xref: /linux/kernel/bpf/devmap.c (revision 5513dc1d8fec929006548dde4acdabdc54379beb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 #include <linux/btf_ids.h>
52 
53 #define DEV_CREATE_FLAG_MASK \
54 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
55 
56 struct xdp_dev_bulk_queue {
57 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
58 	struct list_head flush_node;
59 	struct net_device *dev;
60 	struct net_device *dev_rx;
61 	struct bpf_prog *xdp_prog;
62 	unsigned int count;
63 };
64 
65 struct bpf_dtab_netdev {
66 	struct net_device *dev; /* must be first member, due to tracepoint */
67 	struct hlist_node index_hlist;
68 	struct bpf_prog *xdp_prog;
69 	struct rcu_head rcu;
70 	unsigned int idx;
71 	struct bpf_devmap_val val;
72 };
73 
74 struct bpf_dtab {
75 	struct bpf_map map;
76 	struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */
77 	struct list_head list;
78 
79 	/* these are only used for DEVMAP_HASH type maps */
80 	struct hlist_head *dev_index_head;
81 	spinlock_t index_lock;
82 	unsigned int items;
83 	u32 n_buckets;
84 };
85 
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 					      int numa_node)
91 {
92 	int i;
93 	struct hlist_head *hash;
94 
95 	hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
96 	if (hash != NULL)
97 		for (i = 0; i < entries; i++)
98 			INIT_HLIST_HEAD(&hash[i]);
99 
100 	return hash;
101 }
102 
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 						    int idx)
105 {
106 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108 
109 static int dev_map_alloc_check(union bpf_attr *attr)
110 {
111 	u32 valsize = attr->value_size;
112 
113 	/* check sanity of attributes. 2 value sizes supported:
114 	 * 4 bytes: ifindex
115 	 * 8 bytes: ifindex + prog fd
116 	 */
117 	if (attr->max_entries == 0 || attr->key_size != 4 ||
118 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
119 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
120 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
121 		return -EINVAL;
122 
123 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
124 		/* Hash table size must be power of 2; roundup_pow_of_two()
125 		 * can overflow into UB on 32-bit arches
126 		 */
127 		if (attr->max_entries > 1UL << 31)
128 			return -EINVAL;
129 	}
130 
131 	return 0;
132 }
133 
134 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
135 {
136 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
137 	 * verifier prevents writes from the BPF side
138 	 */
139 	attr->map_flags |= BPF_F_RDONLY_PROG;
140 	bpf_map_init_from_attr(&dtab->map, attr);
141 
142 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
143 		/* Hash table size must be power of 2 */
144 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
145 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
146 							   dtab->map.numa_node);
147 		if (!dtab->dev_index_head)
148 			return -ENOMEM;
149 
150 		spin_lock_init(&dtab->index_lock);
151 	} else {
152 		dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
153 						      sizeof(struct bpf_dtab_netdev *),
154 						      dtab->map.numa_node);
155 		if (!dtab->netdev_map)
156 			return -ENOMEM;
157 	}
158 
159 	return 0;
160 }
161 
162 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
163 {
164 	struct bpf_dtab *dtab;
165 	int err;
166 
167 	dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE);
168 	if (!dtab)
169 		return ERR_PTR(-ENOMEM);
170 
171 	err = dev_map_init_map(dtab, attr);
172 	if (err) {
173 		bpf_map_area_free(dtab);
174 		return ERR_PTR(err);
175 	}
176 
177 	spin_lock(&dev_map_lock);
178 	list_add_tail_rcu(&dtab->list, &dev_map_list);
179 	spin_unlock(&dev_map_lock);
180 
181 	return &dtab->map;
182 }
183 
184 static void dev_map_free(struct bpf_map *map)
185 {
186 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
187 	int i;
188 
189 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
190 	 * so the programs (can be more than one that used this map) were
191 	 * disconnected from events. The following synchronize_rcu() guarantees
192 	 * both rcu read critical sections complete and waits for
193 	 * preempt-disable regions (NAPI being the relevant context here) so we
194 	 * are certain there will be no further reads against the netdev_map and
195 	 * all flush operations are complete. Flush operations can only be done
196 	 * from NAPI context for this reason.
