1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 87 static DEFINE_SPINLOCK(dev_map_lock); 88 static LIST_HEAD(dev_map_list); 89 90 static struct hlist_head *dev_map_create_hash(unsigned int entries, 91 int numa_node) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 105 int idx) 106 { 107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 108 } 109 110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 111 { 112 u32 valsize = attr->value_size; 113 114 /* check sanity of attributes. 2 value sizes supported: 115 * 4 bytes: ifindex 116 * 8 bytes: ifindex + prog fd 117 */ 118 if (attr->max_entries == 0 || attr->key_size != 4 || 119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 121 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 122 return -EINVAL; 123 124 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 125 * verifier prevents writes from the BPF side 126 */ 127 attr->map_flags |= BPF_F_RDONLY_PROG; 128 129 130 bpf_map_init_from_attr(&dtab->map, attr); 131 132 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 133 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 134 135 if (!dtab->n_buckets) /* Overflow check */ 136 return -EINVAL; 137 } 138 139 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 140 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 141 dtab->map.numa_node); 142 if (!dtab->dev_index_head) 143 return -ENOMEM; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 return -ENOMEM; 152 } 153 154 return 0; 155 } 156 157 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 158 { 159 struct bpf_dtab *dtab; 160 int err; 161 162 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 163 if (!dtab) 164 return ERR_PTR(-ENOMEM); 165 166 err = dev_map_init_map(dtab, attr); 167 if (err) { 168 bpf_map_area_free(dtab); 169 return ERR_PTR(err); 170 } 171 172 spin_lock(&dev_map_lock); 173 list_add_tail_rcu(&dtab->list, &dev_map_list); 174 spin_unlock(&dev_map_lock); 175 176 return &dtab->map; 177 } 178 179 static void dev_map_free(struct bpf_map *map) 180 { 181 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 182 int i; 183 184 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 185 * so the programs (can be more than one that used this map) were 186 * disconnected from events. The following synchronize_rcu() guarantees 187 * both rcu read critical sections complete and waits for 188 * preempt-disable regions (NAPI being the relevant context here) so we 189 * are certain there will be no further reads against the netdev_map and 190 * all flush operations are complete. Flush operations can only be done 191 * from NAPI context for this reason. 192 */ 193 194 spin_lock(&dev_map_lock); 195 list_del_rcu(&dtab->list); 196 spin_unlock(&dev_map_lock); 197 198 bpf_clear_redirect_map(map); 199 synchronize_rcu(); 200 201 /* Make sure prior __dev_map_entry_free() have completed. */ 202 rcu_barrier(); 203 204 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 205 for (i = 0; i < dtab->n_buckets; i++) { 206 struct bpf_dtab_netdev *dev; 207 struct hlist_head *head; 208 struct hlist_node *next; 209 210 head = dev_map_index_hash(dtab, i); 211 212 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 213 hlist_del_rcu(&dev->index_hlist); 214 if (dev->xdp_prog) 215 bpf_prog_put(dev->xdp_prog); 216 dev_put(dev->dev); 217 kfree(dev); 218 } 219 } 220 221 bpf_map_area_free(dtab->dev_index_head); 222 } else { 223 for (i = 0; i < dtab->map.max_entries; i++) { 224 struct bpf_dtab_netdev *dev; 225 226 dev = rcu_dereference_raw(dtab->netdev_map[i]); 227 if (!dev) 228 continue; 229 230 if (dev->xdp_prog) 231 bpf_prog_put(dev->xdp_prog); 232 dev_put(dev->dev); 233 kfree(dev); 234 } 235 236 bpf_map_area_free(dtab->netdev_map); 237 } 238 239 bpf_map_area_free(dtab); 240 } 241 242 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 243 { 244 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 245 u32 index = key ? *(u32 *)key : U32_MAX; 246 u32 *next = next_key; 247 248 if (index >= dtab->map.max_entries) { 249 *next = 0; 250 return 0; 251 } 252 253 if (index == dtab->map.max_entries - 1) 254 return -ENOENT; 255 *next = index + 1; 256 return 0; 257 } 258 259 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 260 * by local_bh_disable() (from XDP calls inside NAPI). The 261 * rcu_read_lock_bh_held() below makes lockdep accept both. 262 */ 263 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 264 { 265 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 266 struct hlist_head *head = dev_map_index_hash(dtab, key); 267 struct bpf_dtab_netdev *dev; 268 269 hlist_for_each_entry_rcu(dev, head, index_hlist, 270 lockdep_is_held(&dtab->index_lock)) 271 if (dev->idx == key) 272 return dev; 273 274 return NULL; 275 } 276 277 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 278 void *next_key) 279 { 280 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 281 u32 idx, *next = next_key; 282 struct bpf_dtab_netdev *dev, *next_dev; 283 struct hlist_head *head; 284 int i = 0; 285 286 if (!key) 287 goto find_first; 288 289 idx = *(u32 *)key; 290 291 dev = __dev_map_hash_lookup_elem(map, idx); 292 if (!dev) 293 goto find_first; 294 295 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 296 struct bpf_dtab_netdev, index_hlist); 297 298 if (next_dev) { 299 *next = next_dev->idx; 300 return 0; 301 } 302 303 i = idx & (dtab->n_buckets - 1); 304 i++; 305 306 find_first: 307 for (; i < dtab->n_buckets; i++) { 308 head = dev_map_index_hash(dtab, i); 309 310 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 311 struct bpf_dtab_netdev, 312 index_hlist); 313 if (next_dev) { 314 *next = next_dev->idx; 315 return 0; 316 } 317 } 318 319 return -ENOENT; 320 } 321 322 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 323 struct xdp_frame **frames, int n, 324 struct net_device *dev) 325 { 326 struct xdp_txq_info txq = { .dev = dev }; 327 struct xdp_buff xdp; 328 int i, nframes = 0; 329 330 for (i = 0; i < n; i++) { 331 struct xdp_frame *xdpf = frames[i]; 332 u32 act; 333 int err; 334 335 xdp_convert_frame_to_buff(xdpf, &xdp); 336 xdp.txq = &txq; 337 338 act = bpf_prog_run_xdp(xdp_prog, &xdp); 339 switch (act) { 340 case XDP_PASS: 341 err = xdp_update_frame_from_buff(&xdp, xdpf); 342 if (unlikely(err < 0)) 343 xdp_return_frame_rx_napi(xdpf); 344 else 345 frames[nframes++] = xdpf; 346 break; 347 default: 348 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 349 fallthrough; 350 case XDP_ABORTED: 351 trace_xdp_exception(dev, xdp_prog, act); 352 fallthrough; 353 case XDP_DROP: 354 xdp_return_frame_rx_napi(xdpf); 355 break; 356 } 357 } 358 return nframes; /* sent frames count */ 359 } 360 361 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 362 { 363 struct net_device *dev = bq->dev; 364 unsigned int cnt = bq->count; 365 int sent = 0, err = 0; 366 int to_send = cnt; 367 int i; 368 369 if (unlikely(!cnt)) 370 return; 371 372 for (i = 0; i < cnt; i++) { 373 struct xdp_frame *xdpf = bq->q[i]; 374 375 prefetch(xdpf); 376 } 377 378 if (bq->xdp_prog) { 379 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 380 if (!to_send) 381 goto out; 382 } 383 384 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 385 if (sent < 0) { 386 /* If ndo_xdp_xmit fails with an errno, no frames have 387 * been xmit'ed. 388 */ 389 err = sent; 390 sent = 0; 391 } 392 393 /* If not all frames have been transmitted, it is our 394 * responsibility to free them 395 */ 396 for (i = sent; unlikely(i < to_send); i++) 397 xdp_return_frame_rx_napi(bq->q[i]); 398 399 out: 400 bq->count = 0; 401 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 402 } 403 404 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 405 * driver before returning from its napi->poll() routine. See the comment above 406 * xdp_do_flush() in filter.c. 407 */ 408 void __dev_flush(void) 409 { 410 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 411 struct xdp_dev_bulk_queue *bq, *tmp; 412 413 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 414 bq_xmit_all(bq, XDP_XMIT_FLUSH); 415 bq->dev_rx = NULL; 