xref: /linux/kernel/bpf/devmap.c (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct bpf_prog *xdp_prog;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 	struct bpf_devmap_val val;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 	struct list_head list;
77 
78 	/* these are only used for DEVMAP_HASH type maps */
79 	struct hlist_head *dev_index_head;
80 	spinlock_t index_lock;
81 	unsigned int items;
82 	u32 n_buckets;
83 };
84 
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 					      int numa_node)
91 {
92 	int i;
93 	struct hlist_head *hash;
94 
95 	hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node);
96 	if (hash != NULL)
97 		for (i = 0; i < entries; i++)
98 			INIT_HLIST_HEAD(&hash[i]);
99 
100 	return hash;
101 }
102 
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 						    int idx)
105 {
106 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108 
109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 	u32 valsize = attr->value_size;
112 
113 	/* check sanity of attributes. 2 value sizes supported:
114 	 * 4 bytes: ifindex
115 	 * 8 bytes: ifindex + prog fd
116 	 */
117 	if (attr->max_entries == 0 || attr->key_size != 4 ||
118 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
119 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
120 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
121 		return -EINVAL;
122 
123 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
124 	 * verifier prevents writes from the BPF side
125 	 */
126 	attr->map_flags |= BPF_F_RDONLY_PROG;
127 
128 
129 	bpf_map_init_from_attr(&dtab->map, attr);
130 
131 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
132 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
133 
134 		if (!dtab->n_buckets) /* Overflow check */
135 			return -EINVAL;
136 	}
137 
138 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
139 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
140 							   dtab->map.numa_node);
141 		if (!dtab->dev_index_head)
142 			return -ENOMEM;
143 
144 		spin_lock_init(&dtab->index_lock);
145 	} else {
146 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
147 						      sizeof(struct bpf_dtab_netdev *),
148 						      dtab->map.numa_node);
149 		if (!dtab->netdev_map)
150 			return -ENOMEM;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
157 {
158 	struct bpf_dtab *dtab;
159 	int err;
160 
161 	if (!capable(CAP_NET_ADMIN))
162 		return ERR_PTR(-EPERM);
163 
164 	dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT);
165 	if (!dtab)
166 		return ERR_PTR(-ENOMEM);
167 
168 	err = dev_map_init_map(dtab, attr);
169 	if (err) {
170 		kfree(dtab);
171 		return ERR_PTR(err);
172 	}
173 
174 	spin_lock(&dev_map_lock);
175 	list_add_tail_rcu(&dtab->list, &dev_map_list);
176 	spin_unlock(&dev_map_lock);
177 
178 	return &dtab->map;
179 }
180 
181 static void dev_map_free(struct bpf_map *map)
182 {
183 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
184 	int i;
185 
186 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
187 	 * so the programs (can be more than one that used this map) were
188 	 * disconnected from events. The following synchronize_rcu() guarantees
189 	 * both rcu read critical sections complete and waits for
190 	 * preempt-disable regions (NAPI being the relevant context here) so we
191 	 * are certain there will be no further reads against the netdev_map and
192 	 * all flush operations are complete. Flush operations can only be done
193 	 * from NAPI context for this reason.