197 	 */
198 
199 	spin_lock(&dev_map_lock);
200 	list_del_rcu(&dtab->list);
201 	spin_unlock(&dev_map_lock);
202 
203 	/* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map()
204 	 * during NAPI callback and cleared after the XDP redirect. There is no
205 	 * explicit RCU read section which protects bpf_redirect_info->map but
206 	 * local_bh_disable() also marks the beginning an RCU section. This
207 	 * makes the complete softirq callback RCU protected. Thus after
208 	 * following synchronize_rcu() there no bpf_redirect_info->map == map
209 	 * assignment.
210 	 */
211 	synchronize_rcu();
212 
213 	/* Make sure prior __dev_map_entry_free() have completed. */
214 	rcu_barrier();
215 
216 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
217 		for (i = 0; i < dtab->n_buckets; i++) {
218 			struct bpf_dtab_netdev *dev;
219 			struct hlist_head *head;
220 			struct hlist_node *next;
221 
222 			head = dev_map_index_hash(dtab, i);
223 
224 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
225 				hlist_del_rcu(&dev->index_hlist);
226 				if (dev->xdp_prog)
227 					bpf_prog_put(dev->xdp_prog);
228 				dev_put(dev->dev);
229 				kfree(dev);
230 			}
231 		}
232 
233 		bpf_map_area_free(dtab->dev_index_head);
234 	} else {
235 		for (i = 0; i < dtab->map.max_entries; i++) {
236 			struct bpf_dtab_netdev *dev;
237 
238 			dev = rcu_dereference_raw(dtab->netdev_map[i]);
239 			if (!dev)
240 				continue;
241 
242 			if (dev->xdp_prog)
243 				bpf_prog_put(dev->xdp_prog);
244 			dev_put(dev->dev);
245 			kfree(dev);
246 		}
247 
248 		bpf_map_area_free(dtab->netdev_map);
249 	}
250 
251 	bpf_map_area_free(dtab);
252 }
253 
254 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
255 {
256 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
257 	u32 index = key ? *(u32 *)key : U32_MAX;
258 	u32 *next = next_key;
259 
260 	if (index >= dtab->map.max_entries) {
261 		*next = 0;
262 		return 0;
263 	}
264 
265 	if (index == dtab->map.max_entries - 1)
266 		return -ENOENT;
267 	*next = index + 1;
268 	return 0;
269 }
270 
271 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
272  * by local_bh_disable() (from XDP calls inside NAPI). The
273  * rcu_read_lock_bh_held() below makes lockdep accept both.
274  */
275 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	struct hlist_head *head = dev_map_index_hash(dtab, key);
279 	struct bpf_dtab_netdev *dev;
280 
281 	hlist_for_each_entry_rcu(dev, head, index_hlist,
282 				 lockdep_is_held(&dtab->index_lock))
283 		if (dev->idx == key)
284 			return dev;
285 
286 	return NULL;
287 }
288 
289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
290 				    void *next_key)
291 {
292 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
293 	u32 idx, *next = next_key;
294 	struct bpf_dtab_netdev *dev, *next_dev;
295 	struct hlist_head *head;
296 	int i = 0;
297 
298 	if (!key)
299 		goto find_first;
300 
301 	idx = *(u32 *)key;
302 
303 	dev = __dev_map_hash_lookup_elem(map, idx);
304 	if (!dev)
305 		goto find_first;
306 
307 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
308 				    struct bpf_dtab_netdev, index_hlist);
309 
310 	if (next_dev) {
311 		*next = next_dev->idx;
312 		return 0;
313 	}
314 
315 	i = idx & (dtab->n_buckets - 1);
316 	i++;
317 
318  find_first:
319 	for (; i < dtab->n_buckets; i++) {
320 		head = dev_map_index_hash(dtab, i);
321 
322 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
323 					    struct bpf_dtab_netdev,
324 					    index_hlist);
325 		if (next_dev) {
326 			*next = next_dev->idx;
327 			return 0;
328 		}
329 	}
330 
331 	return -ENOENT;
332 }
333 
334 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog,
335 				struct xdp_frame **frames, int n,
336 				struct net_device *tx_dev,
337 				struct net_device *rx_dev)
338 {
