1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <net/xdp.h> 52 #include <linux/filter.h> 53 #include <trace/events/xdp.h> 54 55 #define DEV_CREATE_FLAG_MASK \ 56 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 57 58 #define DEV_MAP_BULK_SIZE 16 59 struct xdp_bulk_queue { 60 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 61 struct net_device *dev_rx; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct bpf_dtab *dtab; 68 unsigned int bit; 69 struct xdp_bulk_queue __percpu *bulkq; 70 struct rcu_head rcu; 71 }; 72 73 struct bpf_dtab { 74 struct bpf_map map; 75 struct bpf_dtab_netdev **netdev_map; 76 unsigned long __percpu *flush_needed; 77 struct list_head list; 78 }; 79 80 static DEFINE_SPINLOCK(dev_map_lock); 81 static LIST_HEAD(dev_map_list); 82 83 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 84 { 85 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); 86 } 87 88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 89 { 90 struct bpf_dtab *dtab; 91 int err = -EINVAL; 92 u64 cost; 93 94 if (!capable(CAP_NET_ADMIN)) 95 return ERR_PTR(-EPERM); 96 97 /* check sanity of attributes */ 98 if (attr->max_entries == 0 || attr->key_size != 4 || 99 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 100 return ERR_PTR(-EINVAL); 101 102 dtab = kzalloc(sizeof(*dtab), GFP_USER); 103 if (!dtab) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&dtab->map, attr); 107 108 /* make sure page count doesn't overflow */ 109 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 110 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 111 if (cost >= U32_MAX - PAGE_SIZE) 112 goto free_dtab; 113 114 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 115 116 /* if map size is larger than memlock limit, reject it early */ 117 err = bpf_map_precharge_memlock(dtab->map.pages); 118 if (err) 119 goto free_dtab; 120 121 err = -ENOMEM; 122 123 /* A per cpu bitfield with a bit per possible net device */ 124 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), 125 __alignof__(unsigned long), 126 GFP_KERNEL | __GFP_NOWARN); 127 if (!dtab->flush_needed) 128 goto free_dtab; 129 130 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 131 sizeof(struct bpf_dtab_netdev *), 132 dtab->map.numa_node); 133 if (!dtab->netdev_map) 134 goto free_dtab; 135 136 spin_lock(&dev_map_lock); 137 list_add_tail_rcu(&dtab->list, &dev_map_list); 138 spin_unlock(&dev_map_lock); 139 140 return &dtab->map; 141 free_dtab: 142 free_percpu(dtab->flush_needed); 143 kfree(dtab); 144 return ERR_PTR(err); 145 } 146 147 static void dev_map_free(struct bpf_map *map) 148 { 149 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 150 int i, cpu; 151 152 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 153 * so the programs (can be more than one that used this map) were 154 * disconnected from events. Wait for outstanding critical sections in 155 * these programs to complete. The rcu critical section only guarantees 156 * no further reads against netdev_map. It does __not__ ensure pending 157 * flush operations (if any) are complete. 158 */ 159 160 spin_lock(&dev_map_lock); 161 list_del_rcu(&dtab->list); 162 spin_unlock(&dev_map_lock); 163 164 bpf_clear_redirect_map(map); 165 synchronize_rcu(); 166 167 /* Make sure prior __dev_map_entry_free() have completed. */ 168 rcu_barrier(); 169 170 /* To ensure all pending flush operations have completed wait for flush 171 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 172 * Because the above synchronize_rcu() ensures the map is disconnected 173 * from the program we can assume no new bits will be set. 174 */ 175 for_each_online_cpu(cpu) { 176 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 177 178 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 179 cond_resched(); 180 } 181 182 for (i = 0; i < dtab->map.max_entries; i++) { 183 struct bpf_dtab_netdev *dev; 184 185 dev = dtab->netdev_map[i]; 186 if (!dev) 187 continue; 188 189 free_percpu(dev->bulkq); 190 dev_put(dev->dev); 191 kfree(dev); 192 } 193 194 free_percpu(dtab->flush_needed); 195 bpf_map_area_free(dtab->netdev_map); 196 kfree(dtab); 197 } 198 199 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 200 { 201 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 202 u32 index = key ? *(u32 *)key : U32_MAX; 203 u32 *next = next_key; 204 205 if (index >= dtab->map.max_entries) { 206 *next = 0; 207 return 0; 208 } 209 210 if (index == dtab->map.max_entries - 1) 211 return -ENOENT; 212 *next = index + 1; 213 return 0; 214 } 215 216 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 217 { 218 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 