1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 87 static DEFINE_SPINLOCK(dev_map_lock); 88 static LIST_HEAD(dev_map_list); 89 90 static struct hlist_head *dev_map_create_hash(unsigned int entries, 91 int numa_node) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 105 int idx) 106 { 107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 108 } 109 110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 111 { 112 u32 valsize = attr->value_size; 113 114 /* check sanity of attributes. 2 value sizes supported: 115 * 4 bytes: ifindex 116 * 8 bytes: ifindex + prog fd 117 */ 118 if (attr->max_entries == 0 || attr->key_size != 4 || 119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 121 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 122 return -EINVAL; 123 124 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 125 * verifier prevents writes from the BPF side 126 */ 127 attr->map_flags |= BPF_F_RDONLY_PROG; 128 129 130 bpf_map_init_from_attr(&dtab->map, attr); 131 132 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 133 /* hash table size must be power of 2; roundup_pow_of_two() can 134 * overflow into UB on 32-bit arches, so check that first 135 */ 136 if (dtab->map.max_entries > 1UL << 31) 137 return -EINVAL; 138 139 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 140 141 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 142 dtab->map.numa_node); 143 if (!dtab->dev_index_head) 144 return -ENOMEM; 145 146 spin_lock_init(&dtab->index_lock); 147 } else { 148 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 149 sizeof(struct bpf_dtab_netdev *), 150 dtab->map.numa_node); 151 if (!dtab->netdev_map) 152 return -ENOMEM; 153 } 154 155 return 0; 156 } 157 158 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 159 { 160 struct bpf_dtab *dtab; 161 int err; 162 163 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 164 if (!dtab) 165 return ERR_PTR(-ENOMEM); 166 167 err = dev_map_init_map(dtab, attr); 168 if (err) { 169 bpf_map_area_free(dtab); 170 return ERR_PTR(err); 171 } 172 173 spin_lock(&dev_map_lock); 174 list_add_tail_rcu(&dtab->list, &dev_map_list); 175 spin_unlock(&dev_map_lock); 176 177 return &dtab->map; 178 } 179 180 static void dev_map_free(struct bpf_map *map) 181 { 182 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 183 int i; 184 185 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 186 * so the programs (can be more than one that used this map) were 187 * disconnected from events. The following synchronize_rcu() guarantees 188 * both rcu read critical sections complete and waits for 189 * preempt-disable regions (NAPI being the relevant context here) so we 190 * are certain there will be no further reads against the netdev_map and 191 * all flush operations are complete. Flush operations can only be done 192 * from NAPI context for this reason. 193 */ 194 195 spin_lock(&dev_map_lock); 196 list_del_rcu(&dtab->list); 197 spin_unlock(&dev_map_lock); 198 199 bpf_clear_redirect_map(map); 200 synchronize_rcu(); 201 202 /* Make sure prior __dev_map_entry_free() have completed. */ 203 rcu_barrier(); 204 205 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 206 for (i = 0; i < dtab->n_buckets; i++) { 207 struct bpf_dtab_netdev *dev; 208 struct hlist_head *head; 209 struct hlist_node *next; 210 211 head = dev_map_index_hash(dtab, i); 212 213 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 214 hlist_del_rcu(&dev->index_hlist); 215 if (dev->xdp_prog) 216 bpf_prog_put(dev->xdp_prog); 217 dev_put(dev->dev); 218 kfree(dev); 219 } 220 } 221 222 bpf_map_area_free(dtab->dev_index_head); 223 } else { 224 for (i = 0; i < dtab->map.max_entries; i++) { 225 struct bpf_dtab_netdev *dev; 226 227 dev = rcu_dereference_raw(dtab->netdev_map[i]); 228 if (!dev) 229 continue; 230 231 if (dev->xdp_prog) 232 bpf_prog_put(dev->xdp_prog); 233 dev_put(dev->dev); 234 kfree(dev); 235 } 236 237 bpf_map_area_free(dtab->netdev_map); 238 } 239 240 bpf_map_area_free(dtab); 241 } 242 243 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 