339 	struct xdp_txq_info txq = { .dev = tx_dev };
340 	struct xdp_rxq_info rxq = { .dev = rx_dev };
341 	struct xdp_buff xdp;
342 	int i, nframes = 0;
343 
344 	for (i = 0; i < n; i++) {
345 		struct xdp_frame *xdpf = frames[i];
346 		u32 act;
347 		int err;
348 
349 		xdp_convert_frame_to_buff(xdpf, &xdp);
350 		xdp.txq = &txq;
351 		xdp.rxq = &rxq;
352 
353 		act = bpf_prog_run_xdp(xdp_prog, &xdp);
354 		switch (act) {
355 		case XDP_PASS:
356 			err = xdp_update_frame_from_buff(&xdp, xdpf);
357 			if (unlikely(err < 0))
358 				xdp_return_frame_rx_napi(xdpf);
359 			else
360 				frames[nframes++] = xdpf;
361 			break;
362 		default:
363 			bpf_warn_invalid_xdp_action(NULL, xdp_prog, act);
364 			fallthrough;
365 		case XDP_ABORTED:
366 			trace_xdp_exception(tx_dev, xdp_prog, act);
367 			fallthrough;
368 		case XDP_DROP:
369 			xdp_return_frame_rx_napi(xdpf);
370 			break;
371 		}
372 	}
373 	return nframes; /* sent frames count */
374 }
375 
376 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
377 {
378 	struct net_device *dev = bq->dev;
379 	unsigned int cnt = bq->count;
380 	int sent = 0, err = 0;
381 	int to_send = cnt;
382 	int i;
383 
384 	if (unlikely(!cnt))
385 		return;
386 
387 	for (i = 0; i < cnt; i++) {
388 		struct xdp_frame *xdpf = bq->q[i];
389 
390 		prefetch(xdpf);
391 	}
392 
393 	if (bq->xdp_prog) {
394 		to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx);
395 		if (!to_send)
396 			goto out;
397 	}
398 
399 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags);
400 	if (sent < 0) {
401 		/* If ndo_xdp_xmit fails with an errno, no frames have
402 		 * been xmit'ed.
403 		 */
404 		err = sent;
405 		sent = 0;
406 	}
407 
408 	/* If not all frames have been transmitted, it is our
409 	 * responsibility to free them
410 	 */
411 	for (i = sent; unlikely(i < to_send); i++)
412 		xdp_return_frame_rx_napi(bq->q[i]);
413 
414 out:
415 	bq->count = 0;
416 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err);
417 }
418 
419 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the
420  * driver before returning from its napi->poll() routine. See the comment above
421  * xdp_do_flush() in filter.c.
422  */
423 void __dev_flush(struct list_head *flush_list)
424 {
425 	struct xdp_dev_bulk_queue *bq, *tmp;
426 
427 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
428 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
429 		bq->dev_rx = NULL;
430 		bq->xdp_prog = NULL;
431 		__list_del_clearprev(&bq->flush_node);
432 	}
433 }
434 
435 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
436  * by local_bh_disable() (from XDP calls inside NAPI). The
437  * rcu_read_lock_bh_held() below makes lockdep accept both.
438  */
439 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
440 {
441 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
442 	struct bpf_dtab_netdev *obj;
443 
444 	if (key >= map->max_entries)
445 		return NULL;
446 
447 	obj = rcu_dereference_check(dtab->netdev_map[key],
448 				    rcu_read_lock_bh_held());
449 	return obj;
450 }
451 
452 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu
453  * variable access, and map elements stick around. See comment above
454  * xdp_do_flush() in filter.c.
455  */
456 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
457 		       struct net_device *dev_rx, struct bpf_prog *xdp_prog)
458 {
459 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
460 
461 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
462 		bq_xmit_all(bq, 0);
463 
464 	/* Ingress dev_rx will be the same for all xdp_frame's in
465 	 * bulk_queue, because bq stored per-CPU and must be flushed
466 	 * from net_device drivers NAPI func end.
467 	 *
468 	 * Do the same with xdp_prog and flush_list since these fields
469 	 * are only ever modified together.