194 	 */
195 
196 	spin_lock(&dev_map_lock);
197 	list_del_rcu(&dtab->list);
198 	spin_unlock(&dev_map_lock);
199 
200 	synchronize_rcu();
201 
202 	/* Make sure prior __dev_map_entry_free() have completed. */
203 	rcu_barrier();
204 
205 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
206 		for (i = 0; i < dtab->n_buckets; i++) {
207 			struct bpf_dtab_netdev *dev;
208 			struct hlist_head *head;
209 			struct hlist_node *next;
210 
211 			head = dev_map_index_hash(dtab, i);
212 
213 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
214 				hlist_del_rcu(&dev->index_hlist);
215 				if (dev->xdp_prog)
216 					bpf_prog_put(dev->xdp_prog);
217 				dev_put(dev->dev);
218 				kfree(dev);
219 			}
220 		}
221 
222 		bpf_map_area_free(dtab->dev_index_head);
223 	} else {
224 		for (i = 0; i < dtab->map.max_entries; i++) {
225 			struct bpf_dtab_netdev *dev;
226 
227 			dev = dtab->netdev_map[i];
228 			if (!dev)
229 				continue;
230 
231 			if (dev->xdp_prog)
232 				bpf_prog_put(dev->xdp_prog);
233 			dev_put(dev->dev);
234 			kfree(dev);
235 		}
236 
237 		bpf_map_area_free(dtab->netdev_map);
238 	}
239 
240 	kfree(dtab);
241 }
242 
243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
244 {
245 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
246 	u32 index = key ? *(u32 *)key : U32_MAX;
247 	u32 *next = next_key;
248 
249 	if (index >= dtab->map.max_entries) {
250 		*next = 0;
251 		return 0;
252 	}
253 
254 	if (index == dtab->map.max_entries - 1)
255 		return -ENOENT;
256 	*next = index + 1;
257 	return 0;
258 }
259 
260 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
261 {
262 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
263 	struct hlist_head *head = dev_map_index_hash(dtab, key);
264 	struct bpf_dtab_netdev *dev;
265 
266 	hlist_for_each_entry_rcu(dev, head, index_hlist,
267 				 lockdep_is_held(&dtab->index_lock))
268 		if (dev->idx == key)
269 			return dev;
270 
271 	return NULL;
272 }
273 
274 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
275 				    void *next_key)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	u32 idx, *next = next_key;
279 	struct bpf_dtab_netdev *dev, *next_dev;
280 	struct hlist_head *head;
281 	int i = 0;
282 
283 	if (!key)
284 		goto find_first;
285 
286 	idx = *(u32 *)key;
287 
288 	dev = __dev_map_hash_lookup_elem(map, idx);
289 	if (!dev)
290 		goto find_first;
291 
292 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
293 				    struct bpf_dtab_netdev, index_hlist);
294 
295 	if (next_dev) {
296 		*next = next_dev->idx;
297 		return 0;
298 	}
299 
300 	i = idx & (dtab->n_buckets - 1);
301 	i++;
302 
303  find_first:
304 	for (; i < dtab->n_buckets; i++) {
305 		head = dev_map_index_hash(dtab, i);
306 
307 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
308 					    struct bpf_dtab_netdev,
309 					    index_hlist);
310 		if (next_dev) {
311 			*next = next_dev->idx;
312 			return 0;
313 		}
314 	}
315 
316 	return -ENOENT;
317 }
318 
319 bool dev_map_can_have_prog(struct bpf_map *map)
320 {
321 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
322 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
323 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
324 		return true;
325 
326 	return false;
327 }
328 
329 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
330 {
331 	struct net_device *dev = bq->dev;
332 	int sent = 0, err = 0;
333 	int i;
334 
335 	if (unlikely(!bq->count))
336 		return;
337 
338 	for (i = 0; i < bq->count; i++) {
339 		struct xdp_frame *xdpf = bq->q[i];
340 
341 		prefetch(xdpf);
342 	}
343 
344 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
345 	if (sent < 0) {
346 		/* If ndo_xdp_xmit fails with an errno, no frames have
347 		 * been xmit'ed.
348 		 */
349 		err = sent;
350 		sent = 0;
351 	}
352 
353 	/* If not all frames have been transmitted, it is our
354 	 * responsibility to free them
355 	 */
356 	for (i = sent; unlikely(i < bq->count); i++)
357 		xdp_return_frame_rx_napi(bq->q[i]);
358 
359 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, bq->count - sent, err);
360 	bq->dev_rx = NULL;
361 	bq->count = 0;
362 	__list_del_clearprev(&bq->flush_node);
363 }
364 
365 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
366  * from the driver before returning from its napi->poll() routine. The poll()
367  * routine is called either from busy_poll context or net_rx_action signaled
368  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
369  * net device can be torn down. On devmap tear down we ensure the flush list
370  * is empty before completing to ensure all flush operations have completed.