416 bq->xdp_prog = NULL; 417 __list_del_clearprev(&bq->flush_node); 418 } 419 } 420 421 #ifdef CONFIG_DEBUG_NET 422 bool dev_check_flush(void) 423 { 424 if (list_empty(this_cpu_ptr(&dev_flush_list))) 425 return false; 426 __dev_flush(); 427 return true; 428 } 429 #endif 430 431 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 432 * by local_bh_disable() (from XDP calls inside NAPI). The 433 * rcu_read_lock_bh_held() below makes lockdep accept both. 434 */ 435 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 436 { 437 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 438 struct bpf_dtab_netdev *obj; 439 440 if (key >= map->max_entries) 441 return NULL; 442 443 obj = rcu_dereference_check(dtab->netdev_map[key], 444 rcu_read_lock_bh_held()); 445 return obj; 446 } 447 448 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 449 * variable access, and map elements stick around. See comment above 450 * xdp_do_flush() in filter.c. 451 */ 452 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 453 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 454 { 455 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 456 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 457 458 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 459 bq_xmit_all(bq, 0); 460 461 /* Ingress dev_rx will be the same for all xdp_frame's in 462 * bulk_queue, because bq stored per-CPU and must be flushed 463 * from net_device drivers NAPI func end. 464 * 465 * Do the same with xdp_prog and flush_list since these fields 466 * are only ever modified together. 467 */ 468 if (!bq->dev_rx) { 469 bq->dev_rx = dev_rx; 470 bq->xdp_prog = xdp_prog; 471 list_add(&bq->flush_node, flush_list); 472 } 473 474 bq->q[bq->count++] = xdpf; 475 } 476 477 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 478 struct net_device *dev_rx, 479 struct bpf_prog *xdp_prog) 480 { 481 int err; 482 483 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 484 return -EOPNOTSUPP; 485 486 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 487 xdp_frame_has_frags(xdpf))) 488 return -EOPNOTSUPP; 489 490 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 491 if (unlikely(err)) 492 return err; 493 494 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 495 return 0; 496 } 497 498 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 499 { 500 struct xdp_txq_info txq = { .dev = dst->dev }; 501 struct xdp_buff xdp; 502 u32 act; 503 504 if (!dst->xdp_prog) 505 return XDP_PASS; 506 507 __skb_pull(skb, skb->mac_len); 508 xdp.txq = &txq; 509 510 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 511 switch (act) { 512 case XDP_PASS: 513 __skb_push(skb, skb->mac_len); 514 break; 515 default: 516 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 517 fallthrough; 518 case XDP_ABORTED: 519 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 520 fallthrough; 521 case XDP_DROP: 522 kfree_skb(skb); 523 break; 524 } 525 526 return act; 527 } 528 529 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 530 struct net_device *dev_rx) 531 { 532 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 533 } 534 535 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 536 struct net_device *dev_rx) 537 { 538 struct net_device *dev = dst->dev; 539 540 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 541 } 542 543 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 544 { 545 if (!obj) 546 return false; 547 548 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 549 return false; 550 551 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 552 xdp_frame_has_frags(xdpf))) 553 return false; 554 555 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 556 return false; 557 558 return true; 559 } 560 561 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 562 struct net_device *dev_rx, 563 struct xdp_frame *xdpf) 564 { 565 struct xdp_frame *nxdpf; 566 567 nxdpf = xdpf_clone(xdpf); 568 if (!nxdpf) 569 return -ENOMEM; 570 571 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 572 573 return 0; 574 } 575 576 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 577 { 578 while (num_excluded--) { 579 if (ifindex == excluded[num_excluded]) 580 return true; 581 } 582 return false; 583 } 584 585 /* Get ifindex of each upper device. 