265 if (l_old) { 1266 /* per-cpu hash map can update value in-place */ 1267 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1268 value, onallcpus); 1269 } else { 1270 l_new = alloc_htab_elem(htab, key, value, key_size, 1271 hash, true, onallcpus, NULL); 1272 if (IS_ERR(l_new)) { 1273 ret = PTR_ERR(l_new); 1274 goto err; 1275 } 1276 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1277 } 1278 ret = 0; 1279 err: 1280 htab_unlock_bucket(htab, b, hash, flags); 1281 return ret; 1282 } 1283 1284 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1285 void *value, u64 map_flags, 1286 bool onallcpus) 1287 { 1288 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1289 struct htab_elem *l_new = NULL, *l_old; 1290 struct hlist_nulls_head *head; 1291 unsigned long flags; 1292 struct bucket *b; 1293 u32 key_size, hash; 1294 int ret; 1295 1296 if (unlikely(map_flags > BPF_EXIST)) 1297 /* unknown flags */ 1298 return -EINVAL; 1299 1300 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1301 !rcu_read_lock_bh_held()); 1302 1303 key_size = map->key_size; 1304 1305 hash = htab_map_hash(key, key_size, htab->hashrnd); 1306 1307 b = __select_bucket(htab, hash); 1308 head = &b->head; 1309 1310 /* For LRU, we need to alloc before taking bucket's 1311 * spinlock because LRU's elem alloc may need 1312 * to remove older elem from htab and this removal 1313 * operation will need a bucket lock. 1314 */ 1315 if (map_flags != BPF_EXIST) { 1316 l_new = prealloc_lru_pop(htab, key, hash); 1317 if (!l_new) 1318 return -ENOMEM; 1319 } 1320 1321 ret = htab_lock_bucket(htab, b, hash, &flags); 1322 if (ret) 1323 return ret; 1324 1325 l_old = lookup_elem_raw(head, hash, key, key_size); 1326 1327 ret = check_flags(htab, l_old, map_flags); 1328 if (ret) 1329 goto err; 1330 1331 if (l_old) { 1332 bpf_lru_node_set_ref(&l_old->lru_node); 1333 1334 /* per-cpu hash map can update value in-place */ 1335 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1336 value, onallcpus); 1337 } else { 1338 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), 1339 value, onallcpus); 1340 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1341 l_new = NULL; 1342 } 1343 ret = 0; 1344 err: 1345 htab_unlock_bucket(htab, b, hash, flags); 1346 if (l_new) 1347 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1348 return ret; 1349 } 1350 1351 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1352 void *value, u64 map_flags) 1353 { 1354 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1355 } 1356 1357 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1358 void *value, u64 map_flags) 1359 { 1360 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1361 false); 1362 } 1363 1364 /* Called from syscall or from eBPF program */ 1365 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1366 { 1367 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1368 struct hlist_nulls_head *head; 1369 struct bucket *b; 1370 struct htab_elem *l; 1371 unsigned long flags; 1372 u32 hash, key_size; 1373 int ret; 1374 1375 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1376 !rcu_read_lock_bh_held()); 1377 1378 key_size = map->key_size; 1379 1380 hash = htab_map_hash(key, key_size, htab->hashrnd); 1381 b = __select_bucket(htab, hash); 1382 head = &b->head; 1383 1384 ret = htab_lock_bucket(htab, b, hash, &flags); 1385 if (ret) 1386 return ret; 1387 1388 l = lookup_elem_raw(head, hash, key, key_size); 1389 1390 if (l) { 1391 hlist_nulls_del_rcu(&l->hash_node); 1392 free_htab_elem(htab, l); 1393 } else { 1394 ret = -ENOENT; 1395 } 1396 1397 htab_unlock_bucket(htab, b, hash, flags); 1398 return ret; 1399 } 1400 1401 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1402 { 1403 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1404 struct hlist_nulls_head *head; 1405 struct bucket *b; 1406 struct htab_elem *l; 1407 unsigned long flags; 1408 u32 hash, key_size; 1409 int ret; 1410 1411 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 1412 !rcu_read_lock_bh_held()); 1413 1414 key_size = map->key_size; 1415 1416 hash = htab_map_hash(key, key_size, htab->hashrnd); 1417 b = __select_bucket(htab, hash); 1418 head = &b->head; 1419 1420 ret = htab_lock_bucket(htab, b, hash, &flags); 1421 if (ret) 1422 return ret; 1423 1424 l = lookup_elem_raw(head, hash, key, key_size); 1425 1426 if (l) 1427 hlist_nulls_del_rcu(&l->hash_node); 1428 else 1429 ret = -ENOENT; 1430 1431 