371  * When drivers update the bpf program they may need to ensure any flush ops
372  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
373  * because both wait for napi context to exit.
374  */
375 void __dev_flush(void)
376 {
377 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
378 	struct xdp_dev_bulk_queue *bq, *tmp;
379 
380 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
381 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
382 }
383 
384 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
385  * update happens in parallel here a dev_put wont happen until after reading the
386  * ifindex.
387  */
388 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
389 {
390 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
391 	struct bpf_dtab_netdev *obj;
392 
393 	if (key >= map->max_entries)
394 		return NULL;
395 
396 	obj = READ_ONCE(dtab->netdev_map[key]);
397 	return obj;
398 }
399 
400 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
401  * Thus, safe percpu variable access.
402  */
403 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
404 		       struct net_device *dev_rx)
405 {
406 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
407 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
408 
409 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
410 		bq_xmit_all(bq, 0);
411 
412 	/* Ingress dev_rx will be the same for all xdp_frame's in
413 	 * bulk_queue, because bq stored per-CPU and must be flushed
414 	 * from net_device drivers NAPI func end.
415 	 */
416 	if (!bq->dev_rx)
417 		bq->dev_rx = dev_rx;
418 
419 	bq->q[bq->count++] = xdpf;
420 
421 	if (!bq->flush_node.prev)
422 		list_add(&bq->flush_node, flush_list);
423 }
424 
425 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
426 			       struct net_device *dev_rx)
427 {
428 	struct xdp_frame *xdpf;
429 	int err;
430 
431 	if (!dev->netdev_ops->ndo_xdp_xmit)
432 		return -EOPNOTSUPP;
433 
434 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
435 	if (unlikely(err))
436 		return err;
437 
438 	xdpf = xdp_convert_buff_to_frame(xdp);
439 	if (unlikely(!xdpf))
440 		return -EOVERFLOW;
441 
442 	bq_enqueue(dev, xdpf, dev_rx);
443 	return 0;
444 }
445 
446 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
447 					 struct xdp_buff *xdp,
448 					 struct bpf_prog *xdp_prog)
449 {
450 	struct xdp_txq_info txq = { .dev = dev };
451 	u32 act;
452 
453 	xdp_set_data_meta_invalid(xdp);
454 	xdp->txq = &txq;
455 
456 	act = bpf_prog_run_xdp(xdp_prog, xdp);
457 	switch (act) {
458 	case XDP_PASS:
459 		return xdp;
460 	case XDP_DROP:
461 		break;
462 	default:
463 		bpf_warn_invalid_xdp_action(act);
464 		fallthrough;
465 	case XDP_ABORTED:
466 		trace_xdp_exception(dev, xdp_prog, act);
467 		break;
468 	}
469 
470 	xdp_return_buff(xdp);
471 	return NULL;
472 }
473 
474 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
475 		    struct net_device *dev_rx)
476 {
477 	return __xdp_enqueue(dev, xdp, dev_rx);
478 }
479 
480 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
481 		    struct net_device *dev_rx)
482 {
483 	struct net_device *dev = dst->dev;
484 
485 	if (dst->xdp_prog) {
486 		xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
487 		if (!xdp)
488 			return 0;
489 	}
490 	return __xdp_enqueue(dev, xdp, dev_rx);
491 }
492 
493 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
494 			     struct bpf_prog *xdp_prog)
495 {
496 	int err;
497 
498 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
499 	if (unlikely(err))
500 		return err;
501 	skb->dev = dst->dev;
502 	generic_xdp_tx(skb, xdp_prog);
503 
504 	return 0;
505 }
506 
507 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
508 {
509 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
510 
511 	return obj ? &obj->val : NULL;
512 }
513 
514 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
515 {
516 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
517 								*(u32 *)key);
518 	return obj ? &obj->val : NULL;
