1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 struct xdp_dev_bulk_queue { 56 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 57 struct list_head flush_node; 58 struct net_device *dev; 59 struct net_device *dev_rx; 60 unsigned int count; 61 }; 62 63 struct bpf_dtab_netdev { 64 struct net_device *dev; /* must be first member, due to tracepoint */ 65 struct hlist_node index_hlist; 66 struct bpf_dtab *dtab; 67 struct bpf_prog *xdp_prog; 68 struct rcu_head rcu; 69 unsigned int idx; 70 struct bpf_devmap_val val; 71 }; 72 73 struct bpf_dtab { 74 struct bpf_map map; 75 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ 76 struct list_head list; 77 78 /* these are only used for DEVMAP_HASH type maps */ 79 struct hlist_head *dev_index_head; 80 spinlock_t index_lock; 81 unsigned int items; 82 u32 n_buckets; 83 }; 84 85 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 86 static DEFINE_SPINLOCK(dev_map_lock); 87 static LIST_HEAD(dev_map_list); 88 89 static struct hlist_head *dev_map_create_hash(unsigned int entries, 90 int numa_node) 91 { 92 int i; 93 struct hlist_head *hash; 94 95 hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node); 96 if (hash != NULL) 97 for (i = 0; i < entries; i++) 98 INIT_HLIST_HEAD(&hash[i]); 99 100 return hash; 101 } 102 103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 104 int idx) 105 { 106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 107 } 108 109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 110 { 111 u32 valsize = attr->value_size; 112 u64 cost = 0; 113 int err; 114 115 /* check sanity of attributes. 2 value sizes supported: 116 * 4 bytes: ifindex 117 * 8 bytes: ifindex + prog fd 118 */ 119 if (attr->max_entries == 0 || attr->key_size != 4 || 120 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 121 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 122 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 123 return -EINVAL; 124 125 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 126 * verifier prevents writes from the BPF side 127 */ 128 attr->map_flags |= BPF_F_RDONLY_PROG; 129 130 131 bpf_map_init_from_attr(&dtab->map, attr); 132 133 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 134 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 135 136 if (!dtab->n_buckets) /* Overflow check */ 137 return -EINVAL; 138 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets; 139 } else { 140 cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 141 } 142 143 /* if map size is larger than memlock limit, reject it */ 144 err = bpf_map_charge_init(&dtab->map.memory, cost); 145 if (err) 146 return -EINVAL; 147 148 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 149 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 150 dtab->map.numa_node); 151 if (!dtab->dev_index_head) 152 goto free_charge; 153 154 spin_lock_init(&dtab->index_lock); 155 } else { 156 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 157 sizeof(struct bpf_dtab_netdev *), 158 dtab->map.numa_node); 159 if (!dtab->netdev_map) 160 goto free_charge; 161 } 162 163 return 0; 164 165 free_charge: 166 bpf_map_charge_finish(&dtab->map.memory); 167 return -ENOMEM; 168 } 169 170 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 171 { 172 struct bpf_dtab *dtab; 173 int err; 174 175 if (!capable(CAP_NET_ADMIN)) 176 return ERR_PTR(-EPERM); 177 178 dtab = kzalloc(sizeof(*dtab), GFP_USER); 179 if (!dtab) 180 return ERR_PTR(-ENOMEM); 181 182 err = dev_map_init_map(dtab, attr); 183 if (err) { 184 kfree(dtab); 185 return ERR_PTR(err); 186 } 187 188 spin_lock(&dev_map_lock); 189 list_add_tail_rcu(&dtab->list, &dev_map_list); 190 spin_unlock(&dev_map_lock); 191 