244 { 245 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 246 u32 index = key ? *(u32 *)key : U32_MAX; 247 u32 *next = next_key; 248 249 if (index >= dtab->map.max_entries) { 250 *next = 0; 251 return 0; 252 } 253 254 if (index == dtab->map.max_entries - 1) 255 return -ENOENT; 256 *next = index + 1; 257 return 0; 258 } 259 260 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 261 * by local_bh_disable() (from XDP calls inside NAPI). The 262 * rcu_read_lock_bh_held() below makes lockdep accept both. 263 */ 264 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 265 { 266 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 267 struct hlist_head *head = dev_map_index_hash(dtab, key); 268 struct bpf_dtab_netdev *dev; 269 270 hlist_for_each_entry_rcu(dev, head, index_hlist, 271 lockdep_is_held(&dtab->index_lock)) 272 if (dev->idx == key) 273 return dev; 274 275 return NULL; 276 } 277 278 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 279 void *next_key) 280 { 281 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 282 u32 idx, *next = next_key; 283 struct bpf_dtab_netdev *dev, *next_dev; 284 struct hlist_head *head; 285 int i = 0; 286 287 if (!key) 288 goto find_first; 289 290 idx = *(u32 *)key; 291 292 dev = __dev_map_hash_lookup_elem(map, idx); 293 if (!dev) 294 goto find_first; 295 296 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 297 struct bpf_dtab_netdev, index_hlist); 298 299 if (next_dev) { 300 *next = next_dev->idx; 301 return 0; 302 } 303 304 i = idx & (dtab->n_buckets - 1); 305 i++; 306 307 find_first: 308 for (; i < dtab->n_buckets; i++) { 309 head = dev_map_index_hash(dtab, i); 310 311 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 312 struct bpf_dtab_netdev, 313 index_hlist); 314 if (next_dev) { 315 *next = next_dev->idx; 316 return 0; 317 } 318 } 319 320 return -ENOENT; 321 } 322 323 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 324 struct xdp_frame **frames, int n, 325 struct net_device *dev) 326 { 327 struct xdp_txq_info txq = { .dev = dev }; 328 struct xdp_buff xdp; 329 int i, nframes = 0; 330 331 for (i = 0; i < n; i++) { 332 struct xdp_frame *xdpf = frames[i]; 333 u32 act; 334 int err; 335 336 xdp_convert_frame_to_buff(xdpf, &xdp); 337 xdp.txq = &txq; 338 339 act = bpf_prog_run_xdp(xdp_prog, &xdp); 340 switch (act) { 341 case XDP_PASS: 342 err = xdp_update_frame_from_buff(&xdp, xdpf); 343 if (unlikely(err < 0)) 344 xdp_return_frame_rx_napi(xdpf); 345 else 346 frames[nframes++] = xdpf; 347 break; 348 default: 349 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 350 fallthrough; 351 case XDP_ABORTED: 352 trace_xdp_exception(dev, xdp_prog, act); 353 fallthrough; 354 case XDP_DROP: 355 xdp_return_frame_rx_napi(xdpf); 356 break; 357 } 358 } 359 return nframes; /* sent frames count */ 360 } 361 362 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 363 { 364 struct net_device *dev = bq->dev; 365 unsigned int cnt = bq->count; 366 int sent = 0, err = 0; 367 int to_send = cnt; 368 int i; 369 370 if (unlikely(!cnt)) 371 return; 372 373 for (i = 0; i < cnt; i++) { 374 struct xdp_frame *xdpf = bq->q[i]; 375 376 prefetch(xdpf); 377 } 378 379 if (bq->xdp_prog) { 380 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 381 if (!to_send) 382 goto out; 383 } 384 385 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 386 if (sent < 0) { 387 /* If ndo_xdp_xmit fails with an errno, no frames have 388 * been xmit'ed. 389 */ 390 err = sent; 391 sent = 0; 392 } 393 394 /* If not all frames have been transmitted, it is our 395 * responsibility to free them 396 */ 397 for (i = sent; unlikely(i < to_send); i++) 398 xdp_return_frame_rx_napi(bq->q[i]); 399 400 out: 401 bq->count = 0; 402 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 403 } 404 405 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 406 * driver before returning from its napi->poll() routine. See the comment above 407 * xdp_do_flush() in filter.c. 408 */ 409 void __dev_flush(void) 410 { 411 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 