470 	 */
471 	if (!bq->dev_rx) {
472 		struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list();
473 
474 		bq->dev_rx = dev_rx;
475 		bq->xdp_prog = xdp_prog;
476 		list_add(&bq->flush_node, flush_list);
477 	}
478 
479 	bq->q[bq->count++] = xdpf;
480 }
481 
482 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
483 				struct net_device *dev_rx,
484 				struct bpf_prog *xdp_prog)
485 {
486 	int err;
487 
488 	if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
489 		return -EOPNOTSUPP;
490 
491 	if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
492 		     xdp_frame_has_frags(xdpf)))
493 		return -EOPNOTSUPP;
494 
495 	err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf));
496 	if (unlikely(err))
497 		return err;
498 
499 	bq_enqueue(dev, xdpf, dev_rx, xdp_prog);
500 	return 0;
501 }
502 
503 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst)
504 {
505 	struct xdp_txq_info txq = { .dev = dst->dev };
506 	struct xdp_buff xdp;
507 	u32 act;
508 
509 	if (!dst->xdp_prog)
510 		return XDP_PASS;
511 
512 	__skb_pull(skb, skb->mac_len);
513 	xdp.txq = &txq;
514 
515 	act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog);
516 	switch (act) {
517 	case XDP_PASS:
518 		__skb_push(skb, skb->mac_len);
519 		break;
520 	default:
521 		bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act);
522 		fallthrough;
523 	case XDP_ABORTED:
524 		trace_xdp_exception(dst->dev, dst->xdp_prog, act);
525 		fallthrough;
526 	case XDP_DROP:
527 		kfree_skb(skb);
528 		break;
529 	}
530 
531 	return act;
532 }
533 
534 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
535 		    struct net_device *dev_rx)
536 {
537 	return __xdp_enqueue(dev, xdpf, dev_rx, NULL);
538 }
539 
540 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
541 		    struct net_device *dev_rx)
542 {
543 	struct net_device *dev = dst->dev;
544 
545 	return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog);
546 }
547 
548 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf)
549 {
550 	if (!obj)
551 		return false;
552 
553 	if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT))
554 		return false;
555 
556 	if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) &&
557 		     xdp_frame_has_frags(xdpf)))
558 		return false;
559 
560 	if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf)))
561 		return false;
562 
563 	return true;
564 }
565 
566 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj,
567 				 struct net_device *dev_rx,
568 				 struct xdp_frame *xdpf)
569 {
570 	struct xdp_frame *nxdpf;
571 
572 	nxdpf = xdpf_clone(xdpf);
573 	if (!nxdpf)
574 		return -ENOMEM;
575 
576 	bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog);
577 
578 	return 0;
579 }
580 
581 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex)
582 {
583 	while (num_excluded--) {
584 		if (ifindex == excluded[num_excluded])
585 			return true;
586 	}
587 	return false;
588 }
589 
590 /* Get ifindex of each upper device. 'indexes' must be able to hold at
591  * least MAX_NEST_DEV elements.
592  * Returns the number of ifindexes added.
593  */
594 static int get_upper_ifindexes(struct net_device *dev, int *indexes)
595 {
596 	struct net_device *upper;
597 	struct list_head *iter;
598 	int n = 0;
599 
600 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
601 		indexes[n++] = upper->ifindex;
602 	}
603 	return n;
604 }
605 
606 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
607 			  struct bpf_map *map, bool exclude_ingress)
608 {
609 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
610 	struct bpf_dtab_netdev *dst, *last_dst = NULL;
611 	int excluded_devices[1+MAX_NEST_DEV];
612 	struct hlist_head *head;
613 	int num_excluded = 0;
614 	unsigned int i;
615 	int err;
616 
617 	if (exclude_ingress) {
618 		num_excluded = get_upper_ifindexes(dev_rx, excluded_devices);
619 		excluded_devices[num_excluded++] = dev_rx->ifindex;
620 	}
621 
622 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
623 		for (i = 0; i < map->max_entries; i++) {
624 			dst = rcu_dereference_check(dtab->netdev_map[i],
625 						    rcu_read_lock_bh_held());
626 			if (!is_valid_dst(dst, xdpf))
627 				continue;
628 
629 			if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