192 return &dtab->map; 193 } 194 195 static void dev_map_free(struct bpf_map *map) 196 { 197 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 198 int i; 199 200 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 201 * so the programs (can be more than one that used this map) were 202 * disconnected from events. The following synchronize_rcu() guarantees 203 * both rcu read critical sections complete and waits for 204 * preempt-disable regions (NAPI being the relevant context here) so we 205 * are certain there will be no further reads against the netdev_map and 206 * all flush operations are complete. Flush operations can only be done 207 * from NAPI context for this reason. 208 */ 209 210 spin_lock(&dev_map_lock); 211 list_del_rcu(&dtab->list); 212 spin_unlock(&dev_map_lock); 213 214 bpf_clear_redirect_map(map); 215 synchronize_rcu(); 216 217 /* Make sure prior __dev_map_entry_free() have completed. */ 218 rcu_barrier(); 219 220 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 221 for (i = 0; i < dtab->n_buckets; i++) { 222 struct bpf_dtab_netdev *dev; 223 struct hlist_head *head; 224 struct hlist_node *next; 225 226 head = dev_map_index_hash(dtab, i); 227 228 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 229 hlist_del_rcu(&dev->index_hlist); 230 if (dev->xdp_prog) 231 bpf_prog_put(dev->xdp_prog); 232 dev_put(dev->dev); 233 kfree(dev); 234 } 235 } 236 237 bpf_map_area_free(dtab->dev_index_head); 238 } else { 239 for (i = 0; i < dtab->map.max_entries; i++) { 240 struct bpf_dtab_netdev *dev; 241 242 dev = dtab->netdev_map[i]; 243 if (!dev) 244 continue; 245 246 if (dev->xdp_prog) 247 bpf_prog_put(dev->xdp_prog); 248 dev_put(dev->dev); 249 kfree(dev); 250 } 251 252 bpf_map_area_free(dtab->netdev_map); 253 } 254 255 kfree(dtab); 256 } 257 258 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 259 { 260 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 261 u32 index = key ? *(u32 *)key : U32_MAX; 262 u32 *next = next_key; 263 264 if (index >= dtab->map.max_entries) { 265 *next = 0; 266 return 0; 267 } 268 269 if (index == dtab->map.max_entries - 1) 270 return -ENOENT; 271 *next = index + 1; 272 return 0; 273 } 274 275 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 276 { 277 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 278 struct hlist_head *head = dev_map_index_hash(dtab, key); 279 struct bpf_dtab_netdev *dev; 280 281 hlist_for_each_entry_rcu(dev, head, index_hlist, 282 lockdep_is_held(&dtab->index_lock)) 283 if (dev->idx == key) 284 return dev; 285 286 return NULL; 287 } 288 289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 290 void *next_key) 291 { 292 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 293 u32 idx, *next = next_key; 294 struct bpf_dtab_netdev *dev, *next_dev; 295 struct hlist_head *head; 296 int i = 0; 297 298 if (!key) 299 goto find_first; 300 301 idx = *(u32 *)key; 302 303 dev = __dev_map_hash_lookup_elem(map, idx); 304 if (!dev) 305 goto find_first; 306 307 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 308 struct bpf_dtab_netdev, index_hlist); 309 310 if (next_dev) { 311 *next = next_dev->idx; 312 return 0; 313 } 314 315 i = idx & (dtab->n_buckets - 1); 316 i++; 317 318 find_first: 319 for (; i < dtab->n_buckets; i++) { 320 head = dev_map_index_hash(dtab, i); 321 322 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 323 struct bpf_dtab_netdev, 324 index_hlist); 325 if (next_dev) { 326 *next = next_dev->idx; 327 return 0; 328 } 329 } 330 331 return -ENOENT; 332 } 333 334 bool dev_map_can_have_prog(struct bpf_map *map) 335 { 336 if ((map->map_type == BPF_MAP_TYPE_DEVMAP || 337 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) && 