412 struct xdp_dev_bulk_queue *bq, *tmp; 413 414 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 415 bq_xmit_all(bq, XDP_XMIT_FLUSH); 416 bq->dev_rx = NULL; 417 bq->xdp_prog = NULL; 418 __list_del_clearprev(&bq->flush_node); 419 } 420 } 421 422 #ifdef CONFIG_DEBUG_NET 423 bool dev_check_flush(void) 424 { 425 if (list_empty(this_cpu_ptr(&dev_flush_list))) 426 return false; 427 __dev_flush(); 428 return true; 429 } 430 #endif 431 432 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 433 * by local_bh_disable() (from XDP calls inside NAPI). The 434 * rcu_read_lock_bh_held() below makes lockdep accept both. 435 */ 436 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 437 { 438 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 439 struct bpf_dtab_netdev *obj; 440 441 if (key >= map->max_entries) 442 return NULL; 443 444 obj = rcu_dereference_check(dtab->netdev_map[key], 445 rcu_read_lock_bh_held()); 446 return obj; 447 } 448 449 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 450 * variable access, and map elements stick around. See comment above 451 * xdp_do_flush() in filter.c. 452 */ 453 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 454 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 455 { 456 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 457 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 458 459 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 460 bq_xmit_all(bq, 0); 461 462 /* Ingress dev_rx will be the same for all xdp_frame's in 463 * bulk_queue, because bq stored per-CPU and must be flushed 464 * from net_device drivers NAPI func end. 465 * 466 * Do the same with xdp_prog and flush_list since these fields 467 * are only ever modified together. 468 */ 469 if (!bq->dev_rx) { 470 bq->dev_rx = dev_rx; 471 bq->xdp_prog = xdp_prog; 472 list_add(&bq->flush_node, flush_list); 473 } 474 475 bq->q[bq->count++] = xdpf; 476 } 477 478 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 479 struct net_device *dev_rx, 480 struct bpf_prog *xdp_prog) 481 { 482 int err; 483 484 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 485 return -EOPNOTSUPP; 486 487 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 488 xdp_frame_has_frags(xdpf))) 489 return -EOPNOTSUPP; 490 491 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 492 if (unlikely(err)) 493 return err; 494 495 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 496 return 0; 497 } 498 499 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 500 { 501 struct xdp_txq_info txq = { .dev = dst->dev }; 502 struct xdp_buff xdp; 503 u32 act; 504 505 if (!dst->xdp_prog) 506 return XDP_PASS; 507 508 __skb_pull(skb, skb->mac_len); 509 xdp.txq = &txq; 510 511 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 512 switch (act) { 513 case XDP_PASS: 514 __skb_push(skb, skb->mac_len); 515 break; 516 default: 517 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 518 fallthrough; 519 case XDP_ABORTED: 520 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 521 fallthrough; 522 case XDP_DROP: 523 kfree_skb(skb); 524 break; 525 } 526 527 return act; 528 } 529 530 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 531 struct net_device *dev_rx) 532 { 533 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 534 } 535 536 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 537 struct net_device *dev_rx) 538 { 539 struct net_device *dev = dst->dev; 540 541 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 542 } 543 544 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 545 { 546 if (!obj) 547 return false; 548 549 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 550 return false; 551 552 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 553 xdp_frame_has_frags(xdpf))) 554 return false; 555 556 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 557 return false; 558 559 return true; 560 } 561 562 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 563 struct net_device *dev_rx, 564 struct xdp_frame *xdpf) 565 { 566 struct xdp_frame *nxdpf; 567 568 nxdpf = xdpf_clone(xdpf); 569 if (!nxdpf) 570 return -ENOMEM; 571 572 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 573 574 return 0; 575 } 576 577 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 578 { 579 while (num_excluded--) { 580 if (ifindex == excluded[num_excluded]) 581 return true; 582 } 583 return false; 584 } 585 586 /* Get ifindex of each upper device. 