519 }
520 
521 static void __dev_map_entry_free(struct rcu_head *rcu)
522 {
523 	struct bpf_dtab_netdev *dev;
524 
525 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
526 	if (dev->xdp_prog)
527 		bpf_prog_put(dev->xdp_prog);
528 	dev_put(dev->dev);
529 	kfree(dev);
530 }
531 
532 static int dev_map_delete_elem(struct bpf_map *map, void *key)
533 {
534 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
535 	struct bpf_dtab_netdev *old_dev;
536 	int k = *(u32 *)key;
537 
538 	if (k >= map->max_entries)
539 		return -EINVAL;
540 
541 	/* Use call_rcu() here to ensure any rcu critical sections have
542 	 * completed as well as any flush operations because call_rcu
543 	 * will wait for preempt-disable region to complete, NAPI in this
544 	 * context.  And additionally, the driver tear down ensures all
545 	 * soft irqs are complete before removing the net device in the
546 	 * case of dev_put equals zero.
547 	 */
548 	old_dev = xchg(&dtab->netdev_map[k], NULL);
549 	if (old_dev)
550 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
551 	return 0;
552 }
553 
554 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
555 {
556 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
557 	struct bpf_dtab_netdev *old_dev;
558 	int k = *(u32 *)key;
559 	unsigned long flags;
560 	int ret = -ENOENT;
561 
562 	spin_lock_irqsave(&dtab->index_lock, flags);
563 
564 	old_dev = __dev_map_hash_lookup_elem(map, k);
565 	if (old_dev) {
566 		dtab->items--;
567 		hlist_del_init_rcu(&old_dev->index_hlist);
568 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
569 		ret = 0;
570 	}
571 	spin_unlock_irqrestore(&dtab->index_lock, flags);
572 
573 	return ret;
574 }
575 
576 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
577 						    struct bpf_dtab *dtab,
578 						    struct bpf_devmap_val *val,
579 						    unsigned int idx)
580 {
581 	struct bpf_prog *prog = NULL;
582 	struct bpf_dtab_netdev *dev;
583 
584 	dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
585 				   GFP_ATOMIC | __GFP_NOWARN,
586 				   dtab->map.numa_node);
587 	if (!dev)
588 		return ERR_PTR(-ENOMEM);
589 
590 	dev->dev = dev_get_by_index(net, val->ifindex);
591 	if (!dev->dev)
592 		goto err_out;
593 
594 	if (val->bpf_prog.fd > 0) {
595 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
596 					     BPF_PROG_TYPE_XDP, false);
597 		if (IS_ERR(prog))
598 			goto err_put_dev;
599 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
600 			goto err_put_prog;
601 	}
602 
603 	dev->idx = idx;
604 	dev->dtab = dtab;
605 	if (prog) {
606 		dev->xdp_prog = prog;
607 		dev->val.bpf_prog.id = prog->aux->id;
608 	} else {
609 		dev->xdp_prog = NULL;
610 		dev->val.bpf_prog.id = 0;
611 	}
612 	dev->val.ifindex = val->ifindex;
613 
614 	return dev;
615 err_put_prog:
616 	bpf_prog_put(prog);
617 err_put_dev:
618 	dev_put(dev->dev);
619 err_out:
620 	kfree(dev);
621 	return ERR_PTR(-EINVAL);
622 }
623 
624 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
625 				 void *key, void *value, u64 map_flags)
626 {
627 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
628 	struct bpf_dtab_netdev *dev, *old_dev;
629 	struct bpf_devmap_val val = {};
630 	u32 i = *(u32 *)key;
631 
632 	if (unlikely(map_flags > BPF_EXIST))
633 		return -EINVAL;
634 	if (unlikely(i >= dtab->map.max_entries))
635 		return -E2BIG;
636 	if (unlikely(map_flags == BPF_NOEXIST))
637 		return -EEXIST;
638 
639 	/* already verified value_size <= sizeof val */
640 	memcpy(&val, value, map->value_size);
641 
642 	if (!val.ifindex) {
643 		dev = NULL;
644 		/* can not specify fd if ifindex is 0 */
645 		if (val.bpf_prog.fd > 0)
646 			return -EINVAL;
647 	} else {
648 		dev = __dev_map_alloc_node(net, dtab, &val, i);
649 		if (IS_ERR(dev))
650 			return PTR_ERR(dev);
651 	}
652 
653 	/* Use call_rcu() here to ensure rcu critical sections have completed
654 	 * Remembering the driver side flush operation will happen before the
655 	 * net device is removed.