630 				continue;
631 
632 			/* we only need n-1 clones; last_dst enqueued below */
633 			if (!last_dst) {
634 				last_dst = dst;
635 				continue;
636 			}
637 
638 			err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
639 			if (err)
640 				return err;
641 
642 			last_dst = dst;
643 		}
644 	} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
645 		for (i = 0; i < dtab->n_buckets; i++) {
646 			head = dev_map_index_hash(dtab, i);
647 			hlist_for_each_entry_rcu(dst, head, index_hlist,
648 						 lockdep_is_held(&dtab->index_lock)) {
649 				if (!is_valid_dst(dst, xdpf))
650 					continue;
651 
652 				if (is_ifindex_excluded(excluded_devices, num_excluded,
653 							dst->dev->ifindex))
654 					continue;
655 
656 				/* we only need n-1 clones; last_dst enqueued below */
657 				if (!last_dst) {
658 					last_dst = dst;
659 					continue;
660 				}
661 
662 				err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
663 				if (err)
664 					return err;
665 
666 				last_dst = dst;
667 			}
668 		}
669 	}
670 
671 	/* consume the last copy of the frame */
672 	if (last_dst)
673 		bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog);
674 	else
675 		xdp_return_frame_rx_napi(xdpf); /* dtab is empty */
676 
677 	return 0;
678 }
679 
680 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
681 			     struct bpf_prog *xdp_prog)
682 {
683 	int err;
684 
685 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
686 	if (unlikely(err))
687 		return err;
688 
689 	/* Redirect has already succeeded semantically at this point, so we just
690 	 * return 0 even if packet is dropped. Helper below takes care of
691 	 * freeing skb.
692 	 */
693 	if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS)
694 		return 0;
695 
696 	skb->dev = dst->dev;
697 	generic_xdp_tx(skb, xdp_prog);
698 
699 	return 0;
700 }
701 
702 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst,
703 				  struct sk_buff *skb,
704 				  struct bpf_prog *xdp_prog)
705 {
706 	struct sk_buff *nskb;
707 	int err;
708 
709 	nskb = skb_clone(skb, GFP_ATOMIC);
710 	if (!nskb)
711 		return -ENOMEM;
712 
713 	err = dev_map_generic_redirect(dst, nskb, xdp_prog);
714 	if (unlikely(err)) {
715 		consume_skb(nskb);
716 		return err;
717 	}
718 
719 	return 0;
720 }
721 
722 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
723 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
724 			   bool exclude_ingress)
725 {
726 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
727 	struct bpf_dtab_netdev *dst, *last_dst = NULL;
728 	int excluded_devices[1+MAX_NEST_DEV];
729 	struct hlist_head *head;
730 	struct hlist_node *next;
731 	int num_excluded = 0;
732 	unsigned int i;
733 	int err;
734 
735 	if (exclude_ingress) {
736 		num_excluded = get_upper_ifindexes(dev, excluded_devices);
737 		excluded_devices[num_excluded++] = dev->ifindex;
738 	}
739 
740 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
741 		for (i = 0; i < map->max_entries; i++) {
742 			dst = rcu_dereference_check(dtab->netdev_map[i],
743 						    rcu_read_lock_bh_held());
744 			if (!dst)
745 				continue;
746 
747 			if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
748 				continue;
749 
750 			/* we only need n-1 clones; last_dst enqueued below */
751 			if (!last_dst) {
752 				last_dst = dst;
753 				continue;
754 			}
755 
756 			err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
757 			if (err)
758 				return err;
759 
760 			last_dst = dst;
761 
762 		}
763 	} else { /* BPF_MAP_TYPE_DEVMAP_HASH */
764 		for (i = 0; i < dtab->n_buckets; i++) {
765 			head = dev_map_index_hash(dtab, i);
766 			hlist_for_each_entry_safe(dst, next, head, index_hlist) {
767 				if (is_ifindex_excluded(excluded_devices, num_excluded,
768 							dst->dev->ifindex))
769 					continue;
770 
771 				/* we only need n-1 clones; last_dst enqueued below */
772 				if (!last_dst) {
773 					last_dst = dst;
774 					continue;
775 				}
776 
777 				err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
778 				if (err)
779 					return err;
780 
781 				last_dst = dst;
782 			}
783 		}
784 	}
785 
786 	/* consume the first skb and return */
787 	if (last_dst)