'indexes' must be able to hold at 587 * least MAX_NEST_DEV elements. 588 * Returns the number of ifindexes added. 589 */ 590 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 591 { 592 struct net_device *upper; 593 struct list_head *iter; 594 int n = 0; 595 596 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 597 indexes[n++] = upper->ifindex; 598 } 599 return n; 600 } 601 602 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 603 struct bpf_map *map, bool exclude_ingress) 604 { 605 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 606 struct bpf_dtab_netdev *dst, *last_dst = NULL; 607 int excluded_devices[1+MAX_NEST_DEV]; 608 struct hlist_head *head; 609 int num_excluded = 0; 610 unsigned int i; 611 int err; 612 613 if (exclude_ingress) { 614 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 615 excluded_devices[num_excluded++] = dev_rx->ifindex; 616 } 617 618 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 619 for (i = 0; i < map->max_entries; i++) { 620 dst = rcu_dereference_check(dtab->netdev_map[i], 621 rcu_read_lock_bh_held()); 622 if (!is_valid_dst(dst, xdpf)) 623 continue; 624 625 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 626 continue; 627 628 /* we only need n-1 clones; last_dst enqueued below */ 629 if (!last_dst) { 630 last_dst = dst; 631 continue; 632 } 633 634 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 635 if (err) 636 return err; 637 638 last_dst = dst; 639 } 640 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 641 for (i = 0; i < dtab->n_buckets; i++) { 642 head = dev_map_index_hash(dtab, i); 643 hlist_for_each_entry_rcu(dst, head, index_hlist, 644 lockdep_is_held(&dtab->index_lock)) { 645 if (!is_valid_dst(dst, xdpf)) 646 continue; 647 648 if (is_ifindex_excluded(excluded_devices, num_excluded, 649 dst->dev->ifindex)) 650 continue; 651 652 /* we only need n-1 clones; last_dst enqueued below */ 653 if (!last_dst) { 654 last_dst = dst; 655 continue; 656 } 657 658 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 659 if (err) 660 return err; 661 662 last_dst = dst; 663 } 664 } 665 } 666 667 /* consume the last copy of the frame */ 668 if (last_dst) 669 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 670 else 671 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 672 673 return 0; 674 } 675 676 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 677 struct bpf_prog *xdp_prog) 678 { 679 int err; 680 681 err = xdp_ok_fwd_dev(dst->dev, skb->len); 682 if (unlikely(err)) 683 return err; 684 685 /* Redirect has already succeeded semantically at this point, so we just 686 * return 0 even if packet is dropped. Helper below takes care of 687 * freeing skb. 688 */ 689 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 690 return 0; 691 692 skb->dev = dst->dev; 693 generic_xdp_tx(skb, xdp_prog); 694 695 return 0; 696 } 697 698 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 699 struct sk_buff *skb, 700 struct bpf_prog *xdp_prog) 701 { 702 struct sk_buff *nskb; 703 int err; 704 705 nskb = skb_clone(skb, GFP_ATOMIC); 706 if (!nskb) 707 return -ENOMEM; 708 709 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 710 if (unlikely(err)) { 711 consume_skb(nskb); 712 return err; 713 } 714 715 return 0; 716 } 717 718 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 719 struct bpf_prog *xdp_prog, struct bpf_map *map, 720 bool exclude_ingress) 721 { 722 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 723 struct bpf_dtab_netdev *dst, *last_dst = NULL; 724 int excluded_devices[1+MAX_NEST_DEV]; 725 struct hlist_head *head; 726 struct hlist_node *next; 727 int num_excluded = 0; 728 unsigned int i; 