656 	 */
657 	old_dev = xchg(&dtab->netdev_map[i], dev);
658 	if (old_dev)
659 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
660 
661 	return 0;
662 }
663 
664 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
665 			       u64 map_flags)
666 {
667 	return __dev_map_update_elem(current->nsproxy->net_ns,
668 				     map, key, value, map_flags);
669 }
670 
671 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
672 				     void *key, void *value, u64 map_flags)
673 {
674 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
675 	struct bpf_dtab_netdev *dev, *old_dev;
676 	struct bpf_devmap_val val = {};
677 	u32 idx = *(u32 *)key;
678 	unsigned long flags;
679 	int err = -EEXIST;
680 
681 	/* already verified value_size <= sizeof val */
682 	memcpy(&val, value, map->value_size);
683 
684 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
685 		return -EINVAL;
686 
687 	spin_lock_irqsave(&dtab->index_lock, flags);
688 
689 	old_dev = __dev_map_hash_lookup_elem(map, idx);
690 	if (old_dev && (map_flags & BPF_NOEXIST))
691 		goto out_err;
692 
693 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
694 	if (IS_ERR(dev)) {
695 		err = PTR_ERR(dev);
696 		goto out_err;
697 	}
698 
699 	if (old_dev) {
700 		hlist_del_rcu(&old_dev->index_hlist);
701 	} else {
702 		if (dtab->items >= dtab->map.max_entries) {
703 			spin_unlock_irqrestore(&dtab->index_lock, flags);
704 			call_rcu(&dev->rcu, __dev_map_entry_free);
705 			return -E2BIG;
706 		}
707 		dtab->items++;
708 	}
709 
710 	hlist_add_head_rcu(&dev->index_hlist,
711 			   dev_map_index_hash(dtab, idx));
712 	spin_unlock_irqrestore(&dtab->index_lock, flags);
713 
714 	if (old_dev)
715 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
716 
717 	return 0;
718 
719 out_err:
720 	spin_unlock_irqrestore(&dtab->index_lock, flags);
721 	return err;
722 }
723 
724 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
725 				   u64 map_flags)
726 {
727 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
728 					 map, key, value, map_flags);
729 }
730 
731 static int dev_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
732 {
733 	return __bpf_xdp_redirect_map(map, ifindex, flags, __dev_map_lookup_elem);
734 }
735 
736 static int dev_hash_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
737 {
738 	return __bpf_xdp_redirect_map(map, ifindex, flags, __dev_map_hash_lookup_elem);
739 }
740 
741 static int dev_map_btf_id;
742 const struct bpf_map_ops dev_map_ops = {
743 	.map_meta_equal = bpf_map_meta_equal,
744 	.map_alloc = dev_map_alloc,
745 	.map_free = dev_map_free,
746 	.map_get_next_key = dev_map_get_next_key,
747 	.map_lookup_elem = dev_map_lookup_elem,
748 	.map_update_elem = dev_map_update_elem,
749 	.map_delete_elem = dev_map_delete_elem,
750 	.map_check_btf = map_check_no_btf,
751 	.map_btf_name = "bpf_dtab",
752 	.map_btf_id = &dev_map_btf_id,
753 	.map_redirect = dev_map_redirect,
754 };
755 
756 static int dev_map_hash_map_btf_id;
757 const struct bpf_map_ops dev_map_hash_ops = {
758 	.map_meta_equal = bpf_map_meta_equal,
759 	.map_alloc = dev_map_alloc,
760 	.map_free = dev_map_free,
761 	.map_get_next_key = dev_map_hash_get_next_key,