788 		return dev_map_generic_redirect(last_dst, skb, xdp_prog);
789 
790 	/* dtab is empty */
791 	consume_skb(skb);
792 	return 0;
793 }
794 
795 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
796 {
797 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
798 
799 	return obj ? &obj->val : NULL;
800 }
801 
802 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
803 {
804 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
805 								*(u32 *)key);
806 	return obj ? &obj->val : NULL;
807 }
808 
809 static void __dev_map_entry_free(struct rcu_head *rcu)
810 {
811 	struct bpf_dtab_netdev *dev;
812 
813 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
814 	if (dev->xdp_prog)
815 		bpf_prog_put(dev->xdp_prog);
816 	dev_put(dev->dev);
817 	kfree(dev);
818 }
819 
820 static long dev_map_delete_elem(struct bpf_map *map, void *key)
821 {
822 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
823 	struct bpf_dtab_netdev *old_dev;
824 	int k = *(u32 *)key;
825 
826 	if (k >= map->max_entries)
827 		return -EINVAL;
828 
829 	old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL));
830 	if (old_dev) {
831 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
832 		atomic_dec((atomic_t *)&dtab->items);
833 	}
834 	return 0;
835 }
836 
837 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key)
838 {
839 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
840 	struct bpf_dtab_netdev *old_dev;
841 	int k = *(u32 *)key;
842 	unsigned long flags;
843 	int ret = -ENOENT;
844 
845 	spin_lock_irqsave(&dtab->index_lock, flags);
846 
847 	old_dev = __dev_map_hash_lookup_elem(map, k);
848 	if (old_dev) {
849 		dtab->items--;
850 		hlist_del_init_rcu(&old_dev->index_hlist);
851 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
852 		ret = 0;
853 	}
854 	spin_unlock_irqrestore(&dtab->index_lock, flags);
855 
856 	return ret;
857 }
858 
859 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
860 						    struct bpf_dtab *dtab,
861 						    struct bpf_devmap_val *val,
862 						    unsigned int idx)
863 {
864 	struct bpf_prog *prog = NULL;
865 	struct bpf_dtab_netdev *dev;
866 
867 	dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
868 				   GFP_NOWAIT | __GFP_NOWARN,
869 				   dtab->map.numa_node);
870 	if (!dev)
871 		return ERR_PTR(-ENOMEM);
872 
873 	dev->dev = dev_get_by_index(net, val->ifindex);
874 	if (!dev->dev)
875 		goto err_out;
876 
877 	if (val->bpf_prog.fd > 0) {
878 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
879 					     BPF_PROG_TYPE_XDP, false);
880 		if (IS_ERR(prog))
881 			goto err_put_dev;
882 		if (prog->expected_attach_type != BPF_XDP_DEVMAP ||
883 		    !bpf_prog_map_compatible(&dtab->map, prog))
884 			goto err_put_prog;
885 	}
886 
887 	dev->idx = idx;
888 	if (prog) {
889 		dev->xdp_prog = prog;
890 		dev->val.bpf_prog.id = prog->aux->id;
891 	} else {
892 		dev->xdp_prog = NULL;
893 		dev->val.bpf_prog.id = 0;
894 	}
895 	dev->val.ifindex = val->ifindex;
896 
897 	return dev;
898 err_put_prog:
899 	bpf_prog_put(prog);
900 err_put_dev:
901 	dev_put(dev->dev);
902 err_out:
903 	kfree(dev);
904 	return ERR_PTR(-EINVAL);
905 }
906 
907 static long __dev_map_update_elem(struct net *net, struct bpf_map *map,
908 				  void *key, void *value, u64 map_flags)
909 {
910 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
911 	struct bpf_dtab_netdev *dev, *old_dev;
912 	struct bpf_devmap_val val = {};
913 	u32 i = *(u32 *)key;
914 
915 	if (unlikely(map_flags > BPF_EXIST))
916 		return -EINVAL;
917 	if (unlikely(i >= dtab->map.max_entries))
918 		return -E2BIG;
919 	if (unlikely(map_flags == BPF_NOEXIST))
920 		return -EEXIST;
921 
922 	/* already verified value_size <= sizeof val */
923 	memcpy(&val, value, map->value_size);
924 
925 	if (!val.ifindex) {
926 		dev = NULL;
927 		/* can not specify fd if ifindex is 0 */
928 		if (val.bpf_prog.fd > 0)
929 			return -EINVAL;
930 	} else {
931 		dev = __dev_map_alloc_node(net, dtab, &val, i);
932 		if (IS_ERR(dev))
933 			return PTR_ERR(dev);
934 	}
935 
936 	/* Use call_rcu() here to ensure rcu critical sections have completed
937 	 * Remembering the driver side flush operation will happen before the
938 	 * net device is removed.