338 map->value_size != offsetofend(struct bpf_devmap_val, ifindex)) 339 return true; 340 341 return false; 342 } 343 344 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 345 { 346 struct net_device *dev = bq->dev; 347 int sent = 0, drops = 0, err = 0; 348 int i; 349 350 if (unlikely(!bq->count)) 351 return; 352 353 for (i = 0; i < bq->count; i++) { 354 struct xdp_frame *xdpf = bq->q[i]; 355 356 prefetch(xdpf); 357 } 358 359 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 360 if (sent < 0) { 361 err = sent; 362 sent = 0; 363 goto error; 364 } 365 drops = bq->count - sent; 366 out: 367 bq->count = 0; 368 369 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err); 370 bq->dev_rx = NULL; 371 __list_del_clearprev(&bq->flush_node); 372 return; 373 error: 374 /* If ndo_xdp_xmit fails with an errno, no frames have been 375 * xmit'ed and it's our responsibility to them free all. 376 */ 377 for (i = 0; i < bq->count; i++) { 378 struct xdp_frame *xdpf = bq->q[i]; 379 380 xdp_return_frame_rx_napi(xdpf); 381 drops++; 382 } 383 goto out; 384 } 385 386 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled 387 * from the driver before returning from its napi->poll() routine. The poll() 388 * routine is called either from busy_poll context or net_rx_action signaled 389 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 390 * net device can be torn down. On devmap tear down we ensure the flush list 391 * is empty before completing to ensure all flush operations have completed. 392 * When drivers update the bpf program they may need to ensure any flush ops 393 * are also complete. Using synchronize_rcu or call_rcu will suffice for this 394 * because both wait for napi context to exit. 395 */ 396 void __dev_flush(void) 397 { 398 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 399 struct xdp_dev_bulk_queue *bq, *tmp; 400 401 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) 402 bq_xmit_all(bq, XDP_XMIT_FLUSH); 403 } 404 405 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 406 * update happens in parallel here a dev_put wont happen until after reading the 407 * ifindex. 408 */ 409 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 410 { 411 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 412 struct bpf_dtab_netdev *obj; 413 414 if (key >= map->max_entries) 415 return NULL; 416 417 obj = READ_ONCE(dtab->netdev_map[key]); 418 return obj; 419 } 420 421 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 422 * Thus, safe percpu variable access. 423 */ 424 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 425 struct net_device *dev_rx) 426 { 427 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 428 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 429 430 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 431 bq_xmit_all(bq, 0); 432 433 /* Ingress dev_rx will be the same for all xdp_frame's in 434 * bulk_queue, because bq stored per-CPU and must be flushed 435 * from net_device drivers NAPI func end. 436 */ 437 if (!bq->dev_rx) 438 bq->dev_rx = dev_rx; 439 440 bq->q[bq->count++] = xdpf; 441 442 if (!bq->flush_node.prev) 443 list_add(&bq->flush_node, flush_list); 444 } 445 446 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 447 struct net_device *dev_rx) 448 { 449 struct xdp_frame *xdpf; 450 int err; 451 452 if (!dev->netdev_ops->ndo_xdp_xmit) 453 return -EOPNOTSUPP; 454 455 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 456 if (unlikely(err)) 457 return err; 458 459 xdpf = xdp_convert_buff_to_frame(xdp); 460 if (unlikely(!xdpf)) 461 return -EOVERFLOW; 462 463 bq_enqueue(dev, xdpf, dev_rx); 464 return 0; 465 } 466 467 static struct xdp_buff *dev_map_run_prog(struct net_device *dev, 468 struct xdp_buff *xdp, 469 struct bpf_prog *xdp_prog) 470 { 471 struct xdp_txq_info txq = { .dev = dev }; 472 u32 act; 473 474 xdp_set_data_meta_invalid(xdp); 475 xdp->txq = &txq; 476 477 act = bpf_prog_run_xdp(xdp_prog, xdp); 478 switch (act) { 479 case XDP_PASS: 480 return xdp; 481 case XDP_DROP: 482 break; 483 default: 484 bpf_warn_invalid_xdp_action(act); 485 fallthrough; 486 case XDP_ABORTED: 487 trace_xdp_exception(dev, xdp_prog, act); 488 break; 489 } 490 491 xdp_return_buff(xdp); 492 return NULL; 493 } 494 495 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 496 struct net_device *dev_rx) 497 { 498 return __xdp_enqueue(dev, xdp, dev_rx); 499 } 500 501 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 502 struct net_device *dev_rx) 503 { 504 struct net_device *dev = dst->dev; 505 506 if (dst->xdp_prog) { 507 xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog); 508 if (!xdp) 509 return 0; 510 } 511 return __xdp_enqueue(dev, xdp, dev_rx); 512 } 513 514 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 515 struct bpf_prog *xdp_prog) 516 { 517 int err; 518 519 err = xdp_ok_fwd_dev(dst->dev, skb->len); 520 if (unlikely(err)) 521 return err; 522 skb->dev = dst->dev; 523 generic_xdp_tx(skb, xdp_prog); 524 525 return 0; 526 } 527 528 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 529 { 530 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 531 532 return obj ? &obj->val : NULL; 533 } 534 535 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 536 { 537 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 538 *(u32 *)key); 539 return obj ? &obj->val : NULL; 540 } 541 542 static void __dev_map_entry_free(struct rcu_head *rcu) 543 { 544 struct bpf_dtab_netdev *dev; 545 546 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 547 if (dev->xdp_prog) 548 bpf_prog_put(dev->xdp_prog); 549 dev_put(dev->dev); 550 kfree(dev); 551 } 552 553 static int dev_map_delete_elem(struct bpf_map *map, void *key) 554 { 555 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 556 struct bpf_dtab_netdev *old_dev; 557 int k = *(u32 *)key; 558 559 if (k >= map->max_entries) 560 return -EINVAL; 561 562 /* Use call_rcu() here to ensure any rcu critical sections have 563 * completed as well as any flush operations because call_rcu 564 * will wait for preempt-disable region to complete, NAPI in this 565 * context. And additionally, the driver tear down ensures all 566 * soft irqs are complete before removing the net device in the 567 * case of dev_put equals zero. 568 */ 569 old_dev = xchg(&dtab->netdev_map[k], NULL); 570 if (old_dev) 571 call_rcu(&old_dev->rcu, __dev_map_entry_free); 572 return 0; 573 } 574 575 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 576 { 577 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 578 struct bpf_dtab_netdev *old_dev; 579 int k = *(u32 *)key; 580 unsigned long flags; 581 int ret = -ENOENT; 582 583 spin_lock_irqsave(&dtab->index_lock, flags); 584 585 old_dev = __dev_map_hash_lookup_elem(map, k); 586 if (old_dev) { 587 dtab->items--; 588 hlist_del_init_rcu(&old_dev->index_hlist); 589 call_rcu(&old_dev->rcu, __dev_map_entry_free); 590 ret = 0; 591 } 592 spin_unlock_irqrestore(&dtab->index_lock, flags); 593 594 return ret; 595 } 596 597 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 598 struct bpf_dtab *dtab, 599 struct bpf_devmap_val *val, 600 unsigned int idx) 601 { 602 struct bpf_prog *prog = NULL; 603 struct bpf_dtab_netdev *dev; 604 605 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 606 dtab->map.numa_node); 607 if (!dev) 608 return ERR_PTR(-ENOMEM); 609 610 dev->dev = dev_get_by_index(net, val->ifindex); 