762 	.map_lookup_elem = dev_map_hash_lookup_elem,
763 	.map_update_elem = dev_map_hash_update_elem,
764 	.map_delete_elem = dev_map_hash_delete_elem,
765 	.map_check_btf = map_check_no_btf,
766 	.map_btf_name = "bpf_dtab",
767 	.map_btf_id = &dev_map_hash_map_btf_id,
768 	.map_redirect = dev_hash_map_redirect,
769 };
770 
771 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
772 				       struct net_device *netdev)
773 {
774 	unsigned long flags;
775 	u32 i;
776 
777 	spin_lock_irqsave(&dtab->index_lock, flags);
778 	for (i = 0; i < dtab->n_buckets; i++) {
779 		struct bpf_dtab_netdev *dev;
780 		struct hlist_head *head;
781 		struct hlist_node *next;
782 
783 		head = dev_map_index_hash(dtab, i);
784 
785 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
786 			if (netdev != dev->dev)
787 				continue;
788 
789 			dtab->items--;
790 			hlist_del_rcu(&dev->index_hlist);
791 			call_rcu(&dev->rcu, __dev_map_entry_free);
792 		}
793 	}
794 	spin_unlock_irqrestore(&dtab->index_lock, flags);
795 }
796 
797 static int dev_map_notification(struct notifier_block *notifier,
798 				ulong event, void *ptr)
799 {
800 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
801 	struct bpf_dtab *dtab;
802 	int i, cpu;
803 
804 	switch (event) {
805 	case NETDEV_REGISTER:
806 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
807 			break;
808 
809 		/* will be freed in free_netdev() */
810 		netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
811 		if (!netdev->xdp_bulkq)
812 			return NOTIFY_BAD;
813 
814 		for_each_possible_cpu(cpu)
815 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
816 		break;
817 	case NETDEV_UNREGISTER:
818 		/* This rcu_read_lock/unlock pair is needed because
819 		 * dev_map_list is an RCU list AND to ensure a delete
820 		 * operation does not free a netdev_map entry while we
821 		 * are comparing it against the netdev being unregistered.
822 		 */
823 		rcu_read_lock();
824 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
825 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
826 				dev_map_hash_remove_netdev(dtab, netdev);
827 				continue;
828 			}
829 
830 			for (i = 0; i < dtab->map.max_entries; i++) {
831 				struct bpf_dtab_netdev *dev, *odev;
832 
833 				dev = READ_ONCE(dtab->netdev_map[i]);
834 				if (!dev || netdev != dev->dev)
835 					continue;
836 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
837 				if (dev == odev)
838 					call_rcu(&dev->rcu,
839 						 __dev_map_entry_free);
840 			}
841 		}
842 		rcu_read_unlock();
843 		break;
844 	default:
845 		break;
846 	}
847 	return NOTIFY_OK;
848 }
849 
850 static struct notifier_block dev_map_notifier = {
851 	.notifier_call = dev_map_notification,
852 };
853 
854 static int __init dev_map_init(void)
855 {
856 	int cpu;
857 
858 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
859 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
860 		     offsetof(struct _bpf_dtab_netdev, dev));
861 	register_netdevice_notifier(&dev_map_notifier);
862 
863 	for_each_possible_cpu(cpu)
864 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
865 	return 0;
866 }
867 
868 subsys_initcall(dev_map_init);
869