htab_unlock_bucket(htab, b, hash, flags); 1432 if (l) 1433 htab_lru_push_free(htab, l); 1434 return ret; 1435 } 1436 1437 static void delete_all_elements(struct bpf_htab *htab) 1438 { 1439 int i; 1440 1441 /* It's called from a worker thread, so disable migration here, 1442 * since bpf_mem_cache_free() relies on that. 1443 */ 1444 migrate_disable(); 1445 for (i = 0; i < htab->n_buckets; i++) { 1446 struct hlist_nulls_head *head = select_bucket(htab, i); 1447 struct hlist_nulls_node *n; 1448 struct htab_elem *l; 1449 1450 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1451 hlist_nulls_del_rcu(&l->hash_node); 1452 htab_elem_free(htab, l); 1453 } 1454 } 1455 migrate_enable(); 1456 } 1457 1458 static void htab_free_malloced_timers(struct bpf_htab *htab) 1459 { 1460 int i; 1461 1462 rcu_read_lock(); 1463 for (i = 0; i < htab->n_buckets; i++) { 1464 struct hlist_nulls_head *head = select_bucket(htab, i); 1465 struct hlist_nulls_node *n; 1466 struct htab_elem *l; 1467 1468 hlist_nulls_for_each_entry(l, n, head, hash_node) { 1469 /* We only free timer on uref dropping to zero */ 1470 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8)); 1471 } 1472 cond_resched_rcu(); 1473 } 1474 rcu_read_unlock(); 1475 } 1476 1477 static void htab_map_free_timers(struct bpf_map *map) 1478 { 1479 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1480 1481 /* We only free timer on uref dropping to zero */ 1482 if (!btf_record_has_field(htab->map.record, BPF_TIMER)) 1483 return; 1484 if (!htab_is_prealloc(htab)) 1485 htab_free_malloced_timers(htab); 1486 else 1487 htab_free_prealloced_timers(htab); 1488 } 1489 1490 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1491 static void htab_map_free(struct bpf_map *map) 1492 { 1493 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1494 int i; 1495 1496 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1497 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1498 * There is no need to synchronize_rcu() here to protect map elements. 1499 */ 1500 1501 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it 1502 * underneath and is reponsible for waiting for callbacks to finish 1503 * during bpf_mem_alloc_destroy(). 1504 */ 1505 if (!htab_is_prealloc(htab)) { 1506 delete_all_elements(htab); 1507 } else { 1508 htab_free_prealloced_fields(htab); 1509 prealloc_destroy(htab); 1510 } 1511 1512 free_percpu(htab->extra_elems); 1513 bpf_map_area_free(htab->buckets); 1514 bpf_mem_alloc_destroy(&htab->pcpu_ma); 1515 bpf_mem_alloc_destroy(&htab->ma); 1516 if (htab->use_percpu_counter) 1517 percpu_counter_destroy(&htab->pcount); 1518 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) 1519 free_percpu(htab->map_locked[i]); 1520 lockdep_unregister_key(&htab->lockdep_key); 1521 bpf_map_area_free(htab); 1522 } 1523 1524 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1525 struct seq_file *m) 1526 { 1527 void *value; 1528 1529 rcu_read_lock(); 1530 1531 value = htab_map_lookup_elem(map, key); 1532 if (!value) { 1533 rcu_read_unlock(); 1534 return; 1535 } 1536 1537 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1538 seq_puts(m, ": "); 1539 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1540 seq_puts(m, "\n"); 1541 1542 rcu_read_unlock(); 1543 } 1544 1545 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1546 void *value, bool is_lru_map, 1547 bool is_percpu, u64 flags) 1548 { 1549 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1550 struct hlist_nulls_head *head; 1551 unsigned long bflags; 1552 struct htab_elem *l; 1553 u32 hash, key_size; 1554 struct bucket *b; 1555 int ret; 1556 1557 key_size = map->key_size; 1558 1559 hash = htab_map_hash(key, key_size, htab->hashrnd); 1560 b = __select_bucket(htab, hash); 1561 head = &b->head; 1562 1563 ret = htab_lock_bucket(htab, b, hash, &bflags); 1564 if (ret) 1565 return ret; 1566 1567 l = lookup_elem_raw(head, hash, key, key_size); 1568 if (!l) { 1569 ret = -ENOENT; 1570 } else { 1571 if (is_percpu) { 1572 u32 roundup_value_size = round_up(map->value_size, 8); 1573 void __percpu *pptr; 1574 int off = 0, cpu; 1575 1576 pptr = htab_elem_get_ptr(l, key_size); 1577 for_each_possible_cpu(cpu) { 1578 bpf_long_memcpy(value + off, 1579 per_cpu_ptr(pptr, cpu), 1580 roundup_value_size); 1581 off += roundup_value_size; 1582 } 1583 } else { 1584 u32 roundup_key_size = round_up(map->key_size, 8); 1585 1586 if (flags & BPF_F_LOCK) 1587 copy_map_value_locked(map, value, l->key + 1588 roundup_key_size, 1589 true); 1590 else 1591 copy_map_value(map, value, l->key + 1592 roundup_key_size); 1593 /* Zeroing special fields in the temp buffer */ 1594 check_and_init_map_value(map, value); 1595 } 1596 1597 hlist_nulls_del_rcu(&l->hash_node); 1598 if (!is_lru_map) 1599 free_htab_elem(htab, l); 1600 } 1601 1602 htab_unlock_bucket(htab, b, hash, bflags); 1603 1604 if (is_lru_map && l) 1605 htab_lru_push_free(htab, l); 1606 1607 return ret; 1608 } 1609 1610 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1611 void *value, u64 flags) 1612 { 1613 return __htab_map_lookup_and_delete_elem(map, key, value, false, false, 1614 flags); 1615 } 1616 1617 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1618 void *key, void *value, 1619 u64 flags) 1620 { 1621 return __htab_map_lookup_and_delete_elem(map, key, value, false, true, 1622 flags); 1623 } 1624 1625 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, 1626 void *value, u64 flags) 1627 { 1628 return __htab_map_lookup_and_delete_elem(map, key, value, true, false, 1629 flags); 1630 } 1631 1632 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, 1633 void *key, void *value, 1634 u64 flags) 1635 { 1636 return __htab_map_lookup_and_delete_elem(map, key, value, true, true, 1637 flags); 1638 } 1639 1640 static int 1641 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1642 const union bpf_attr *attr, 1643 union bpf_attr __user *uattr, 1644 bool do_delete, bool is_lru_map, 1645 bool is_percpu) 1646 { 1647 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1648 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1649 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1650 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1651 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1652 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1653 u32 batch, max_count, size, bucket_size, map_id; 1654 struct htab_elem *node_to_free = NULL; 1655 u64 elem_map_flags, map_flags; 1656 struct hlist_nulls_head *head; 1657 struct hlist_nulls_node *n; 1658 unsigned long flags = 0; 1659 bool locked = false; 1660 struct htab_elem *l; 1661 struct bucket *b; 1662 int ret = 0; 1663 1664 elem_map_flags = attr->batch.elem_flags; 1665 if ((elem_map_flags & ~BPF_F_LOCK) || 1666 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) 1667 return -EINVAL; 1668 1669 map_flags = attr->batch.flags; 1670 if (map_flags) 1671 return -EINVAL; 1672 1673 max_count = attr->batch.count; 1674 if (!max_count) 1675 return 0; 1676 1677 if (put_user(0, &uattr->batch.count)) 1678 return -EFAULT; 1679 1680 batch = 0; 1681 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1682 return -EFAULT; 1683 1684 if (batch >= htab->n_buckets) 1685 return -ENOENT; 1686 1687 key_size = htab->map.key_size; 1688 roundup_key_size = round_up(htab->map.key_size, 8); 1689 value_size = htab->map.value_size; 1690 size = round_up(value_size, 8); 1691 if (is_percpu) 1692 value_size = size * num_possible_cpus(); 1693 total = 0; 1694 /* while experimenting with hash tables with sizes ranging from 10 to 1695 * 1000, it was observed that a bucket can have up to 5 entries. 1696 */ 1697 bucket_size = 5; 1698 1699 alloc: 1700 /* We cannot do copy_from_user or copy_to_user inside 1701 * the rcu_read_lock. Allocate enough space here. 1702 */ 1703 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); 1704 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); 1705 if (!keys || !values) { 1706 ret = -ENOMEM; 1707 goto after_loop; 1708 } 1709 1710 again: 1711 bpf_disable_instrumentation(); 1712 rcu_read_lock(); 1713 again_nocopy: 1714 dst_key = keys; 1715 dst_val = values; 1716 b = &htab->buckets[batch]; 1717 head = &b->head; 1718 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1719 if (locked) { 1720 ret = htab_lock_bucket(htab, b, batch, &flags); 1721 if (ret) { 1722 rcu_read_unlock(); 1723 bpf_enable_instrumentation(); 1724 goto after_loop; 1725 } 1726 } 1727 1728 bucket_cnt = 0; 1729 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1730 bucket_cnt++; 1731 1732 if (bucket_cnt && !locked) { 1733 locked = true; 1734 goto again_nocopy; 1735 } 1736 1737 if (bucket_cnt > (max_count - total)) { 1738 if (total == 0) 1739 ret = -ENOSPC; 1740 /* Note that since bucket_cnt > 0 here, it is implicit 1741 * that the locked was grabbed, so release it. 1742 */ 1743 htab_unlock_bucket(htab, b, batch, flags); 1744 