611 if (!dev->dev) 612 goto err_out; 613 614 if (val->bpf_prog.fd > 0) { 615 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 616 BPF_PROG_TYPE_XDP, false); 617 if (IS_ERR(prog)) 618 goto err_put_dev; 619 if (prog->expected_attach_type != BPF_XDP_DEVMAP) 620 goto err_put_prog; 621 } 622 623 dev->idx = idx; 624 dev->dtab = dtab; 625 if (prog) { 626 dev->xdp_prog = prog; 627 dev->val.bpf_prog.id = prog->aux->id; 628 } else { 629 dev->xdp_prog = NULL; 630 dev->val.bpf_prog.id = 0; 631 } 632 dev->val.ifindex = val->ifindex; 633 634 return dev; 635 err_put_prog: 636 bpf_prog_put(prog); 637 err_put_dev: 638 dev_put(dev->dev); 639 err_out: 640 kfree(dev); 641 return ERR_PTR(-EINVAL); 642 } 643 644 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 645 void *key, void *value, u64 map_flags) 646 { 647 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 648 struct bpf_dtab_netdev *dev, *old_dev; 649 struct bpf_devmap_val val = {}; 650 u32 i = *(u32 *)key; 651 652 if (unlikely(map_flags > BPF_EXIST)) 653 return -EINVAL; 654 if (unlikely(i >= dtab->map.max_entries)) 655 return -E2BIG; 656 if (unlikely(map_flags == BPF_NOEXIST)) 657 return -EEXIST; 658 659 /* already verified value_size <= sizeof val */ 660 memcpy(&val, value, map->value_size); 661 662 if (!val.ifindex) { 663 dev = NULL; 664 /* can not specify fd if ifindex is 0 */ 665 if (val.bpf_prog.fd > 0) 666 return -EINVAL; 667 } else { 668 dev = __dev_map_alloc_node(net, dtab, &val, i); 669 if (IS_ERR(dev)) 670 return PTR_ERR(dev); 671 } 672 673 /* Use call_rcu() here to ensure rcu critical sections have completed 674 * Remembering the driver side flush operation will happen before the 675 * net device is removed. 676 */ 677 old_dev = xchg(&dtab->netdev_map[i], dev); 678 if (old_dev) 679 call_rcu(&old_dev->rcu, __dev_map_entry_free); 680 681 return 0; 682 } 683 684 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 685 u64 map_flags) 686 { 687 return __dev_map_update_elem(current->nsproxy->net_ns, 688 map, key, value, map_flags); 689 } 690 691 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 692 void *key, void *value, u64 map_flags) 693 { 694 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 695 struct bpf_dtab_netdev *dev, *old_dev; 696 struct bpf_devmap_val val = {}; 697 u32 idx = *(u32 *)key; 698 unsigned long flags; 699 int err = -EEXIST; 700 701 /* already verified value_size <= sizeof val */ 702 memcpy(&val, value, map->value_size); 703 704 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 705 return -EINVAL; 706 707 spin_lock_irqsave(&dtab->index_lock, flags); 708 709 old_dev = __dev_map_hash_lookup_elem(map, idx); 710 if (old_dev && (map_flags & BPF_NOEXIST)) 711 goto out_err; 712 713 dev = __dev_map_alloc_node(net, dtab, &val, idx); 714 if (IS_ERR(dev)) { 715 err = PTR_ERR(dev); 716 goto out_err; 717 } 718 719 if (old_dev) { 720 hlist_del_rcu(&old_dev->index_hlist); 721 } else { 722 if (dtab->items >= dtab->map.max_entries) { 723 spin_unlock_irqrestore(&dtab->index_lock, flags); 724 call_rcu(&dev->rcu, __dev_map_entry_free); 725 return -E2BIG; 726 } 727 dtab->items++; 728 } 729 730 hlist_add_head_rcu(&dev->index_hlist, 731 dev_map_index_hash(dtab, idx)); 732 spin_unlock_irqrestore(&dtab->index_lock, flags); 733 734 if (old_dev) 735 call_rcu(&old_dev->rcu, __dev_map_entry_free); 736 737 return 0; 738 739 out_err: 740 spin_unlock_irqrestore(&dtab->index_lock, flags); 741 return err; 742 } 743 744 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 745 u64 map_flags) 746 { 747 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 748 map, key, value, map_flags); 749 } 750 751 static int dev_map_btf_id; 752 const struct bpf_map_ops