1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <net/xdp.h> 52 #include <linux/filter.h> 53 #include <trace/events/xdp.h> 54 55 #define DEV_CREATE_FLAG_MASK \ 56 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 57 58 #define DEV_MAP_BULK_SIZE 16 59 struct xdp_bulk_queue { 60 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 61 struct net_device *dev_rx; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct bpf_dtab *dtab; 68 unsigned int bit; 69 struct xdp_bulk_queue __percpu *bulkq; 70 struct rcu_head rcu; 71 }; 72 73 struct bpf_dtab { 74 struct bpf_map map; 75 struct bpf_dtab_netdev **netdev_map; 76 unsigned long __percpu *flush_needed; 77 struct list_head list; 78 }; 79 80 static DEFINE_SPINLOCK(dev_map_lock); 81 static LIST_HEAD(dev_map_list); 82 83 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 84 { 85 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); 86 } 87 88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 89 { 90 struct bpf_dtab *dtab; 91 int err = -EINVAL; 92 u64 cost; 93 94 if (!capable(CAP_NET_ADMIN)) 95 return ERR_PTR(-EPERM); 96 97 /* check sanity of attributes */ 98 if (attr->max_entries == 0 || attr->key_size != 4 || 99 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 100 return ERR_PTR(-EINVAL); 101 102 dtab = kzalloc(sizeof(*dtab), GFP_USER); 103 if (!dtab) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&dtab->map, attr); 107 108 /* make sure page count doesn't overflow */ 109 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 110 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 111 112 /* if map size is larger than memlock limit, reject it */ 113 err = bpf_map_charge_init(&dtab->map.memory, cost); 114 if (err) 115 goto free_dtab; 116 117 err = -ENOMEM; 118 119 /* A per cpu bitfield with a bit per possible net device */ 120 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), 121 __alignof__(unsigned long), 122 GFP_KERNEL | __GFP_NOWARN); 123 if (!dtab->flush_needed) 124 goto free_charge; 125 126 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 127 sizeof(struct bpf_dtab_netdev *), 128 dtab->map.numa_node); 129 if (!dtab->netdev_map) 130 goto free_charge; 131 132 spin_lock(&dev_map_lock); 133 list_add_tail_rcu(&dtab->list, &dev_map_list); 134 spin_unlock(&dev_map_lock); 135 136 return &dtab->map; 137 free_charge: 138 bpf_map_charge_finish(&dtab->map.memory); 139 free_dtab: 140 free_percpu(dtab->flush_needed); 141 kfree(dtab); 142 return ERR_PTR(err); 143 } 144 145 static void dev_map_free(struct bpf_map *map) 146 { 147 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 148 int i, cpu; 149 150 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 151 * so the programs (can be more than one that used this map) were 152 * disconnected from events. Wait for outstanding critical sections in 153 * these programs to complete. The rcu critical section only guarantees 154 * no further reads against netdev_map. It does __not__ ensure pending 155 * flush operations (if any) are complete. 156 */ 157 158 spin_lock(&dev_map_lock); 159 list_del_rcu(&dtab->list); 160 spin_unlock(&dev_map_lock); 161 162 bpf_clear_redirect_map(map); 163 synchronize_rcu(); 164 165 /* Make sure prior __dev_map_entry_free() have completed. */ 166 rcu_barrier(); 167 168 /* To ensure all pending flush operations have completed wait for flush 169 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 170 * Because the above synchronize_rcu() ensures the map is disconnected 171 * from the program we can assume no new bits will be set. 172 */ 173 for_each_online_cpu(cpu) { 174 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 175 176 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 177 cond_resched(); 178 } 179 180 for (i = 0; i < dtab->map.max_entries; i++) { 181 struct bpf_dtab_netdev *dev; 182 183 dev = dtab->netdev_map[i]; 184 if (!dev) 185 continue; 186 187 dev_put(dev->dev); 188 kfree(dev); 189 } 190 191 free_percpu(dtab->flush_needed); 192 bpf_map_area_free(dtab->netdev_map); 193 kfree(dtab); 194 } 195 196 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 197 { 198 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 199 u32 index = key ? *(u32 *)key : U32_MAX; 200 u32 *next = next_key; 201 202 if (index >= dtab->map.max_entries) { 203 *next = 0; 204 return 0; 205 } 206 207 if (index == dtab->map.max_entries - 1) 208 return -ENOENT; 209 *next = index + 1; 210 return 0; 211 } 212 213 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 214 { 215 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 216 