1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <linux/filter.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct bpf_dtab_netdev { 57 struct net_device *dev; 58 struct bpf_dtab *dtab; 59 unsigned int bit; 60 struct rcu_head rcu; 61 }; 62 63 struct bpf_dtab { 64 struct bpf_map map; 65 struct bpf_dtab_netdev **netdev_map; 66 unsigned long __percpu *flush_needed; 67 struct list_head list; 68 }; 69 70 static DEFINE_SPINLOCK(dev_map_lock); 71 static LIST_HEAD(dev_map_list); 72 73 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 74 { 75 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); 76 } 77 78 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 79 { 80 struct bpf_dtab *dtab; 81 int err = -EINVAL; 82 u64 cost; 83 84 if (!capable(CAP_NET_ADMIN)) 85 return ERR_PTR(-EPERM); 86 87 /* check sanity of attributes */ 88 if (attr->max_entries == 0 || attr->key_size != 4 || 89 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 90 return ERR_PTR(-EINVAL); 91 92 dtab = kzalloc(sizeof(*dtab), GFP_USER); 93 if (!dtab) 94 return ERR_PTR(-ENOMEM); 95 96 /* mandatory map attributes */ 97 dtab->map.map_type = attr->map_type; 98 dtab->map.key_size = attr->key_size; 99 dtab->map.value_size = attr->value_size; 100 dtab->map.max_entries = attr->max_entries; 101 dtab->map.map_flags = attr->map_flags; 102 dtab->map.numa_node = bpf_map_attr_numa_node(attr); 103 104 /* make sure page count doesn't overflow */ 105 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 106 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 107 if (cost >= U32_MAX - PAGE_SIZE) 108 goto free_dtab; 109 110 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 111 112 /* if map size is larger than memlock limit, reject it early */ 113 err = bpf_map_precharge_memlock(dtab->map.pages); 114 if (err) 115 goto free_dtab; 116 117 err = -ENOMEM; 118 119 /* A per cpu bitfield with a bit per possible net device */ 120 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), 121 __alignof__(unsigned long), 122 GFP_KERNEL | __GFP_NOWARN); 123 if (!dtab->flush_needed) 124 goto free_dtab; 125 126 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 127 sizeof(struct bpf_dtab_netdev *), 128 dtab->map.numa_node); 129 if (!dtab->netdev_map) 130 goto free_dtab; 131 132 spin_lock(&dev_map_lock); 133 list_add_tail_rcu(&dtab->list, &dev_map_list); 134 spin_unlock(&dev_map_lock); 135 136 return &dtab->map; 137 free_dtab: 138 free_percpu(dtab->flush_needed); 139 kfree(dtab); 140 return ERR_PTR(err); 141 } 142 143 static void dev_map_free(struct bpf_map *map) 144 { 145 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 146 int i, cpu; 147 148 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 149 * so the programs (can be more than one that used this map) were 150 * disconnected from events. Wait for outstanding critical sections in 151 * these programs to complete. The rcu critical section only guarantees 152 * no further reads against netdev_map. It does __not__ ensure pending 153 * flush operations (if any) are complete. 154 */ 155 156 spin_lock(&dev_map_lock); 157 list_del_rcu(&dtab->list); 158 spin_unlock(&dev_map_lock); 159 160 synchronize_rcu(); 161 162 /* To ensure all pending flush operations have completed wait for flush 163 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 164 * Because the above synchronize_rcu() ensures the map is disconnected 165 * from the program we can assume no new bits will be set. 166 */ 167 for_each_online_cpu(cpu) { 168 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 169 170 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 171 cond_resched(); 172 } 173 174 for (i = 0; i < dtab->map.max_entries; i++) { 175 struct bpf_dtab_netdev *dev; 176 177 dev = dtab->netdev_map[i]; 178 if (!dev) 179 continue; 180 181 dev_put(dev->dev); 182 kfree(dev); 183 } 184 185 free_percpu(dtab->flush_needed); 186 bpf_map_area_free(dtab->netdev_map); 187 kfree(dtab); 188 } 189 190 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 191 { 192 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 193 u32 index = key ? *(u32 *)key : U32_MAX; 194 u32 *next = next_key; 195 196 if (index >= dtab->map.max_entries) { 197 *next = 0; 198 return 0; 199 } 200 201 if (index == dtab->map.max_entries - 1) 202 return -ENOENT; 203 *next = index + 1; 204 return 0; 205 } 206 207 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 208 { 209 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 210 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 211 212 __set_bit(bit, bitmap); 213 } 214 215 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 216 * from the driver before returning from its napi->poll() routine. The poll() 217 * routine is called either from busy_poll context or net_rx_action signaled 218 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 219 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 220 * is zeroed before completing to ensure all flush operations have completed. 