xref: /linux/kernel/bpf/devmap.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * When removing the dev a cmpxchg() is used to ensure the correct dev is
44  * removed, in the case of a concurrent update or delete operation it is
45  * possible that the initially referenced dev is no longer in the map. As the
46  * notifier hook walks the map we know that new dev references can not be
47  * added by the user because core infrastructure ensures dev_get_by_index()
48  * calls will fail at this point.
49  */
50 #include <linux/bpf.h>
51 #include <linux/filter.h>
52 
53 #define DEV_CREATE_FLAG_MASK \
54 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
55 
56 struct bpf_dtab_netdev {
57 	struct net_device *dev;
58 	struct bpf_dtab *dtab;
59 	unsigned int bit;
60 	struct rcu_head rcu;
61 };
62 
63 struct bpf_dtab {
64 	struct bpf_map map;
65 	struct bpf_dtab_netdev **netdev_map;
66 	unsigned long __percpu *flush_needed;
67 	struct list_head list;
68 };
69 
70 static DEFINE_SPINLOCK(dev_map_lock);
71 static LIST_HEAD(dev_map_list);
72 
73 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
74 {
75 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
76 }
77 
78 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
79 {
80 	struct bpf_dtab *dtab;
81 	int err = -EINVAL;
82 	u64 cost;
83 
84 	if (!capable(CAP_NET_ADMIN))
85 		return ERR_PTR(-EPERM);
86 
87 	/* check sanity of attributes */
88 	if (attr->max_entries == 0 || attr->key_size != 4 ||
89 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
90 		return ERR_PTR(-EINVAL);
91 
92 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
93 	if (!dtab)
94 		return ERR_PTR(-ENOMEM);
95 
96 	/* mandatory map attributes */
97 	dtab->map.map_type = attr->map_type;
98 	dtab->map.key_size = attr->key_size;
99 	dtab->map.value_size = attr->value_size;
100 	dtab->map.max_entries = attr->max_entries;
101 	dtab->map.map_flags = attr->map_flags;
102 	dtab->map.numa_node = bpf_map_attr_numa_node(attr);
103 
104 	/* make sure page count doesn't overflow */
105 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
106 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
107 	if (cost >= U32_MAX - PAGE_SIZE)
108 		goto free_dtab;
109 
110 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111 
112 	/* if map size is larger than memlock limit, reject it early */
113 	err = bpf_map_precharge_memlock(dtab->map.pages);
114 	if (err)
115 		goto free_dtab;
116 
117 	err = -ENOMEM;
118 
119 	/* A per cpu bitfield with a bit per possible net device */
120 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
121 						__alignof__(unsigned long),
122 						GFP_KERNEL | __GFP_NOWARN);
123 	if (!dtab->flush_needed)
124 		goto free_dtab;
125 
126 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
127 					      sizeof(struct bpf_dtab_netdev *),
128 					      dtab->map.numa_node);
129 	if (!dtab->netdev_map)
130 		goto free_dtab;
131 
132 	spin_lock(&dev_map_lock);
133 	list_add_tail_rcu(&dtab->list, &dev_map_list);
134 	spin_unlock(&dev_map_lock);
135 
136 	return &dtab->map;
137 free_dtab:
138 	free_percpu(dtab->flush_needed);
139 	kfree(dtab);
140 	return ERR_PTR(err);
141 }
142 
143 static void dev_map_free(struct bpf_map *map)
144 {
145 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
146 	int i, cpu;
147 
148 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
149 	 * so the programs (can be more than one that used this map) were
150 	 * disconnected from events. Wait for outstanding critical sections in
151 	 * these programs to complete. The rcu critical section only guarantees
152 	 * no further reads against netdev_map. It does __not__ ensure pending
153 	 * flush operations (if any) are complete.