rcu_read_unlock(); 1745 bpf_enable_instrumentation(); 1746 goto after_loop; 1747 } 1748 1749 if (bucket_cnt > bucket_size) { 1750 bucket_size = bucket_cnt; 1751 /* Note that since bucket_cnt > 0 here, it is implicit 1752 * that the locked was grabbed, so release it. 1753 */ 1754 htab_unlock_bucket(htab, b, batch, flags); 1755 rcu_read_unlock(); 1756 bpf_enable_instrumentation(); 1757 kvfree(keys); 1758 kvfree(values); 1759 goto alloc; 1760 } 1761 1762 /* Next block is only safe to run if you have grabbed the lock */ 1763 if (!locked) 1764 goto next_batch; 1765 1766 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1767 memcpy(dst_key, l->key, key_size); 1768 1769 if (is_percpu) { 1770 int off = 0, cpu; 1771 void __percpu *pptr; 1772 1773 pptr = htab_elem_get_ptr(l, map->key_size); 1774 for_each_possible_cpu(cpu) { 1775 bpf_long_memcpy(dst_val + off, 1776 per_cpu_ptr(pptr, cpu), size); 1777 off += size; 1778 } 1779 } else { 1780 value = l->key + roundup_key_size; 1781 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { 1782 struct bpf_map **inner_map = value; 1783 1784 /* Actual value is the id of the inner map */ 1785 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); 1786 value = &map_id; 1787 } 1788 1789 if (elem_map_flags & BPF_F_LOCK) 1790 copy_map_value_locked(map, dst_val, value, 1791 true); 1792 else 1793 copy_map_value(map, dst_val, value); 1794 /* Zeroing special fields in the temp buffer */ 1795 check_and_init_map_value(map, dst_val); 1796 } 1797 if (do_delete) { 1798 hlist_nulls_del_rcu(&l->hash_node); 1799 1800 /* bpf_lru_push_free() will acquire lru_lock, which 1801 * may cause deadlock. See comments in function 1802 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1803 * after releasing the bucket lock. 1804 */ 1805 if (is_lru_map) { 1806 l->batch_flink = node_to_free; 1807 node_to_free = l; 1808 } else { 1809 free_htab_elem(htab, l); 1810 } 1811 } 1812 dst_key += key_size; 1813 dst_val += value_size; 1814 } 1815 1816 htab_unlock_bucket(htab, b, batch, flags); 1817 locked = false; 1818 1819 while (node_to_free) { 1820 l = node_to_free; 1821 node_to_free = node_to_free->batch_flink; 1822 htab_lru_push_free(htab, l); 1823 } 1824 1825 next_batch: 1826 /* If we are not copying data, we can go to next bucket and avoid 1827 * unlocking the rcu. 1828 */ 1829 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1830 batch++; 1831 goto again_nocopy; 1832 } 1833 1834 rcu_read_unlock(); 1835 bpf_enable_instrumentation(); 1836 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1837 key_size * bucket_cnt) || 1838 copy_to_user(uvalues + total * value_size, values, 1839 value_size * bucket_cnt))) { 1840 ret = -EFAULT; 1841 goto after_loop; 1842 } 1843 1844 total += bucket_cnt; 1845 batch++; 1846 if (batch >= htab->n_buckets) { 1847 ret = -ENOENT; 1848 goto after_loop; 1849 } 1850 goto again; 1851 1852 after_loop: 1853 if (ret == -EFAULT) 1854 goto out; 1855 1856 /* copy # of entries and next batch */ 1857 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1858 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1859 put_user(total, &uattr->batch.count)) 1860 ret = -EFAULT; 1861 1862 out: 1863 kvfree(keys); 1864 kvfree(values); 1865 return ret; 1866 } 1867 1868 static int 1869 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1870 union bpf_attr __user *uattr) 1871 { 1872 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1873 false, true); 1874 } 1875 1876 static int 1877 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1878 const union bpf_attr *attr, 1879 union bpf_attr __user *uattr) 1880 { 1881 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1882 false, true); 1883 } 1884 1885 static int 1886 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1887 union bpf_attr __user *uattr) 1888 { 1889 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1890 false, false); 1891 } 1892 1893 static int 1894 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1895 const union bpf_attr *attr, 1896 union bpf_attr __user *uattr) 1897 { 1898 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1899 false, false); 1900 } 1901 1902 static int 1903 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1904 const union bpf_attr *attr, 1905 union bpf_attr __user *uattr) 1906 { 1907 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1908 true, true); 1909 } 1910 1911 static int 1912 