939 	 */
940 	old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev)));
941 	if (old_dev)
942 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
943 	else
944 		atomic_inc((atomic_t *)&dtab->items);
945 
946 	return 0;
947 }
948 
949 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value,
950 				u64 map_flags)
951 {
952 	return __dev_map_update_elem(current->nsproxy->net_ns,
953 				     map, key, value, map_flags);
954 }
955 
956 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
957 				       void *key, void *value, u64 map_flags)
958 {
959 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
960 	struct bpf_dtab_netdev *dev, *old_dev;
961 	struct bpf_devmap_val val = {};
962 	u32 idx = *(u32 *)key;
963 	unsigned long flags;
964 	int err = -EEXIST;
965 
966 	/* already verified value_size <= sizeof val */
967 	memcpy(&val, value, map->value_size);
968 
969 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
970 		return -EINVAL;
971 
972 	spin_lock_irqsave(&dtab->index_lock, flags);
973 
974 	old_dev = __dev_map_hash_lookup_elem(map, idx);
975 	if (old_dev && (map_flags & BPF_NOEXIST))
976 		goto out_err;
977 
978 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
979 	if (IS_ERR(dev)) {
980 		err = PTR_ERR(dev);
981 		goto out_err;
982 	}
983 
984 	if (old_dev) {
985 		hlist_del_rcu(&old_dev->index_hlist);
986 	} else {
987 		if (dtab->items >= dtab->map.max_entries) {
988 			spin_unlock_irqrestore(&dtab->index_lock, flags);
989 			call_rcu(&dev->rcu, __dev_map_entry_free);
990 			return -E2BIG;
991 		}
992 		dtab->items++;
993 	}
994 
995 	hlist_add_head_rcu(&dev->index_hlist,
996 			   dev_map_index_hash(dtab, idx));
997 	spin_unlock_irqrestore(&dtab->index_lock, flags);
998 
999 	if (old_dev)
1000 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
1001 
1002 	return 0;
1003 
1004 out_err:
1005 	spin_unlock_irqrestore(&dtab->index_lock, flags);
1006 	return err;
1007 }
1008 
1009 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
1010 				     u64 map_flags)
1011 {
1012 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
1013 					 map, key, value, map_flags);
1014 }
1015 
1016 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
1017 {
1018 	return __bpf_xdp_redirect_map(map, ifindex, flags,
1019 				      BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
1020 				      __dev_map_lookup_elem);
1021 }
1022 
1023 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags)
1024 {
1025 	return __bpf_xdp_redirect_map(map, ifindex, flags,
1026 				      BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
1027 				      __dev_map_hash_lookup_elem);
1028 }
1029 
1030 static u64 dev_map_mem_usage(const struct bpf_map *map)
1031 {
1032 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
1033 	u64 usage = sizeof(struct bpf_dtab);
1034 
1035 	if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH)
1036 		usage += (u64)dtab->n_buckets * sizeof(struct hlist_head);
1037 	else
1038 		usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *);
1039 	usage += atomic_read((atomic_t *)&dtab->items) *
1040 			 (u64)sizeof(struct bpf_dtab_netdev);
1041 	return usage;
1042 }
1043 
1044 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab)
1045 const struct bpf_map_ops dev_map_ops = {
1046 	.map_meta_equal = bpf_map_meta_equal,
1047 	.map_alloc_check = dev_map_alloc_check,
1048 	.map_alloc = dev_map_alloc,
1049 	.map_free = dev_map_free,
1050 	.map_get_next_key = dev_map_get_next_key,
1051 	.map_lookup_elem = dev_map_lookup_elem,
1052 	.map_update_elem = dev_map_update_elem,
1053 	.map_delete_elem = dev_map_delete_elem,
1054 	.map_check_btf = map_check_no_btf,