154 	 */
155 
156 	spin_lock(&dev_map_lock);
157 	list_del_rcu(&dtab->list);
158 	spin_unlock(&dev_map_lock);
159 
160 	synchronize_rcu();
161 
162 	/* To ensure all pending flush operations have completed wait for flush
163 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
164 	 * Because the above synchronize_rcu() ensures the map is disconnected
165 	 * from the program we can assume no new bits will be set.
166 	 */
167 	for_each_online_cpu(cpu) {
168 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
169 
170 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
171 			cond_resched();
172 	}
173 
174 	for (i = 0; i < dtab->map.max_entries; i++) {
175 		struct bpf_dtab_netdev *dev;
176 
177 		dev = dtab->netdev_map[i];
178 		if (!dev)
179 			continue;
180 
181 		dev_put(dev->dev);
182 		kfree(dev);
183 	}
184 
185 	free_percpu(dtab->flush_needed);
186 	bpf_map_area_free(dtab->netdev_map);
187 	kfree(dtab);
188 }
189 
190 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
191 {
192 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
193 	u32 index = key ? *(u32 *)key : U32_MAX;
194 	u32 *next = next_key;
195 
196 	if (index >= dtab->map.max_entries) {
197 		*next = 0;
198 		return 0;
199 	}
200 
201 	if (index == dtab->map.max_entries - 1)
202 		return -ENOENT;
203 	*next = index + 1;
204 	return 0;
205 }
206 
207 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
208 {
209 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
210 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
211 
212 	__set_bit(bit, bitmap);
213 }
214 
215 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
216  * from the driver before returning from its napi->poll() routine. The poll()
217  * routine is called either from busy_poll context or net_rx_action signaled
218  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
219  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
220  * is zeroed before completing to ensure all flush operations have completed.
221  */
222 void __dev_map_flush(struct bpf_map *map)
223 {
224 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
225 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
226 	u32 bit;
227 
228 	for_each_set_bit(bit, bitmap, map->max_entries) {
229 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
230 		struct net_device *netdev;
231 
232 		/* This is possible if the dev entry is removed by user space
233 		 * between xdp redirect and flush op.
234 		 */
235 		if (unlikely(!dev))
236 			continue;
237 
238 		__clear_bit(bit, bitmap);
239 		netdev = dev->dev;
240 		if (likely(netdev->netdev_ops->ndo_xdp_flush))
241 			netdev->netdev_ops->ndo_xdp_flush(netdev);
242 	}
243 }
244 
245 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
246  * update happens in parallel here a dev_put wont happen until after reading the
247  * ifindex.
248  */
249 struct net_device  *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
250 {
251 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
252 	struct bpf_dtab_netdev *dev;
253 
254 	if (key >= map->max_entries)
255 		return NULL;
256 
257 	dev = READ_ONCE(dtab->netdev_map[key]);
258 	return dev ? dev->dev : NULL;
259 }
260 
261 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
262 {
263 	struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
264 
265 	return dev ? &dev->ifindex : NULL;
266 }
267 
268 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
269 {
270 	if (dev->dev->netdev_ops->ndo_xdp_flush) {
271 		struct net_device *fl = dev->dev;
272 		unsigned long *bitmap;
273 		int cpu;
274 
275 		for_each_online_cpu(cpu) {
276 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
277 			__clear_bit(dev->bit, bitmap);
278 
279 			fl->netdev_ops->ndo_xdp_flush(dev->dev);
280 		}
281 	}
282 }
283 
284 static void __dev_map_entry_free(struct rcu_head *rcu)
285 {
286 	struct bpf_dtab_netdev *dev;
287 
288 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
289 	dev_map_flush_old(dev);
290 	dev_put(dev->dev);
291 	kfree(dev);
292 }
293 
294 static int dev_map_delete_elem(struct bpf_map *map, void *key)
295 {
296 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
297 	struct bpf_dtab_netdev *old_dev;
298 	int k = *(u32 *)key;
299 
300 	if (k >= map->max_entries)
301 		return -EINVAL;
302 
303 	/* Use call_rcu() here to ensure any rcu critical sections have
304 	 * completed, but this does not guarantee a flush has happened
305 	 * yet. Because driver side rcu_read_lock/unlock only protects the
306 	 * running XDP program. However, for pending flush operations the
307 	 * dev and ctx are stored in another per cpu map. And additionally,
308 	 * the driver tear down ensures all soft irqs are complete before
309 	 * removing the net device in the case of dev_put equals zero.