729 int err; 730 731 if (exclude_ingress) { 732 num_excluded = get_upper_ifindexes(dev, excluded_devices); 733 excluded_devices[num_excluded++] = dev->ifindex; 734 } 735 736 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 737 for (i = 0; i < map->max_entries; i++) { 738 dst = rcu_dereference_check(dtab->netdev_map[i], 739 rcu_read_lock_bh_held()); 740 if (!dst) 741 continue; 742 743 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 744 continue; 745 746 /* we only need n-1 clones; last_dst enqueued below */ 747 if (!last_dst) { 748 last_dst = dst; 749 continue; 750 } 751 752 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 753 if (err) 754 return err; 755 756 last_dst = dst; 757 758 } 759 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 760 for (i = 0; i < dtab->n_buckets; i++) { 761 head = dev_map_index_hash(dtab, i); 762 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 763 if (is_ifindex_excluded(excluded_devices, num_excluded, 764 dst->dev->ifindex)) 765 continue; 766 767 /* we only need n-1 clones; last_dst enqueued below */ 768 if (!last_dst) { 769 last_dst = dst; 770 continue; 771 } 772 773 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 774 if (err) 775 return err; 776 777 last_dst = dst; 778 } 779 } 780 } 781 782 /* consume the first skb and return */ 783 if (last_dst) 784 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 785 786 /* dtab is empty */ 787 consume_skb(skb); 788 return 0; 789 } 790 791 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 792 { 793 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 794 795 return obj ? &obj->val : NULL; 796 } 797 798 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 799 { 800 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 801 *(u32 *)key); 802 return obj ? &obj->val : NULL; 803 } 804 805 static void __dev_map_entry_free(struct rcu_head *rcu) 806 { 807 struct bpf_dtab_netdev *dev; 808 809 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 810 if (dev->xdp_prog) 811 bpf_prog_put(dev->xdp_prog); 812 dev_put(dev->dev); 813 kfree(dev); 814 } 815 816 static long dev_map_delete_elem(struct bpf_map *map, void *key) 817 { 818 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 819 struct bpf_dtab_netdev *old_dev; 820 int k = *(u32 *)key; 821 822 if (k >= map->max_entries) 823 return -EINVAL; 824 825 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 826 if (old_dev) { 827 call_rcu(&old_dev->rcu, __dev_map_entry_free); 828 atomic_dec((atomic_t *)&dtab->items); 829 } 830 return 0; 831 } 832 833 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 834 { 835 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 836 struct bpf_dtab_netdev *old_dev; 837 int k = *(u32 *)key; 838 unsigned long flags; 839 int ret = -ENOENT; 840 841 spin_lock_irqsave(&dtab->index_lock, flags); 842 843 old_dev = __dev_map_hash_lookup_elem(map, k); 844 if (old_dev) { 845 dtab->items--; 846 hlist_del_init_rcu(&old_dev->index_hlist); 847 call_rcu(&old_dev->rcu, __dev_map_entry_free); 848 ret = 0; 849 } 850 spin_unlock_irqrestore(&dtab->index_lock, flags); 851 852 return ret; 853 } 854 855 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 856 struct bpf_dtab *dtab, 857 struct bpf_devmap_val *val, 858 unsigned int idx) 859 { 860 struct bpf_prog *prog = NULL; 861 struct bpf_dtab_netdev *dev; 862 863 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 864 GFP_NOWAIT | __GFP_NOWARN, 865 dtab->map.numa_node); 866 if (!dev) 867 return ERR_PTR(-ENOMEM); 868 869 dev->dev = dev_get_by_index(net, val->ifindex); 870 if (!dev->dev) 871 goto err_out; 872 873 if (val->bpf_prog.fd > 0) { 874 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 875 BPF_PROG_TYPE_XDP, false); 876 if (IS_ERR(prog)) 877 goto err_put_dev; 878 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 879 !bpf_prog_map_compatible(&dtab->map, prog)) 880 goto err_put_prog; 881 } 882 883 dev->idx = idx; 884 if (prog) { 885 dev->xdp_prog = prog; 886 dev->val.bpf_prog.id = prog->aux->id; 887 } else { 888 dev->xdp_prog = NULL; 889 