219 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 220 221 __set_bit(bit, bitmap); 222 } 223 224 static int bq_xmit_all(struct bpf_dtab_netdev *obj, 225 struct xdp_bulk_queue *bq, u32 flags, 226 bool in_napi_ctx) 227 { 228 struct net_device *dev = obj->dev; 229 int sent = 0, drops = 0, err = 0; 230 int i; 231 232 if (unlikely(!bq->count)) 233 return 0; 234 235 for (i = 0; i < bq->count; i++) { 236 struct xdp_frame *xdpf = bq->q[i]; 237 238 prefetch(xdpf); 239 } 240 241 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 242 if (sent < 0) { 243 err = sent; 244 sent = 0; 245 goto error; 246 } 247 drops = bq->count - sent; 248 out: 249 bq->count = 0; 250 251 trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit, 252 sent, drops, bq->dev_rx, dev, err); 253 bq->dev_rx = NULL; 254 return 0; 255 error: 256 /* If ndo_xdp_xmit fails with an errno, no frames have been 257 * xmit'ed and it's our responsibility to them free all. 258 */ 259 for (i = 0; i < bq->count; i++) { 260 struct xdp_frame *xdpf = bq->q[i]; 261 262 /* RX path under NAPI protection, can return frames faster */ 263 if (likely(in_napi_ctx)) 264 xdp_return_frame_rx_napi(xdpf); 265 else 266 xdp_return_frame(xdpf); 267 drops++; 268 } 269 goto out; 270 } 271 272 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 273 * from the driver before returning from its napi->poll() routine. The poll() 274 * routine is called either from busy_poll context or net_rx_action signaled 275 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 276 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 277 * is zeroed before completing to ensure all flush operations have completed. 278 */ 279 void __dev_map_flush(struct bpf_map *map) 280 { 281 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 282 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 283 u32 bit; 284 285 rcu_read_lock(); 286 for_each_set_bit(bit, bitmap, map->max_entries) { 287 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 288 struct xdp_bulk_queue *bq; 289 290 /* This is possible if the dev entry is removed by user space 291 * between xdp redirect and flush op. 292 */ 293 if (unlikely(!dev)) 294 continue; 295 296 bq = this_cpu_ptr(dev->bulkq); 297 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true); 298 299 __clear_bit(bit, bitmap); 300 } 301 rcu_read_unlock(); 302 } 303 304 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 305 * update happens in parallel here a dev_put wont happen until after reading the 306 * ifindex. 307 */ 308 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 309 { 310 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 311 struct bpf_dtab_netdev *obj; 312 313 if (key >= map->max_entries) 314 return NULL; 315 316 obj = READ_ONCE(dtab->netdev_map[key]); 317 return obj; 318 } 319 320 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 321 * Thus, safe percpu variable access. 322 */ 323 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf, 324 struct net_device *dev_rx) 325 326 { 327 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq); 328 329 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 330 bq_xmit_all(obj, bq, 0, true); 331 332 /* Ingress dev_rx will be the same for all xdp_frame's in 333 * bulk_queue, because bq stored per-CPU and must be flushed 334 * from net_device drivers NAPI func end. 335 */ 336 if (!bq->dev_rx) 337 bq->dev_rx = dev_rx; 338 339 bq->q[bq->count++] = xdpf; 340 return 0; 341 } 342 343 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 344 struct net_device *dev_rx) 345 { 346 struct net_device *dev = dst->dev; 347 struct xdp_frame *xdpf; 348 int err; 349 350 if (!dev->netdev_ops->ndo_xdp_xmit) 351 return -EOPNOTSUPP; 352 353 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 354 if (unlikely(err)) 355 return err; 356 357 xdpf = convert_to_xdp_frame(xdp); 358 if (unlikely(!xdpf)) 359 return -EOVERFLOW; 360 361 return bq_enqueue(dst, xdpf, dev_rx); 362 } 363 364 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 365 struct bpf_prog *xdp_prog) 366 { 367 int err; 368 369 err = xdp_ok_fwd_dev(dst->dev, skb->len); 370 if (unlikely(err)) 371 return err; 372 skb->dev = dst->dev; 373 generic_xdp_tx(skb, xdp_prog); 374 375 return 0; 376 } 377 378 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 379 { 380 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 381 struct net_device *dev = obj ? obj->dev : NULL; 382 383 return dev ? &dev->ifindex : NULL; 384 } 385 386 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 387 { 388 if (dev->dev->netdev_ops->ndo_xdp_xmit) { 389 struct xdp_bulk_queue *bq; 390 unsigned