310 	 */
311 	old_dev = xchg(&dtab->netdev_map[k], NULL);
312 	if (old_dev)
313 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
314 	return 0;
315 }
316 
317 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
318 				u64 map_flags)
319 {
320 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
321 	struct net *net = current->nsproxy->net_ns;
322 	struct bpf_dtab_netdev *dev, *old_dev;
323 	u32 i = *(u32 *)key;
324 	u32 ifindex = *(u32 *)value;
325 
326 	if (unlikely(map_flags > BPF_EXIST))
327 		return -EINVAL;
328 	if (unlikely(i >= dtab->map.max_entries))
329 		return -E2BIG;
330 	if (unlikely(map_flags == BPF_NOEXIST))
331 		return -EEXIST;
332 
333 	if (!ifindex) {
334 		dev = NULL;
335 	} else {
336 		dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
337 				   map->numa_node);
338 		if (!dev)
339 			return -ENOMEM;
340 
341 		dev->dev = dev_get_by_index(net, ifindex);
342 		if (!dev->dev) {
343 			kfree(dev);
344 			return -EINVAL;
345 		}
346 
347 		dev->bit = i;
348 		dev->dtab = dtab;
349 	}
350 
351 	/* Use call_rcu() here to ensure rcu critical sections have completed
352 	 * Remembering the driver side flush operation will happen before the
353 	 * net device is removed.
354 	 */
355 	old_dev = xchg(&dtab->netdev_map[i], dev);
356 	if (old_dev)
357 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
358 
359 	return 0;
360 }
361 
362 const struct bpf_map_ops dev_map_ops = {
363 	.map_alloc = dev_map_alloc,
364 	.map_free = dev_map_free,
365 	.map_get_next_key = dev_map_get_next_key,
366 	.map_lookup_elem = dev_map_lookup_elem,
367 	.map_update_elem = dev_map_update_elem,
368 	.map_delete_elem = dev_map_delete_elem,
369 };
370 
371 static int dev_map_notification(struct notifier_block *notifier,
372 				ulong event, void *ptr)
373 {
374 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
375 	struct bpf_dtab *dtab;
376 	int i;
377 
378 	switch (event) {
379 	case NETDEV_UNREGISTER:
380 		/* This rcu_read_lock/unlock pair is needed because
381 		 * dev_map_list is an RCU list AND to ensure a delete
382 		 * operation does not free a netdev_map entry while we
383 		 * are comparing it against the netdev being unregistered.
384 		 */
385 		rcu_read_lock();
386 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
387 			for (i = 0; i < dtab->map.max_entries; i++) {
388 				struct bpf_dtab_netdev *dev, *odev;
389 
390 				dev = READ_ONCE(dtab->netdev_map[i]);
391 				if (!dev ||
392 				    dev->dev->ifindex != netdev->ifindex)
393 					continue;
394 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
395 				if (dev == odev)
396 					call_rcu(&dev->rcu,
397 						 __dev_map_entry_free);
398 			}
399 		}
400 		rcu_read_unlock();
401 		break;
402 	default:
403 		break;
404 	}
405 	return NOTIFY_OK;
406 }
407 
408 static struct notifier_block dev_map_notifier = {
409 	.notifier_call = dev_map_notification,
410 };
411 
412 static int __init dev_map_init(void)
413 {
414 	register_netdevice_notifier(&dev_map_notifier);
415 	return 0;
416 }
417 
418 subsys_initcall(dev_map_init);
419