'indexes' must be able to hold at 586 * least MAX_NEST_DEV elements. 587 * Returns the number of ifindexes added. 588 */ 589 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 590 { 591 struct net_device *upper; 592 struct list_head *iter; 593 int n = 0; 594 595 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 596 indexes[n++] = upper->ifindex; 597 } 598 return n; 599 } 600 601 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 602 struct bpf_map *map, bool exclude_ingress) 603 { 604 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 605 struct bpf_dtab_netdev *dst, *last_dst = NULL; 606 int excluded_devices[1+MAX_NEST_DEV]; 607 struct hlist_head *head; 608 int num_excluded = 0; 609 unsigned int i; 610 int err; 611 612 if (exclude_ingress) { 613 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 614 excluded_devices[num_excluded++] = dev_rx->ifindex; 615 } 616 617 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 618 for (i = 0; i < map->max_entries; i++) { 619 dst = rcu_dereference_check(dtab->netdev_map[i], 620 rcu_read_lock_bh_held()); 621 if (!is_valid_dst(dst, xdpf)) 622 continue; 623 624 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 625 continue; 626 627 /* we only need n-1 clones; last_dst enqueued below */ 628 if (!last_dst) { 629 last_dst = dst; 630 continue; 631 } 632 633 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 634 if (err) 635 return err; 636 637 last_dst = dst; 638 } 639 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 640 for (i = 0; i < dtab->n_buckets; i++) { 641 head = dev_map_index_hash(dtab, i); 642 hlist_for_each_entry_rcu(dst, head, index_hlist, 643 lockdep_is_held(&dtab->index_lock)) { 644 if (!is_valid_dst(dst, xdpf)) 645 continue; 646 647 if (is_ifindex_excluded(excluded_devices, num_excluded, 648 dst->dev->ifindex)) 649 continue; 650 651 /* we only need n-1 clones; last_dst enqueued below */ 652 if (!last_dst) { 653 last_dst = dst; 654 continue; 655 } 656 657 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 658 if (err) 659 return err; 660 661 last_dst = dst; 662 } 663 } 664 } 665 666 /* consume the last copy of the frame */ 667 if (last_dst) 668 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 669 else 670 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 671 672 return 0; 673 } 674 675 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 676 struct bpf_prog *xdp_prog) 677 { 678 int err; 679 680 err = xdp_ok_fwd_dev(dst->dev, skb->len); 681 if (unlikely(err)) 682 return err; 683 684 /* Redirect has already succeeded semantically at this point, so we just 685 * return 0 even if packet is dropped. Helper below takes care of 686 * freeing skb. 687 */ 688 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 689 return 0; 690 691 skb->dev = dst->dev; 692 generic_xdp_tx(skb, xdp_prog); 693 694 return 0; 695 } 696 697 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 698 struct sk_buff *skb, 699 struct bpf_prog *xdp_prog) 700 { 701 struct sk_buff *nskb; 702 int err; 703 704 nskb = skb_clone(skb, GFP_ATOMIC); 705 if (!nskb) 706 return -ENOMEM; 707 708 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 709 if (unlikely(err)) { 710 consume_skb(nskb); 711 return err; 712 } 713 714 return 0; 715 } 716 717 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 718 struct bpf_prog *xdp_prog, struct bpf_map *map, 719 bool exclude_ingress) 720 { 721 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 722 struct bpf_dtab_netdev *dst, *last_dst = NULL; 723 int excluded_devices[1+MAX_NEST_DEV]; 724 struct hlist_head *head; 725 struct hlist_node *next; 726 int num_excluded = 0; 727 unsigned int i; 728 int err; 729 730 if (exclude_ingress) { 731 num_excluded = get_upper_ifindexes(dev, excluded_devices); 732 