1055 	.map_mem_usage = dev_map_mem_usage,
1056 	.map_btf_id = &dev_map_btf_ids[0],
1057 	.map_redirect = dev_map_redirect,
1058 };
1059 
1060 const struct bpf_map_ops dev_map_hash_ops = {
1061 	.map_meta_equal = bpf_map_meta_equal,
1062 	.map_alloc_check = dev_map_alloc_check,
1063 	.map_alloc = dev_map_alloc,
1064 	.map_free = dev_map_free,
1065 	.map_get_next_key = dev_map_hash_get_next_key,
1066 	.map_lookup_elem = dev_map_hash_lookup_elem,
1067 	.map_update_elem = dev_map_hash_update_elem,
1068 	.map_delete_elem = dev_map_hash_delete_elem,
1069 	.map_check_btf = map_check_no_btf,
1070 	.map_mem_usage = dev_map_mem_usage,
1071 	.map_btf_id = &dev_map_btf_ids[0],
1072 	.map_redirect = dev_hash_map_redirect,
1073 };
1074 
1075 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
1076 				       struct net_device *netdev)
1077 {
1078 	unsigned long flags;
1079 	u32 i;
1080 
1081 	spin_lock_irqsave(&dtab->index_lock, flags);
1082 	for (i = 0; i < dtab->n_buckets; i++) {
1083 		struct bpf_dtab_netdev *dev;
1084 		struct hlist_head *head;
1085 		struct hlist_node *next;
1086 
1087 		head = dev_map_index_hash(dtab, i);
1088 
1089 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
1090 			if (netdev != dev->dev)
1091 				continue;
1092 
1093 			dtab->items--;
1094 			hlist_del_rcu(&dev->index_hlist);
1095 			call_rcu(&dev->rcu, __dev_map_entry_free);
1096 		}
1097 	}
1098 	spin_unlock_irqrestore(&dtab->index_lock, flags);
1099 }
1100 
1101 static int dev_map_notification(struct notifier_block *notifier,
1102 				ulong event, void *ptr)
1103 {
1104 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
1105 	struct bpf_dtab *dtab;
1106 	int i, cpu;
1107 
1108 	switch (event) {
1109 	case NETDEV_REGISTER:
1110 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
1111 			break;
1112 
1113 		/* will be freed in free_netdev() */
1114 		netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
1115 		if (!netdev->xdp_bulkq)
1116 			return NOTIFY_BAD;
1117 
1118 		for_each_possible_cpu(cpu)
1119 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
1120 		break;
1121 	case NETDEV_UNREGISTER:
1122 		/* This rcu_read_lock/unlock pair is needed because
1123 		 * dev_map_list is an RCU list AND to ensure a delete
1124 		 * operation does not free a netdev_map entry while we
1125 		 * are comparing it against the netdev being unregistered.
1126 		 */
1127 		rcu_read_lock();
1128 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
1129 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
1130 				dev_map_hash_remove_netdev(dtab, netdev);
1131 				continue;
1132 			}
1133 
1134 			for (i = 0; i < dtab->map.max_entries; i++) {
1135 				struct bpf_dtab_netdev *dev, *odev;
1136 
1137 				dev = rcu_dereference(dtab->netdev_map[i]);
1138 				if (!dev || netdev != dev->dev)
1139 					continue;
1140 				odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL));
1141 				if (dev == odev) {
1142 					call_rcu(&dev->rcu,
1143 						 __dev_map_entry_free);
1144 					atomic_dec((atomic_t *)&dtab->items);
1145 				}
1146 			}
1147 		}
1148 		rcu_read_unlock();
1149 		break;
1150 	default:
1151 		break;
1152 	}
1153 	return NOTIFY_OK;
1154 }
1155 
1156 static struct notifier_block dev_map_notifier = {
1157 	.notifier_call = dev_map_notification,
1158 };
1159 
1160 static int __init dev_map_init(void)
1161 {
1162 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
1163 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
1164 		     offsetof(struct _bpf_dtab_netdev, dev));
1165 	register_netdevice_notifier(&dev_map_notifier);
1166 
1167 	return 0;
1168 }
1169 
1170 subsys_initcall(dev_map_init);
1171