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1913 const union bpf_attr *attr, 1914 union bpf_attr __user *uattr) 1915 { 1916 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1917 true, true); 1918 } 1919 1920 static int 1921 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1922 union bpf_attr __user *uattr) 1923 { 1924 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1925 true, false); 1926 } 1927 1928 static int 1929 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1930 const union bpf_attr *attr, 1931 union bpf_attr __user *uattr) 1932 { 1933 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1934 true, false); 1935 } 1936 1937 struct bpf_iter_seq_hash_map_info { 1938 struct bpf_map *map; 1939 struct bpf_htab *htab; 1940 void *percpu_value_buf; // non-zero means percpu hash 1941 u32 bucket_id; 1942 u32 skip_elems; 1943 }; 1944 1945 static struct htab_elem * 1946 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1947 struct htab_elem *prev_elem) 1948 { 1949 const struct bpf_htab *htab = info->htab; 1950 u32 skip_elems = info->skip_elems; 1951 u32 bucket_id = info->bucket_id; 1952 struct hlist_nulls_head *head; 1953 struct hlist_nulls_node *n; 1954 struct htab_elem *elem; 1955 struct bucket *b; 1956 u32 i, count; 1957 1958 if (bucket_id >= htab->n_buckets) 1959 return NULL; 1960 1961 /* try to find next elem in the same bucket */ 1962 if (prev_elem) { 1963 /* no update/deletion on this bucket, prev_elem should be still valid 1964 * and we won't skip elements. 1965 */ 1966 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1967 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1968 if (elem) 1969 return elem; 1970 1971 /* not found, unlock and go to the next bucket */ 1972 b = &htab->buckets[bucket_id++]; 1973 rcu_read_unlock(); 1974 skip_elems = 0; 1975 } 1976 1977 for (i = bucket_id; i < htab->n_buckets; i++) { 1978 b = &htab->buckets[i]; 1979 rcu_read_lock(); 1980 1981 count = 0; 1982 head = &b->head; 1983 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1984 if (count >= skip_elems) { 1985 info->bucket_id = i; 1986 info->skip_elems = count; 1987 return elem; 1988 } 1989 count++; 1990 } 1991 1992 rcu_read_unlock(); 1993 skip_elems = 0; 1994 } 1995 1996 info->bucket_id = i; 1997 info->skip_elems = 0; 1998 return NULL; 1999 } 2000 2001 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 2002 { 2003 struct bpf_iter_seq_hash_map_info *info = seq->private; 2004 struct htab_elem *elem; 2005 2006 elem = bpf_hash_map_seq_find_next(info, NULL); 2007 if (!elem) 2008 return NULL; 2009 2010 if (*pos == 0) 2011 ++*pos; 2012 return elem; 2013 } 2014 2015 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2016 { 2017 struct bpf_iter_seq_hash_map_info *info = seq->private; 2018 2019 ++*pos; 2020 ++info->skip_elems; 2021 return bpf_hash_map_seq_find_next(info, v); 2022 } 2023 2024 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 2025 { 2026 struct bpf_iter_seq_hash_map_info *info = seq->private; 2027 u32 roundup_key_size, roundup_value_size; 2028 struct bpf_iter__bpf_map_elem ctx = {}; 2029 struct bpf_map *map = info->map; 2030 struct bpf_iter_meta meta; 2031 int ret = 0, off = 0, cpu; 2032 struct bpf_prog *prog; 2033 void __percpu *pptr; 2034 2035 meta.seq = seq; 2036 prog = bpf_iter_get_info(&meta, elem == NULL); 2037 if (prog) { 2038 ctx.meta = &meta; 2039 ctx.map = info->map; 2040 if (elem) { 2041 roundup_key_size = round_up(map->key_size, 8); 2042 ctx.key = elem->key; 2043 if (!info->percpu_value_buf) { 2044 ctx.value = elem->key + roundup_key_size; 2045 } else { 2046 roundup_value_size = round_up(map->value_size, 8); 2047 pptr = htab_elem_get_ptr(elem, map->key_size); 2048 for_each_possible_cpu(cpu) { 2049 bpf_long_memcpy(info->percpu_value_buf + off, 2050 per_cpu_ptr(pptr, cpu), 2051 roundup_value_size); 2052 off += roundup_value_size; 2053 } 2054 ctx.value = info->percpu_value_buf; 2055 } 2056 } 2057 ret = bpf_iter_run_prog(prog, &ctx); 2058 } 2059 2060 return ret; 2061 } 2062 2063 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 2064 { 2065 return __bpf_hash_map_seq_show(seq, v); 2066 } 2067 2068 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 2069 { 2070 if (!v) 2071 (void)__bpf_hash_map_seq_show(seq, NULL); 2072 else 2073 rcu_read_unlock(); 2074 } 2075 2076 static int bpf_iter_init_hash_map(void *priv_data, 2077 struct bpf_iter_aux_info *aux) 2078 { 2079 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2080 