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 217 218 __set_bit(bit, bitmap); 219 } 220 221 static int bq_xmit_all(struct bpf_dtab_netdev *obj, 222 struct xdp_bulk_queue *bq, u32 flags, 223 bool in_napi_ctx) 224 { 225 struct net_device *dev = obj->dev; 226 int sent = 0, drops = 0, err = 0; 227 int i; 228 229 if (unlikely(!bq->count)) 230 return 0; 231 232 for (i = 0; i < bq->count; i++) { 233 struct xdp_frame *xdpf = bq->q[i]; 234 235 prefetch(xdpf); 236 } 237 238 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 239 if (sent < 0) { 240 err = sent; 241 sent = 0; 242 goto error; 243 } 244 drops = bq->count - sent; 245 out: 246 bq->count = 0; 247 248 trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit, 249 sent, drops, bq->dev_rx, dev, err); 250 bq->dev_rx = NULL; 251 return 0; 252 error: 253 /* If ndo_xdp_xmit fails with an errno, no frames have been 254 * xmit'ed and it's our responsibility to them free all. 255 */ 256 for (i = 0; i < bq->count; i++) { 257 struct xdp_frame *xdpf = bq->q[i]; 258 259 /* RX path under NAPI protection, can return frames faster */ 260 if (likely(in_napi_ctx)) 261 xdp_return_frame_rx_napi(xdpf); 262 else 263 xdp_return_frame(xdpf); 264 drops++; 265 } 266 goto out; 267 } 268 269 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 270 * from the driver before returning from its napi->poll() routine. The poll() 271 * routine is called either from busy_poll context or net_rx_action signaled 272 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 273 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 274 * is zeroed before completing to ensure all flush operations have completed. 275 */ 276 void __dev_map_flush(struct bpf_map *map) 277 { 278 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 279 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 280 u32 bit; 281 282 for_each_set_bit(bit, bitmap, map->max_entries) { 283 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 284 struct xdp_bulk_queue *bq; 285 286 /* This is possible if the dev entry is removed by user space 287 * between xdp redirect and flush op. 288 */ 289 if (unlikely(!dev)) 290 continue; 291 292 __clear_bit(bit, bitmap); 293 294 bq = this_cpu_ptr(dev->bulkq); 295 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true); 296 } 297 } 298 299 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 300 * update happens in parallel here a dev_put wont happen until after reading the 301 * ifindex. 302 */ 303 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 304 { 305 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 306 struct bpf_dtab_netdev *obj; 307 308 if (key >= map->max_entries) 309 return NULL; 310 311 obj = READ_ONCE(dtab->netdev_map[key]); 312 return obj; 313 } 314 315 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 316 * Thus, safe percpu variable access. 317 */ 318 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf, 319 struct net_device *dev_rx) 320 321 { 322 struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq); 323 324 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 325 bq_xmit_all(obj, bq, 0, true); 326 327 /* Ingress dev_rx will be the same for all xdp_frame's in 328 * bulk_queue, because bq stored per-CPU and must be flushed 329 * from net_device drivers NAPI func end. 330 */ 331 if (!bq->dev_rx) 332 bq->dev_rx = dev_rx; 333 334 bq->q[bq->count++] = xdpf; 335 return 0; 336 } 337 338 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 339 struct net_device *dev_rx) 340 { 341 struct net_device *dev = dst->dev; 342 struct xdp_frame *xdpf; 343 int err; 344 345 if (!dev->netdev_ops->ndo_xdp_xmit) 346 return -EOPNOTSUPP; 347 348 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 349 if (unlikely(err)) 350 return err; 351 352 xdpf = convert_to_xdp_frame(xdp); 353 if (unlikely(!xdpf)) 354 return -EOVERFLOW; 355 356 return bq_enqueue(dst, xdpf, dev_rx); 357 } 358 359 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 360 struct bpf_prog *xdp_prog) 361 { 362 int err; 363 364 err = xdp_ok_fwd_dev(dst->dev, skb->len); 365 if (unlikely(err)) 366 return err; 367 skb->dev = dst->dev; 368 generic_xdp_tx(skb, xdp_prog); 369 370 return 0; 371 } 372 373 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 374 { 375 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 376 struct net_device *dev = obj ? obj->dev : NULL; 377 378 return dev ? &dev->ifindex : NULL; 379 } 380 381 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 382 { 383 if (dev->dev->netdev_ops->ndo_xdp_xmit) { 384 struct xdp_bulk_queue *bq; 385 unsigned long *bitmap; 