dev_map_ops = { 753 .map_meta_equal = bpf_map_meta_equal, 754 .map_alloc = dev_map_alloc, 755 .map_free = dev_map_free, 756 .map_get_next_key = dev_map_get_next_key, 757 .map_lookup_elem = dev_map_lookup_elem, 758 .map_update_elem = dev_map_update_elem, 759 .map_delete_elem = dev_map_delete_elem, 760 .map_check_btf = map_check_no_btf, 761 .map_btf_name = "bpf_dtab", 762 .map_btf_id = &dev_map_btf_id, 763 }; 764 765 static int dev_map_hash_map_btf_id; 766 const struct bpf_map_ops dev_map_hash_ops = { 767 .map_meta_equal = bpf_map_meta_equal, 768 .map_alloc = dev_map_alloc, 769 .map_free = dev_map_free, 770 .map_get_next_key = dev_map_hash_get_next_key, 771 .map_lookup_elem = dev_map_hash_lookup_elem, 772 .map_update_elem = dev_map_hash_update_elem, 773 .map_delete_elem = dev_map_hash_delete_elem, 774 .map_check_btf = map_check_no_btf, 775 .map_btf_name = "bpf_dtab", 776 .map_btf_id = &dev_map_hash_map_btf_id, 777 }; 778 779 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 780 struct net_device *netdev) 781 { 782 unsigned long flags; 783 u32 i; 784 785 spin_lock_irqsave(&dtab->index_lock, flags); 786 for (i = 0; i < dtab->n_buckets; i++) { 787 struct bpf_dtab_netdev *dev; 788 struct hlist_head *head; 789 struct hlist_node *next; 790 791 head = dev_map_index_hash(dtab, i); 792 793 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 794 if (netdev != dev->dev) 795 continue; 796 797 dtab->items--; 798 hlist_del_rcu(&dev->index_hlist); 799 call_rcu(&dev->rcu, __dev_map_entry_free); 800 } 801 } 802 spin_unlock_irqrestore(&dtab->index_lock, flags); 803 } 804 805 static int dev_map_notification(struct notifier_block *notifier, 806 ulong event, void *ptr) 807 { 808 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 809 struct bpf_dtab *dtab; 810 int i, cpu; 811 812 switch (event) { 813 case NETDEV_REGISTER: 814 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 815 break; 816 817 /* will be freed in free_netdev() */ 818 netdev->xdp_bulkq = 819 __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue), 820 sizeof(void *), GFP_ATOMIC); 821 if (!netdev->xdp_bulkq) 822 return NOTIFY_BAD; 823 824 for_each_possible_cpu(cpu) 825 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 826 break; 827 case NETDEV_UNREGISTER: 828 /* This rcu_read_lock/unlock pair is needed because 829 * dev_map_list is an RCU list AND to ensure a delete 830 * operation does not free a netdev_map entry while we 831 * are comparing it against the netdev being unregistered. 832 */ 833 rcu_read_lock(); 834 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 835 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 836 dev_map_hash_remove_netdev(dtab, netdev); 837 continue; 838 } 839 840 for (i = 0; i < dtab->map.max_entries; i++) { 841 struct bpf_dtab_netdev *dev, *odev; 842 843 dev = READ_ONCE(dtab->netdev_map[i]); 844 if (!dev || netdev != dev->dev) 845 continue; 846 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 847 if (dev == odev) 848 call_rcu(&dev->rcu, 849 __dev_map_entry_free); 850 } 851 } 852 rcu_read_unlock(); 853 break; 854 default: 855 break; 856 } 857 return NOTIFY_OK; 858 } 859 860 static struct notifier_block dev_map_notifier = { 861 .notifier_call = dev_map_notification, 862 }; 863 864 static int __init dev_map_init(void) 865 { 866 int cpu; 867 868 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 869 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 870 offsetof(struct _bpf_dtab_netdev, dev)); 871 register_netdevice_notifier(&dev_map_notifier); 872 873 for_each_possible_cpu(cpu) 874 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 875 return 0; 876 } 877 878 subsys_initcall(dev_map_init); 879