struct bpf_map *map = aux->map; 2081 void *value_buf; 2082 u32 buf_size; 2083 2084 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 2085 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 2086 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 2087 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 2088 if (!value_buf) 2089 return -ENOMEM; 2090 2091 seq_info->percpu_value_buf = value_buf; 2092 } 2093 2094 bpf_map_inc_with_uref(map); 2095 seq_info->map = map; 2096 seq_info->htab = container_of(map, struct bpf_htab, map); 2097 return 0; 2098 } 2099 2100 static void bpf_iter_fini_hash_map(void *priv_data) 2101 { 2102 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 2103 2104 bpf_map_put_with_uref(seq_info->map); 2105 kfree(seq_info->percpu_value_buf); 2106 } 2107 2108 static const struct seq_operations bpf_hash_map_seq_ops = { 2109 .start = bpf_hash_map_seq_start, 2110 .next = bpf_hash_map_seq_next, 2111 .stop = bpf_hash_map_seq_stop, 2112 .show = bpf_hash_map_seq_show, 2113 }; 2114 2115 static const struct bpf_iter_seq_info iter_seq_info = { 2116 .seq_ops = &bpf_hash_map_seq_ops, 2117 .init_seq_private = bpf_iter_init_hash_map, 2118 .fini_seq_private = bpf_iter_fini_hash_map, 2119 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 2120 }; 2121 2122 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, 2123 void *callback_ctx, u64 flags) 2124 { 2125 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2126 struct hlist_nulls_head *head; 2127 struct hlist_nulls_node *n; 2128 struct htab_elem *elem; 2129 u32 roundup_key_size; 2130 int i, num_elems = 0; 2131 void __percpu *pptr; 2132 struct bucket *b; 2133 void *key, *val; 2134 bool is_percpu; 2135 u64 ret = 0; 2136 2137 if (flags != 0) 2138 return -EINVAL; 2139 2140 is_percpu = htab_is_percpu(htab); 2141 2142 roundup_key_size = round_up(map->key_size, 8); 2143 /* disable migration so percpu value prepared here will be the 2144 * same as the one seen by the bpf program with bpf_map_lookup_elem(). 2145 */ 2146 if (is_percpu) 2147 migrate_disable(); 2148 for (i = 0; i < htab->n_buckets; i++) { 2149 b = &htab->buckets[i]; 2150 rcu_read_lock(); 2151 head = &b->head; 2152 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 2153 key = elem->key; 2154 if (is_percpu) { 2155 /* current cpu value for percpu map */ 2156 pptr = htab_elem_get_ptr(elem, map->key_size); 2157 val = this_cpu_ptr(pptr); 2158 } else { 2159 val = elem->key + roundup_key_size; 2160 } 2161 num_elems++; 2162 ret = callback_fn((u64)(long)map, (u64)(long)key, 2163 (u64)(long)val, (u64)(long)callback_ctx, 0); 2164 /* return value: 0 - continue, 1 - stop and return */ 2165 if (ret) { 2166 rcu_read_unlock(); 2167 goto out; 2168 } 2169 } 2170 rcu_read_unlock(); 2171 } 2172 out: 2173 if (is_percpu) 2174 migrate_enable(); 2175 return num_elems; 2176 } 2177 2178 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) 2179 const struct bpf_map_ops htab_map_ops = { 2180 .map_meta_equal = bpf_map_meta_equal, 2181 .map_alloc_check = htab_map_alloc_check, 2182 .map_alloc = htab_map_alloc, 2183 .map_free = htab_map_free, 2184 .map_get_next_key = htab_map_get_next_key, 2185 .map_release_uref = htab_map_free_timers, 2186 .map_lookup_elem = htab_map_lookup_elem, 2187 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, 2188 .map_update_elem = htab_map_update_elem, 2189 .map_delete_elem = htab_map_delete_elem, 2190 .map_gen_lookup = htab_map_gen_lookup, 2191 .map_seq_show_elem = htab_map_seq_show_elem, 2192 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2193 .map_for_each_callback = bpf_for_each_hash_elem, 2194 BATCH_OPS(htab), 2195 .map_btf_id = &htab_map_btf_ids[0], 2196 .iter_seq_info = &iter_seq_info, 2197 }; 2198 2199 const struct bpf_map_ops htab_lru_map_ops = { 2200 .map_meta_equal = bpf_map_meta_equal, 2201 .map_alloc_check = htab_map_alloc_check, 2202 .map_alloc = htab_map_alloc, 2203 .map_free = htab_map_free, 2204 .map_get_next_key = htab_map_get_next_key, 2205 .map_release_uref = htab_map_free_timers, 2206 .map_lookup_elem = htab_lru_map_lookup_elem, 2207 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, 2208 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 2209 .map_update_elem = htab_lru_map_update_elem, 2210 .map_delete_elem = htab_lru_map_delete_elem, 2211 .map_gen_lookup = htab_lru_map_gen_lookup, 2212 .map_seq_show_elem = htab_map_seq_show_elem, 2213 