dev->val.bpf_prog.id = 0; 890 } 891 dev->val.ifindex = val->ifindex; 892 893 return dev; 894 err_put_prog: 895 bpf_prog_put(prog); 896 err_put_dev: 897 dev_put(dev->dev); 898 err_out: 899 kfree(dev); 900 return ERR_PTR(-EINVAL); 901 } 902 903 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 904 void *key, void *value, u64 map_flags) 905 { 906 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 907 struct bpf_dtab_netdev *dev, *old_dev; 908 struct bpf_devmap_val val = {}; 909 u32 i = *(u32 *)key; 910 911 if (unlikely(map_flags > BPF_EXIST)) 912 return -EINVAL; 913 if (unlikely(i >= dtab->map.max_entries)) 914 return -E2BIG; 915 if (unlikely(map_flags == BPF_NOEXIST)) 916 return -EEXIST; 917 918 /* already verified value_size <= sizeof val */ 919 memcpy(&val, value, map->value_size); 920 921 if (!val.ifindex) { 922 dev = NULL; 923 /* can not specify fd if ifindex is 0 */ 924 if (val.bpf_prog.fd > 0) 925 return -EINVAL; 926 } else { 927 dev = __dev_map_alloc_node(net, dtab, &val, i); 928 if (IS_ERR(dev)) 929 return PTR_ERR(dev); 930 } 931 932 /* Use call_rcu() here to ensure rcu critical sections have completed 933 * Remembering the driver side flush operation will happen before the 934 * net device is removed. 935 */ 936 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 937 if (old_dev) 938 call_rcu(&old_dev->rcu, __dev_map_entry_free); 939 else 940 atomic_inc((atomic_t *)&dtab->items); 941 942 return 0; 943 } 944 945 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 946 u64 map_flags) 947 { 948 return __dev_map_update_elem(current->nsproxy->net_ns, 949 map, key, value, map_flags); 950 } 951 952 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 953 void *key, void *value, u64 map_flags) 954 { 955 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 956 struct bpf_dtab_netdev *dev, *old_dev; 957 struct bpf_devmap_val val = {}; 958 u32 idx = *(u32 *)key; 959 unsigned long flags; 960 int err = -EEXIST; 961 962 /* already verified value_size <= sizeof val */ 963 memcpy(&val, value, map->value_size); 964 965 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 966 return -EINVAL; 967 968 spin_lock_irqsave(&dtab->index_lock, flags); 969 970 old_dev = __dev_map_hash_lookup_elem(map, idx); 971 if (old_dev && (map_flags & BPF_NOEXIST)) 972 goto out_err; 973 974 dev = __dev_map_alloc_node(net, dtab, &val, idx); 975 if (IS_ERR(dev)) { 976 err = PTR_ERR(dev); 977 goto out_err; 978 } 979 980 if (old_dev) { 981 hlist_del_rcu(&old_dev->index_hlist); 982 } else { 983 if (dtab->items >= dtab->map.max_entries) { 984 spin_unlock_irqrestore(&dtab->index_lock, flags); 985 call_rcu(&dev->rcu, __dev_map_entry_free); 986 return -E2BIG; 987 } 988 dtab->items++; 989 } 990 991 hlist_add_head_rcu(&dev->index_hlist, 992 dev_map_index_hash(dtab, idx)); 993 spin_unlock_irqrestore(&dtab->index_lock, flags); 994 995 if (old_dev) 996 call_rcu(&old_dev->rcu, __dev_map_entry_free); 997 998 return 0; 999 1000 out_err: 1001 spin_unlock_irqrestore(&dtab->index_lock, flags); 1002 return err; 1003 } 1004 1005 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 1006 u64 map_flags) 1007 { 1008 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1009 map, key, value, map_flags); 1010 } 1011 1012 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1013 { 1014 return __bpf_xdp_redirect_map(map, ifindex, flags, 1015 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1016 __dev_map_lookup_elem); 1017 } 1018 1019 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1020 { 1021 return __bpf_xdp_redirect_map(map, ifindex, flags, 1022 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1023 __dev_map_hash_lookup_elem); 1024 } 1025 1026 static u64 dev_map_mem_usage(const struct bpf_map *map) 1027 { 1028 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1029 u64 usage = sizeof(struct bpf_dtab); 1030 1031 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1032 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1033 else 1034 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1035 usage += atomic_read((atomic_t *)&dtab->items) * 1036 (u64)sizeof(struct bpf_dtab_netdev); 1037 return usage; 1038 } 1039 1040 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1041 const struct bpf_map_ops dev_map_ops = { 1042 .map_meta_equal = bpf_map_meta_equal, 1043 .map_alloc = dev_map_alloc, 1044 .map_free = dev_map_free, 1045 .map_get_next_key = dev_map_get_next_key, 1046 .map_lookup_elem = dev_map_lookup_elem, 1047 .map_update_elem = dev_map_update_elem, 1048 .map_delete_elem = dev_map_delete_elem, 1049 .map_check_btf = map_check_no_btf, 1050 .map_mem_usage = dev_map_mem_usage, 1051 .map_btf_id = &dev_map_btf_ids[0], 1052 .map_redirect = dev_map_redirect, 1053 }; 1054 1055 const struct bpf_map_ops dev_map_hash_ops = { 1056 .map_meta_equal = bpf_map_meta_equal, 1057 .map_alloc = dev_map_alloc, 1058 .map_free = dev_map_free, 1059 .map_get_next_key = dev_map_hash_get_next_key, 1060 .map_lookup_elem = dev_map_hash_lookup_elem, 1061 .map_update_elem = dev_map_hash_update_elem, 1062 .map_delete_elem = dev_map_hash_delete_elem, 1063 .map_check_btf = map_check_no_btf, 1064 .map_mem_usage = dev_map_mem_usage, 1065 .map_btf_id = &dev_map_btf_ids[0], 1066 .map_redirect = dev_hash_map_redirect, 1067 }; 1068 1069 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1070 struct net_device *netdev) 1071 { 1072 unsigned long flags; 1073 u32 i; 1074 1075 spin_lock_irqsave(&dtab->index_lock, flags); 1076 for (i = 0; i < dtab->n_buckets; i++) { 1077 struct bpf_dtab_netdev *dev; 1078 struct hlist_head *head; 1079 struct hlist_node *next; 1080 1081 head = dev_map_index_hash(dtab, i); 1082 1083 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1084 if (netdev != dev->dev) 1085 continue; 1086 1087 dtab->items--; 1088 hlist_del_rcu(&dev->index_hlist); 1089 call_rcu(&dev->rcu, __dev_map_entry_free); 1090 } 1091 } 1092 spin_unlock_irqrestore(&dtab->index_lock, flags); 1093 } 1094 1095 static int dev_map_notification(struct notifier_block *notifier, 1096 ulong event, void *ptr) 1097 { 1098 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1099 struct bpf_dtab *dtab; 1100 int i, cpu; 1101 1102 switch (event) { 1103 case NETDEV_REGISTER: 1104 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1105 break; 1106 1107 /* will be freed in free_netdev() */ 1108 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1109 if (!netdev->xdp_bulkq) 1110 return NOTIFY_BAD; 1111 1112 for_each_possible_cpu(cpu) 1113 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1114 break; 1115 case NETDEV_UNREGISTER: 1116 /* This rcu_read_lock/unlock pair is needed because 1117 * dev_map_list is an RCU list AND to ensure a delete 1118 * operation does not free a netdev_map entry while we 1119 * are comparing it against the netdev being unregistered. 1120 */ 1121 rcu_read_lock(); 1122 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1123 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1124 dev_map_hash_remove_netdev(dtab, netdev); 1125 continue; 1126 } 1127 1128 for (i = 0; i < dtab->map.max_entries; i++) { 1129 struct bpf_dtab_netdev *dev, *odev; 1130 1131 dev = rcu_dereference(dtab->netdev_map[i]); 1132 if (!dev || netdev != dev->dev) 1133 continue; 1134 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1135 if (dev == odev) { 1136 call_rcu(&dev->rcu, 1137 __dev_map_entry_free); 1138 atomic_dec((atomic_t *)&dtab->items); 1139 } 1140 } 1141 } 1142 rcu_read_unlock(); 1143 break; 1144 default: 1145 break; 1146 } 1147 return NOTIFY_OK; 1148 } 1149 1150 static struct notifier_block dev_map_notifier = { 1151 .notifier_call = dev_map_notification, 1152 }; 1153 1154 static int __init dev_map_init(void) 1155 { 1156 int cpu; 1157 1158 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1159 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1160 offsetof(struct _bpf_dtab_netdev, dev)); 1161 register_netdevice_notifier(&dev_map_notifier); 1162 1163 for_each_possible_cpu(cpu) 1164 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1165 return 0; 1166 } 1167 1168 subsys_initcall(dev_map_init); 1169