long *bitmap; 391 392 int cpu; 393 394 rcu_read_lock(); 395 for_each_online_cpu(cpu) { 396 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 397 __clear_bit(dev->bit, bitmap); 398 399 bq = per_cpu_ptr(dev->bulkq, cpu); 400 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false); 401 } 402 rcu_read_unlock(); 403 } 404 } 405 406 static void __dev_map_entry_free(struct rcu_head *rcu) 407 { 408 struct bpf_dtab_netdev *dev; 409 410 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 411 dev_map_flush_old(dev); 412 free_percpu(dev->bulkq); 413 dev_put(dev->dev); 414 kfree(dev); 415 } 416 417 static int dev_map_delete_elem(struct bpf_map *map, void *key) 418 { 419 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 420 struct bpf_dtab_netdev *old_dev; 421 int k = *(u32 *)key; 422 423 if (k >= map->max_entries) 424 return -EINVAL; 425 426 /* Use call_rcu() here to ensure any rcu critical sections have 427 * completed, but this does not guarantee a flush has happened 428 * yet. Because driver side rcu_read_lock/unlock only protects the 429 * running XDP program. However, for pending flush operations the 430 * dev and ctx are stored in another per cpu map. And additionally, 431 * the driver tear down ensures all soft irqs are complete before 432 * removing the net device in the case of dev_put equals zero. 433 */ 434 old_dev = xchg(&dtab->netdev_map[k], NULL); 435 if (old_dev) 436 call_rcu(&old_dev->rcu, __dev_map_entry_free); 437 return 0; 438 } 439 440 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 441 u64 map_flags) 442 { 443 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 444 struct net *net = current->nsproxy->net_ns; 445 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 446 struct bpf_dtab_netdev *dev, *old_dev; 447 u32 i = *(u32 *)key; 448 u32 ifindex = *(u32 *)value; 449 450 if (unlikely(map_flags > BPF_EXIST)) 451 return -EINVAL; 452 if (unlikely(i >= dtab->map.max_entries)) 453 return -E2BIG; 454 if (unlikely(map_flags == BPF_NOEXIST)) 455 return -EEXIST; 456 457 if (!ifindex) { 458 dev = NULL; 459 } else { 460 dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node); 461 if (!dev) 462 return -ENOMEM; 463 464 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq), 465 sizeof(void *), gfp); 466 if (!dev->bulkq) { 467 kfree(dev); 468 return -ENOMEM; 469 } 470 471 dev->dev = dev_get_by_index(net, ifindex); 472 if (!dev->dev) { 473 free_percpu(dev->bulkq); 474 kfree(dev); 475 return -EINVAL; 476 } 477 478 dev->bit = i; 479 dev->dtab = dtab; 480 } 481 482 /* Use call_rcu() here to ensure rcu critical sections have completed 483 * Remembering the driver side flush operation will happen before the 484 * net device is removed. 485 */ 486 old_dev = xchg(&dtab->netdev_map[i], dev); 487 if (old_dev) 488 call_rcu(&old_dev->rcu, __dev_map_entry_free); 489 490 return 0; 491 } 492 493 const struct bpf_map_ops dev_map_ops = { 494 .map_alloc = dev_map_alloc, 495 .map_free = dev_map_free, 496 .map_get_next_key = dev_map_get_next_key, 497 .map_lookup_elem = dev_map_lookup_elem, 498 .map_update_elem = dev_map_update_elem, 499 .map_delete_elem = dev_map_delete_elem, 500 .map_check_btf = map_check_no_btf, 501 }; 502 503 static int dev_map_notification(struct notifier_block *notifier, 504 ulong event, void *ptr) 505 { 506 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 507 struct bpf_dtab *dtab; 508 int i; 509 510 switch (event) { 511 case NETDEV_UNREGISTER: 512 /* This rcu_read_lock/unlock pair is needed because 513 * dev_map_list is an RCU list AND to ensure a delete 514 * operation does not free a netdev_map entry while we 515 * are comparing it against the netdev being unregistered. 516 */ 517 rcu_read_lock(); 518 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 519 for (i = 0; i < dtab->map.max_entries; i++) { 520 struct bpf_dtab_netdev *dev, *odev; 521 522 dev = READ_ONCE(dtab->netdev_map[i]); 523 if (!dev || netdev != dev->dev) 524 continue; 525 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 526 if (dev == odev) 527 call_rcu(&dev->rcu, 528 __dev_map_entry_free); 529 } 530 } 531 rcu_read_unlock(); 532 break; 533 default: 534 break; 535 } 536 return NOTIFY_OK; 537 } 538 539 static struct notifier_block dev_map_notifier = { 540 .notifier_call = dev_map_notification, 541 }; 542 543 static int __init dev_map_init(void) 544 { 545 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 546 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 547 offsetof(struct _bpf_dtab_netdev, dev)); 548 register_netdevice_notifier(&dev_map_notifier); 549 return 0; 550 } 551 552 subsys_initcall(dev_map_init); 553