excluded_devices[num_excluded++] = dev->ifindex; 733 } 734 735 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 736 for (i = 0; i < map->max_entries; i++) { 737 dst = rcu_dereference_check(dtab->netdev_map[i], 738 rcu_read_lock_bh_held()); 739 if (!dst) 740 continue; 741 742 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 743 continue; 744 745 /* we only need n-1 clones; last_dst enqueued below */ 746 if (!last_dst) { 747 last_dst = dst; 748 continue; 749 } 750 751 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 752 if (err) 753 return err; 754 755 last_dst = dst; 756 757 } 758 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 759 for (i = 0; i < dtab->n_buckets; i++) { 760 head = dev_map_index_hash(dtab, i); 761 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 762 if (!dst) 763 continue; 764 765 if (is_ifindex_excluded(excluded_devices, num_excluded, 766 dst->dev->ifindex)) 767 continue; 768 769 /* we only need n-1 clones; last_dst enqueued below */ 770 if (!last_dst) { 771 last_dst = dst; 772 continue; 773 } 774 775 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 776 if (err) 777 return err; 778 779 last_dst = dst; 780 } 781 } 782 } 783 784 /* consume the first skb and return */ 785 if (last_dst) 786 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 787 788 /* dtab is empty */ 789 consume_skb(skb); 790 return 0; 791 } 792 793 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 794 { 795 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 796 797 return obj ? &obj->val : NULL; 798 } 799 800 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 801 { 802 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 803 *(u32 *)key); 804 return obj ? &obj->val : NULL; 805 } 806 807 static void __dev_map_entry_free(struct rcu_head *rcu) 808 { 809 struct bpf_dtab_netdev *dev; 810 811 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 812 if (dev->xdp_prog) 813 bpf_prog_put(dev->xdp_prog); 814 dev_put(dev->dev); 815 kfree(dev); 816 } 817 818 static long dev_map_delete_elem(struct bpf_map *map, void *key) 819 { 820 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 821 struct bpf_dtab_netdev *old_dev; 822 int k = *(u32 *)key; 823 824 if (k >= map->max_entries) 825 return -EINVAL; 826 827 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 828 if (old_dev) { 829 call_rcu(&old_dev->rcu, __dev_map_entry_free); 830 atomic_dec((atomic_t *)&dtab->items); 831 } 832 return 0; 833 } 834 835 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 836 { 837 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 838 struct bpf_dtab_netdev *old_dev; 839 int k = *(u32 *)key; 840 unsigned long flags; 841 int ret = -ENOENT; 842 843 spin_lock_irqsave(&dtab->index_lock, flags); 844 845 old_dev = __dev_map_hash_lookup_elem(map, k); 846 if (old_dev) { 847 dtab->items--; 848 hlist_del_init_rcu(&old_dev->index_hlist); 849 call_rcu(&old_dev->rcu, __dev_map_entry_free); 850 ret = 0; 851 } 852 spin_unlock_irqrestore(&dtab->index_lock, flags); 853 854 return ret; 855 } 856 857 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 858 struct bpf_dtab *dtab, 859 struct bpf_devmap_val *val, 860 unsigned int idx) 861 { 862 struct bpf_prog *prog = NULL; 863 struct bpf_dtab_netdev *dev; 864 865 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 866 GFP_NOWAIT | __GFP_NOWARN, 867 dtab->map.numa_node); 868 if (!dev) 869 return ERR_PTR(-ENOMEM); 870 871 dev->dev = dev_get_by_index(net, val->ifindex); 872 if (!dev->dev) 873 goto err_out; 874 875 if (val->bpf_prog.fd > 0) { 876 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 877 BPF_PROG_TYPE_XDP, false); 878 if (IS_ERR(prog)) 879 goto err_put_dev; 880 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 881 !bpf_prog_map_compatible(&dtab->map, prog)) 882 goto err_put_prog; 883 } 884 885 dev->idx = idx; 886 if (prog) { 887 dev->xdp_prog = prog; 888 dev->val.bpf_prog.id = prog->aux->id; 889 } else { 890 dev->xdp_prog = NULL; 891 dev->val.bpf_prog.id = 0; 892 } 893 dev->val.ifindex = val->ifindex; 894 895 return dev; 896 err_put_prog: 897 bpf_prog_put(prog); 898 err_put_dev: 899 dev_put(dev->dev); 900 err_out: 901 kfree(dev); 902 return ERR_PTR(-EINVAL); 903 } 904 905 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 906 void *key, void *value, u64 map_flags) 907 { 908 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 909 struct bpf_dtab_netdev *dev, *old_dev; 910 struct bpf_devmap_val val = {}; 911 u32 i = *(u32 *)key; 912 913 if (unlikely(map_flags > BPF_EXIST)) 914 return -EINVAL; 915 if (unlikely(i >= dtab->map.max_entries)) 916 return -E2BIG; 917 if (unlikely(map_flags == BPF_NOEXIST)) 918 return -EEXIST; 919 920 /* already verified value_size <= sizeof val */ 921 memcpy(&val, value, map->value_size); 922 923 if (!val.ifindex) { 924 dev = NULL; 925 /* can not specify fd if ifindex is 0 */ 926 if (val.bpf_prog.fd > 0) 927 return -EINVAL; 928 } else { 929 dev = __dev_map_alloc_node(net, dtab, &val, i); 930 if (IS_ERR(dev)) 931 return PTR_ERR(dev); 932 } 933 934 /* Use call_rcu() here to ensure rcu critical sections have completed 935 * Remembering the driver side flush operation will happen before the 936 * net device is removed. 937 */ 938 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 939 if (old_dev) 940 call_rcu(&old_dev->rcu, __dev_map_entry_free); 941 else 942 atomic_inc((atomic_t *)&dtab->items); 943 944 return 0; 945 } 946 947 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 948 u64 map_flags) 949 { 950 return __dev_map_update_elem(current->nsproxy->net_ns, 951 map, key, value, map_flags); 952 } 953 954 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 955 void *key, void *value, u64 map_flags) 956 { 957 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 958 struct bpf_dtab_netdev *dev, *old_dev; 959 struct bpf_devmap_val val = {}; 960 u32 idx = *(u32 *)key; 961 unsigned long flags; 962 int err = -EEXIST; 963 964 /* already verified value_size <= sizeof val */ 965 memcpy(&val, value, map->value_size); 966 967 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 968 return -EINVAL; 969 970 spin_lock_irqsave(&dtab->index_lock, flags); 971 972 old_dev = __dev_map_hash_lookup_elem(map, idx); 973 if (old_dev && (map_flags & BPF_NOEXIST)) 974 goto out_err; 975 976 dev = __dev_map_alloc_node(net, dtab, &val, idx); 977 if (IS_ERR(dev)) { 978 err = PTR_ERR(dev); 979 goto out_err; 980 } 981 982 if (old_dev) { 983 hlist_del_rcu(&old_dev->index_hlist); 984 } else { 985 if (dtab->items >= dtab->map.max_entries) { 986 spin_unlock_irqrestore(&dtab->index_lock, flags); 987 call_rcu(&dev->rcu, __dev_map_entry_free); 988 return -E2BIG; 989 } 990 dtab->items++; 991 } 992 993 hlist_add_head_rcu(&dev->index_hlist, 994 dev_map_index_hash(dtab, idx)); 995 spin_unlock_irqrestore(&dtab->index_lock, flags); 996 997 if (old_dev) 998 call_rcu(&old_dev->rcu, __dev_map_entry_free); 999 1000 return 0; 1001 1002 out_err: 1003 spin_unlock_irqrestore(&dtab->index_lock, flags); 1004 return err; 1005 } 1006 1007 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1008 u64 map_flags) 1009 { 1010 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1011 map, key, value, map_flags); 1012 } 1013 1014 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1015 { 1016 return __bpf_xdp_redirect_map(map, ifindex, flags, 1017 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1018 __dev_map_lookup_elem); 1019 } 1020 1021 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1022 { 1023 return __bpf_xdp_redirect_map(map, ifindex, flags, 1024 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1025 __dev_map_hash_lookup_elem); 1026 } 1027 1028 static u64 dev_map_mem_usage(const struct bpf_map *map) 1029 { 1030 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1031 u64 usage = sizeof(struct bpf_dtab); 1032 1033 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1034 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1035 else 1036 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1037 usage += atomic_read((atomic_t *)&dtab->items) * 1038 (u64)sizeof(struct bpf_dtab_netdev); 1039 return usage; 1040 } 1041 1042 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1043 const struct bpf_map_ops dev_map_ops = { 1044 .map_meta_equal = bpf_map_meta_equal, 1045 .map_alloc = dev_map_alloc, 1046 .map_free = dev_map_free, 1047 .map_get_next_key = dev_map_get_next_key, 1048 .map_lookup_elem = dev_map_lookup_elem, 1049 .map_update_elem = dev_map_update_elem, 1050 .map_delete_elem = dev_map_delete_elem, 1051 .map_check_btf = map_check_no_btf, 1052 .map_mem_usage = dev_map_mem_usage, 1053 .map_btf_id = &dev_map_btf_ids[0], 1054 .map_redirect = dev_map_redirect, 1055 }; 1056 1057 const struct bpf_map_ops dev_map_hash_ops = { 1058 .map_meta_equal = bpf_map_meta_equal, 1059 .map_alloc = dev_map_alloc, 1060 .map_free = dev_map_free, 1061 .map_get_next_key = dev_map_hash_get_next_key, 1062 .map_lookup_elem = dev_map_hash_lookup_elem, 1063 .map_update_elem = dev_map_hash_update_elem, 1064 .map_delete_elem = dev_map_hash_delete_elem, 1065 .map_check_btf = map_check_no_btf, 1066 .map_mem_usage = dev_map_mem_usage, 1067 .map_btf_id = &dev_map_btf_ids[0], 1068 .map_redirect = dev_hash_map_redirect, 1069 }; 1070 1071 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1072 struct net_device *netdev) 1073 { 1074 unsigned long flags; 1075 u32 i; 1076 1077 spin_lock_irqsave(&dtab->index_lock, flags); 1078 for (i = 0; i < dtab->n_buckets; i++) { 1079 struct bpf_dtab_netdev *dev; 1080 struct hlist_head *head; 1081 struct hlist_node *next; 1082 1083 head = dev_map_index_hash(dtab, i); 1084 1085 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1086 if (netdev != dev->dev) 1087 continue; 1088 1089 dtab->items--; 1090 hlist_del_rcu(&dev->index_hlist); 1091 call_rcu(&dev->rcu, __dev_map_entry_free); 1092 } 1093 } 1094 spin_unlock_irqrestore(&dtab->index_lock, flags); 1095 } 1096 1097 static int dev_map_notification(struct notifier_block *notifier, 1098 ulong event, void *ptr) 1099 { 1100 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1101 struct bpf_dtab *dtab; 1102 int i, cpu; 1103 1104 switch (event) { 1105 case NETDEV_REGISTER: 1106 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1107 break; 1108 1109 /* will be freed in free_netdev() */ 1110 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1111 if (!netdev->xdp_bulkq) 1112 return NOTIFY_BAD; 1113 1114 for_each_possible_cpu(cpu) 1115 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1116 break; 1117 case NETDEV_UNREGISTER: 1118 /* This rcu_read_lock/unlock pair is needed because 1119 * dev_map_list is an RCU list AND to ensure a delete 1120 * operation does not free a netdev_map entry while we 1121 * are comparing it against the netdev being unregistered. 1122 */ 1123 rcu_read_lock(); 1124 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1125 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1126 dev_map_hash_remove_netdev(dtab, netdev); 1127 continue; 1128 } 1129 1130 for (i = 0; i < dtab->map.max_entries; i++) { 1131 struct bpf_dtab_netdev *dev, *odev; 1132 1133 dev = rcu_dereference(dtab->netdev_map[i]); 1134 if (!dev || netdev != dev->dev) 1135 continue; 1136 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1137 if (dev == odev) { 1138 call_rcu(&dev->rcu, 1139 __dev_map_entry_free); 1140 atomic_dec((atomic_t *)&dtab->items); 1141 } 1142 } 1143 } 1144 rcu_read_unlock(); 1145 break; 1146 default: 1147 break; 1148 } 1149 return NOTIFY_OK; 1150 } 1151 1152 static struct notifier_block dev_map_notifier = { 1153 .notifier_call = dev_map_notification, 1154 }; 1155 1156 static int __init dev_map_init(void) 1157 { 1158 int cpu; 1159 1160 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1161 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1162 offsetof(struct _bpf_dtab_netdev, dev)); 1163 register_netdevice_notifier(&dev_map_notifier); 1164 1165 for_each_possible_cpu(cpu) 1166 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1167 return 0; 1168 } 1169 1170 subsys_initcall(dev_map_init); 1171