386 387 int cpu; 388 389 for_each_online_cpu(cpu) { 390 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 391 __clear_bit(dev->bit, bitmap); 392 393 bq = per_cpu_ptr(dev->bulkq, cpu); 394 bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false); 395 } 396 } 397 } 398 399 static void __dev_map_entry_free(struct rcu_head *rcu) 400 { 401 struct bpf_dtab_netdev *dev; 402 403 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 404 dev_map_flush_old(dev); 405 free_percpu(dev->bulkq); 406 dev_put(dev->dev); 407 kfree(dev); 408 } 409 410 static int dev_map_delete_elem(struct bpf_map *map, void *key) 411 { 412 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 413 struct bpf_dtab_netdev *old_dev; 414 int k = *(u32 *)key; 415 416 if (k >= map->max_entries) 417 return -EINVAL; 418 419 /* Use call_rcu() here to ensure any rcu critical sections have 420 * completed, but this does not guarantee a flush has happened 421 * yet. Because driver side rcu_read_lock/unlock only protects the 422 * running XDP program. However, for pending flush operations the 423 * dev and ctx are stored in another per cpu map. And additionally, 424 * the driver tear down ensures all soft irqs are complete before 425 * removing the net device in the case of dev_put equals zero. 426 */ 427 old_dev = xchg(&dtab->netdev_map[k], NULL); 428 if (old_dev) 429 call_rcu(&old_dev->rcu, __dev_map_entry_free); 430 return 0; 431 } 432 433 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 434 u64 map_flags) 435 { 436 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 437 struct net *net = current->nsproxy->net_ns; 438 gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; 439 struct bpf_dtab_netdev *dev, *old_dev; 440 u32 i = *(u32 *)key; 441 u32 ifindex = *(u32 *)value; 442 443 if (unlikely(map_flags > BPF_EXIST)) 444 return -EINVAL; 445 if (unlikely(i >= dtab->map.max_entries)) 446 return -E2BIG; 447 if (unlikely(map_flags == BPF_NOEXIST)) 448 return -EEXIST; 449 450 if (!ifindex) { 451 dev = NULL; 452 } else { 453 dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node); 454 if (!dev) 455 return -ENOMEM; 456 457 dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq), 458 sizeof(void *), gfp); 459 if (!dev->bulkq) { 460 kfree(dev); 461 return -ENOMEM; 462 } 463 464 dev->dev = dev_get_by_index(net, ifindex); 465 if (!dev->dev) { 466 free_percpu(dev->bulkq); 467 kfree(dev); 468 return -EINVAL; 469 } 470 471 dev->bit = i; 472 dev->dtab = dtab; 473 } 474 475 /* Use call_rcu() here to ensure rcu critical sections have completed 476 * Remembering the driver side flush operation will happen before the 477 * net device is removed. 478 */ 479 old_dev = xchg(&dtab->netdev_map[i], dev); 480 if (old_dev) 481 call_rcu(&old_dev->rcu, __dev_map_entry_free); 482 483 return 0; 484 } 485 486 const struct bpf_map_ops dev_map_ops = { 487 .map_alloc = dev_map_alloc, 488 .map_free = dev_map_free, 489 .map_get_next_key = dev_map_get_next_key, 490 .map_lookup_elem = dev_map_lookup_elem, 491 .map_update_elem = dev_map_update_elem, 492 .map_delete_elem = dev_map_delete_elem, 493 .map_check_btf = map_check_no_btf, 494 }; 495 496 static int dev_map_notification(struct notifier_block *notifier, 497 ulong event, void *ptr) 498 { 499 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 500 struct bpf_dtab *dtab; 501 int i; 502 503 switch (event) { 504 case NETDEV_UNREGISTER: 505 /* This rcu_read_lock/unlock pair is needed because 506 * dev_map_list is an RCU list AND to ensure a delete 507 * operation does not free a netdev_map entry while we 508 * are comparing it against the netdev being unregistered. 509 */ 510 rcu_read_lock(); 511 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 512 for (i = 0; i < dtab->map.max_entries; i++) { 513 struct bpf_dtab_netdev *dev, *odev; 514 515 dev = READ_ONCE(dtab->netdev_map[i]); 516 if (!dev || netdev != dev->dev) 517 continue; 518 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 519 if (dev == odev) 520 call_rcu(&dev->rcu, 521 __dev_map_entry_free); 522 } 523 } 524 rcu_read_unlock(); 525 break; 526 default: 527 break; 528 } 529 return NOTIFY_OK; 530 } 531 532 static struct notifier_block dev_map_notifier = { 533 .notifier_call = dev_map_notification, 534 }; 535 536 static int __init dev_map_init(void) 537 { 538 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 539 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 540 offsetof(struct _bpf_dtab_netdev, dev)); 541 register_netdevice_notifier(&dev_map_notifier); 542 return 0; 543 } 544 545 subsys_initcall(dev_map_init); 546