221 */ 222 void __dev_map_flush(struct bpf_map *map) 223 { 224 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 225 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 226 u32 bit; 227 228 for_each_set_bit(bit, bitmap, map->max_entries) { 229 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 230 struct net_device *netdev; 231 232 /* This is possible if the dev entry is removed by user space 233 * between xdp redirect and flush op. 234 */ 235 if (unlikely(!dev)) 236 continue; 237 238 __clear_bit(bit, bitmap); 239 netdev = dev->dev; 240 if (likely(netdev->netdev_ops->ndo_xdp_flush)) 241 netdev->netdev_ops->ndo_xdp_flush(netdev); 242 } 243 } 244 245 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 246 * update happens in parallel here a dev_put wont happen until after reading the 247 * ifindex. 248 */ 249 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 250 { 251 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 252 struct bpf_dtab_netdev *dev; 253 254 if (key >= map->max_entries) 255 return NULL; 256 257 dev = READ_ONCE(dtab->netdev_map[key]); 258 return dev ? dev->dev : NULL; 259 } 260 261 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 262 { 263 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key); 264 265 return dev ? &dev->ifindex : NULL; 266 } 267 268 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 269 { 270 if (dev->dev->netdev_ops->ndo_xdp_flush) { 271 struct net_device *fl = dev->dev; 272 unsigned long *bitmap; 273 int cpu; 274 275 for_each_online_cpu(cpu) { 276 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 277 __clear_bit(dev->bit, bitmap); 278 279 fl->netdev_ops->ndo_xdp_flush(dev->dev); 280 } 281 } 282 } 283 284 static void __dev_map_entry_free(struct rcu_head *rcu) 285 { 286 struct bpf_dtab_netdev *dev; 287 288 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 289 dev_map_flush_old(dev); 290 dev_put(dev->dev); 291 kfree(dev); 292 } 293 294 static int dev_map_delete_elem(struct bpf_map *map, void *key) 295 { 296 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 297 struct bpf_dtab_netdev *old_dev; 298 int k = *(u32 *)key; 299 300 if (k >= map->max_entries) 301 return -EINVAL; 302 303 /* Use call_rcu() here to ensure any rcu critical sections have 304 * completed, but this does not guarantee a flush has happened 305 * yet. Because driver side rcu_read_lock/unlock only protects the 306 * running XDP program. However, for pending flush operations the 307 * dev and ctx are stored in another per cpu map. And additionally, 308 * the driver tear down ensures all soft irqs are complete before 309 * removing the net device in the case of dev_put equals zero. 310 */ 311 old_dev = xchg(&dtab->netdev_map[k], NULL); 312 if (old_dev) 313 call_rcu(&old_dev->rcu, __dev_map_entry_free); 314 return 0; 315 } 316 317 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 318 u64 map_flags) 319 { 320 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 321 struct net *net = current->nsproxy->net_ns; 322 struct bpf_dtab_netdev *dev, *old_dev; 323 u32 i = *(u32 *)key; 324 u32 ifindex = *(u32 *)value; 325 326 if (unlikely(map_flags > BPF_EXIST)) 327 return -EINVAL; 328 if (unlikely(i >= dtab->map.max_entries)) 329 return -E2BIG; 330 if (unlikely(map_flags == BPF_NOEXIST)) 331 return -EEXIST; 332 333 if (!ifindex) { 334 dev = NULL; 335 } else { 336 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 337 map->numa_node); 338 if (!dev) 339 return -ENOMEM; 340 341 dev->dev = dev_get_by_index(net, ifindex); 342 if (!dev->dev) { 343 kfree(dev); 344 return -EINVAL; 345 } 346 347 dev->bit = i; 348 dev->dtab = dtab; 349 } 350 351 /* Use call_rcu() here to ensure rcu critical sections have completed 352 * Remembering the driver side flush operation will happen before the 353 * net device is removed. 354 */ 355 old_dev = xchg(&dtab->netdev_map[i], dev); 356 if (old_dev) 357 call_rcu(&old_dev->rcu, __dev_map_entry_free); 358 359 return 0; 360 } 361 362 const struct bpf_map_ops dev_map_ops = { 363 .map_alloc = dev_map_alloc, 364 .map_free = dev_map_free, 365 .map_get_next_key = dev_map_get_next_key, 366 .map_lookup_elem = dev_map_lookup_elem, 367 .map_update_elem = dev_map_update_elem, 368 .map_delete_elem = dev_map_delete_elem, 369 }; 370 371 static int dev_map_notification(struct notifier_block *notifier, 372 ulong event, void *ptr) 373 { 374 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 375 struct bpf_dtab *dtab; 376 int i; 377 378 switch (event) { 379 case NETDEV_UNREGISTER: 380 /* This rcu_read_lock/unlock pair is needed because 381 * dev_map_list is an RCU list AND to ensure a delete 382 * operation does not free a netdev_map entry while we 383 * are comparing it against the netdev being unregistered. 384 */ 385 rcu_read_lock(); 386 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 387 for (i = 0; i < dtab->map.max_entries; i++) { 388 struct bpf_dtab_netdev *dev, *odev; 389 390 dev = READ_ONCE(dtab->netdev_map[i]); 391 if (!dev || 392 dev->dev->ifindex != netdev->ifindex) 393 continue; 394 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 395 if (dev == odev) 396 call_rcu(&dev->rcu, 397 __dev_map_entry_free); 398 } 399 } 400 rcu_read_unlock(); 401 break; 402 default: 403 break; 404 } 405 return NOTIFY_OK; 406 } 407 408 static struct notifier_block dev_map_notifier = { 409 .notifier_call = dev_map_notification, 410 }; 411 412 static int __init dev_map_init(void) 413 { 414 register_netdevice_notifier(&dev_map_notifier); 415 return 0; 416 } 417 418 subsys_initcall(dev_map_init); 419