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2214 .map_for_each_callback = bpf_for_each_hash_elem, 2215 BATCH_OPS(htab_lru), 2216 .map_btf_id = &htab_map_btf_ids[0], 2217 .iter_seq_info = &iter_seq_info, 2218 }; 2219 2220 /* Called from eBPF program */ 2221 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2222 { 2223 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2224 2225 if (l) 2226 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2227 else 2228 return NULL; 2229 } 2230 2231 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2232 { 2233 struct htab_elem *l; 2234 2235 if (cpu >= nr_cpu_ids) 2236 return NULL; 2237 2238 l = __htab_map_lookup_elem(map, key); 2239 if (l) 2240 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2241 else 2242 return NULL; 2243 } 2244 2245 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 2246 { 2247 struct htab_elem *l = __htab_map_lookup_elem(map, key); 2248 2249 if (l) { 2250 bpf_lru_node_set_ref(&l->lru_node); 2251 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 2252 } 2253 2254 return NULL; 2255 } 2256 2257 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 2258 { 2259 struct htab_elem *l; 2260 2261 if (cpu >= nr_cpu_ids) 2262 return NULL; 2263 2264 l = __htab_map_lookup_elem(map, key); 2265 if (l) { 2266 bpf_lru_node_set_ref(&l->lru_node); 2267 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); 2268 } 2269 2270 return NULL; 2271 } 2272 2273 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 2274 { 2275 struct htab_elem *l; 2276 void __percpu *pptr; 2277 int ret = -ENOENT; 2278 int cpu, off = 0; 2279 u32 size; 2280 2281 /* per_cpu areas are zero-filled and bpf programs can only 2282 * access 'value_size' of them, so copying rounded areas 2283 * will not leak any kernel data 2284 */ 2285 size = round_up(map->value_size, 8); 2286 rcu_read_lock(); 2287 l = __htab_map_lookup_elem(map, key); 2288 if (!l) 2289 goto out; 2290 /* We do not mark LRU map element here in order to not mess up 2291 * eviction heuristics when user space does a map walk. 2292 */ 2293 pptr = htab_elem_get_ptr(l, map->key_size); 2294 for_each_possible_cpu(cpu) { 2295 bpf_long_memcpy(value + off, 2296 per_cpu_ptr(pptr, cpu), size); 2297 off += size; 2298 } 2299 ret = 0; 2300 out: 2301 rcu_read_unlock(); 2302 return ret; 2303 } 2304 2305 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2306 u64 map_flags) 2307 { 2308 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2309 int ret; 2310 2311 rcu_read_lock(); 2312 if (htab_is_lru(htab)) 2313 ret = __htab_lru_percpu_map_update_elem(map, key, value, 2314 map_flags, true); 2315 else 2316 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 2317 true); 2318 rcu_read_unlock(); 2319 2320 return ret; 2321 } 2322 2323 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 2324 struct seq_file *m) 2325 { 2326 struct htab_elem *l; 2327 void __percpu *pptr; 2328 int cpu; 2329 2330 rcu_read_lock(); 2331 2332 l = __htab_map_lookup_elem(map, key); 2333 if (!l) { 2334 rcu_read_unlock(); 2335 return; 2336 } 2337 2338 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 2339 seq_puts(m, ": {\n"); 2340 pptr = htab_elem_get_ptr(l, map->key_size); 2341 for_each_possible_cpu(cpu) { 2342 seq_printf(m, "\tcpu%d: ", cpu); 2343 btf_type_seq_show(map->btf, map->btf_value_type_id, 2344 per_cpu_ptr(pptr, cpu), m); 2345 seq_puts(m, "\n"); 2346 } 2347 seq_puts(m, "}\n"); 2348 2349 rcu_read_unlock(); 2350 } 2351 2352 const struct bpf_map_ops htab_percpu_map_ops = { 2353 .map_meta_equal = bpf_map_meta_equal, 2354 .map_alloc_check = htab_map_alloc_check, 2355 .map_alloc = htab_map_alloc, 2356 .map_free = htab_map_free, 2357 .map_get_next_key = htab_map_get_next_key, 2358 .map_lookup_elem = htab_percpu_map_lookup_elem, 2359 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, 2360 .map_update_elem = htab_percpu_map_update_elem, 2361 .map_delete_elem = htab_map_delete_elem, 2362 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, 2363 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2364 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2365 .map_for_each_callback = bpf_for_each_hash_elem, 2366 BATCH_OPS(htab_percpu), 2367 .map_btf_id = &htab_map_btf_ids[0], 2368 .iter_seq_info = &iter_seq_info, 2369 }; 2370 2371 const struct bpf_map_ops htab_lru_percpu_map_ops = { 2372 .map_meta_equal = bpf_map_meta_equal, 2373 .map_alloc_check = htab_map_alloc_check, 2374 .map_alloc = htab_map_alloc, 2375 .map_free = htab_map_free, 2376 .map_get_next_key = htab_map_get_next_key, 2377 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 2378 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, 2379 .map_update_elem = htab_lru_percpu_map_update_elem, 2380 .map_delete_elem = htab_lru_map_delete_elem, 2381 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, 2382 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 2383 .map_set_for_each_callback_args = map_set_for_each_callback_args, 2384 .map_for_each_callback = bpf_for_each_hash_elem, 2385 BATCH_OPS(htab_lru_percpu), 2386 .map_btf_id = &htab_map_btf_ids[0], 2387 .iter_seq_info = &iter_seq_info, 2388 }; 2389 2390 static int fd_htab_map_alloc_check(union bpf_attr *attr) 2391 { 2392 if (attr->value_size != sizeof(u32)) 2393 return -EINVAL; 2394 return htab_map_alloc_check(attr); 2395 } 2396 2397 static void fd_htab_map_free(struct bpf_map *map) 2398 { 2399 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 2400 struct hlist_nulls_node *n; 2401 struct hlist_nulls_head *head; 2402 struct htab_elem *l; 2403 int i; 2404 2405 for (i = 0; i < htab->n_buckets; i++) { 2406 head = select_bucket(htab, i); 2407 2408 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 2409 void *ptr = fd_htab_map_get_ptr(map, l); 2410 2411 map->ops->map_fd_put_ptr(ptr); 2412 } 2413 } 2414 2415 htab_map_free(map); 2416 } 2417 2418 /* only called from syscall */ 2419 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2420 { 2421 void **ptr; 2422 int ret = 0; 2423 2424 if (!map->ops->map_fd_sys_lookup_elem) 2425 return -ENOTSUPP; 2426 2427 rcu_read_lock(); 2428 ptr = htab_map_lookup_elem(map, key); 2429 if (ptr) 2430 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2431 else 2432 ret = -ENOENT; 2433 rcu_read_unlock(); 2434 2435 return ret; 2436 } 2437 2438 /* only called from syscall */ 2439 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2440 void *key, void *value, u64 map_flags) 2441 { 2442 void *ptr; 2443 int ret; 2444 u32 ufd = *(u32 *)value; 2445 2446 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2447 if (IS_ERR(ptr)) 2448 return PTR_ERR(ptr); 2449 2450 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2451 if (ret) 2452 map->ops->map_fd_put_ptr(ptr); 2453 2454 return ret; 2455 } 2456 2457 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2458 { 2459 struct bpf_map *map, *inner_map_meta; 2460 2461 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2462 if (IS_ERR(inner_map_meta)) 2463 return inner_map_meta; 2464 2465 map = htab_map_alloc(attr); 2466 if (IS_ERR(map)) { 2467 bpf_map_meta_free(inner_map_meta); 2468 return map; 2469 } 2470 2471 map->inner_map_meta = inner_map_meta; 2472 2473 return map; 2474 } 2475 2476 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2477 { 2478 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2479 2480 if (!inner_map) 2481 return NULL; 2482 2483 return READ_ONCE(*inner_map); 2484 } 2485 2486 static int htab_of_map_gen_lookup(struct bpf_map *map, 2487 struct bpf_insn *insn_buf) 2488 { 2489 struct bpf_insn *insn = insn_buf; 2490 const int ret = BPF_REG_0; 2491 2492 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2493 (void *(*)(struct bpf_map *map, void *key))NULL)); 2494 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); 2495 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2496 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2497 offsetof(struct htab_elem, key) + 2498 round_up(map->key_size, 8)); 2499 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2500 2501 return insn - insn_buf; 2502 } 2503 2504 static void htab_of_map_free(struct bpf_map *map) 2505 { 2506 bpf_map_meta_free(map->inner_map_meta); 2507 fd_htab_map_free(map); 2508 } 2509 2510 const struct bpf_map_ops htab_of_maps_map_ops = { 2511 .map_alloc_check = fd_htab_map_alloc_check, 2512 .map_alloc = htab_of_map_alloc, 2513 .map_free = htab_of_map_free, 2514 .map_get_next_key = htab_map_get_next_key, 2515 .map_lookup_elem = htab_of_map_lookup_elem, 2516 .map_delete_elem = htab_map_delete_elem, 2517 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2518 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2519 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2520 .map_gen_lookup = htab_of_map_gen_lookup, 2521 .map_check_btf = map_check_no_btf, 2522 BATCH_OPS(htab), 2523 .map_btf_id = &htab_map_btf_ids[0], 2524 }; 2525