xref: /linux/kernel/bpf/devmap.c (revision 40e79150c1686263e6a031d7702aec63aff31332)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct rcu_head rcu;
68 	unsigned int idx;
69 };
70 
71 struct bpf_dtab {
72 	struct bpf_map map;
73 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
74 	struct list_head list;
75 
76 	/* these are only used for DEVMAP_HASH type maps */
77 	struct hlist_head *dev_index_head;
78 	spinlock_t index_lock;
79 	unsigned int items;
80 	u32 n_buckets;
81 };
82 
83 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
84 static DEFINE_SPINLOCK(dev_map_lock);
85 static LIST_HEAD(dev_map_list);
86 
87 static struct hlist_head *dev_map_create_hash(unsigned int entries)
88 {
89 	int i;
90 	struct hlist_head *hash;
91 
92 	hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL);
93 	if (hash != NULL)
94 		for (i = 0; i < entries; i++)
95 			INIT_HLIST_HEAD(&hash[i]);
96 
97 	return hash;
98 }
99 
100 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
101 						    int idx)
102 {
103 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
104 }
105 
106 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
107 {
108 	u64 cost = 0;
109 	int err;
110 
111 	/* check sanity of attributes */
112 	if (attr->max_entries == 0 || attr->key_size != 4 ||
113 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
114 		return -EINVAL;
115 
116 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
117 	 * verifier prevents writes from the BPF side
118 	 */
119 	attr->map_flags |= BPF_F_RDONLY_PROG;
120 
121 
122 	bpf_map_init_from_attr(&dtab->map, attr);
123 
124 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
125 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
126 
127 		if (!dtab->n_buckets) /* Overflow check */
128 			return -EINVAL;
129 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
130 	} else {
131 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
132 	}
133 
134 	/* if map size is larger than memlock limit, reject it */
135 	err = bpf_map_charge_init(&dtab->map.memory, cost);
136 	if (err)
137 		return -EINVAL;
138 
139 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
140 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets);
141 		if (!dtab->dev_index_head)
142 			goto free_charge;
143 
144 		spin_lock_init(&dtab->index_lock);
145 	} else {
146 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
147 						      sizeof(struct bpf_dtab_netdev *),
148 						      dtab->map.numa_node);
149 		if (!dtab->netdev_map)
150 			goto free_charge;
151 	}
152 
153 	return 0;
154 
155 free_charge:
156 	bpf_map_charge_finish(&dtab->map.memory);
157 	return -ENOMEM;
158 }
159 
160 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
161 {
162 	struct bpf_dtab *dtab;
163 	int err;
164 
165 	if (!capable(CAP_NET_ADMIN))
166 		return ERR_PTR(-EPERM);
167 
168 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
169 	if (!dtab)
170 		return ERR_PTR(-ENOMEM);
171 
172 	err = dev_map_init_map(dtab, attr);
173 	if (err) {
174 		kfree(dtab);
175 		return ERR_PTR(err);
176 	}
177 
178 	spin_lock(&dev_map_lock);
179 	list_add_tail_rcu(&dtab->list, &dev_map_list);
180 	spin_unlock(&dev_map_lock);
181 
182 	return &dtab->map;
183 }
184 
185 static void dev_map_free(struct bpf_map *map)
186 {
187 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
188 	int i;
189 
190 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
191 	 * so the programs (can be more than one that used this map) were
192 	 * disconnected from events. The following synchronize_rcu() guarantees
193 	 * both rcu read critical sections complete and waits for
194 	 * preempt-disable regions (NAPI being the relevant context here) so we
195 	 * are certain there will be no further reads against the netdev_map and
196 	 * all flush operations are complete. Flush operations can only be done
197 	 * from NAPI context for this reason.
198 	 */
199 
200 	spin_lock(&dev_map_lock);
201 	list_del_rcu(&dtab->list);
202 	spin_unlock(&dev_map_lock);
203 
204 	bpf_clear_redirect_map(map);
205 	synchronize_rcu();
206 
207 	/* Make sure prior __dev_map_entry_free() have completed. */
208 	rcu_barrier();
209 
210 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
211 		for (i = 0; i < dtab->n_buckets; i++) {
212 			struct bpf_dtab_netdev *dev;
213 			struct hlist_head *head;
214 			struct hlist_node *next;
215 
216 			head = dev_map_index_hash(dtab, i);
217 
218 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
219 				hlist_del_rcu(&dev->index_hlist);
220 				dev_put(dev->dev);
221 				kfree(dev);
222 			}
223 		}
224 
225 		kfree(dtab->dev_index_head);
226 	} else {
227 		for (i = 0; i < dtab->map.max_entries; i++) {
228 			struct bpf_dtab_netdev *dev;
229 
230 			dev = dtab->netdev_map[i];
231 			if (!dev)
232 				continue;
233 
234 			dev_put(dev->dev);
235 			kfree(dev);
236 		}
237 
238 		bpf_map_area_free(dtab->netdev_map);
239 	}
240 
241 	kfree(dtab);
242 }
243 
244 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
245 {
246 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
247 	u32 index = key ? *(u32 *)key : U32_MAX;
248 	u32 *next = next_key;
249 
250 	if (index >= dtab->map.max_entries) {
251 		*next = 0;
252 		return 0;
253 	}
254 
255 	if (index == dtab->map.max_entries - 1)
256 		return -ENOENT;
257 	*next = index + 1;
258 	return 0;
259 }
260 
261 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
262 {
263 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
264 	struct hlist_head *head = dev_map_index_hash(dtab, key);
265 	struct bpf_dtab_netdev *dev;
266 
267 	hlist_for_each_entry_rcu(dev, head, index_hlist,
268 				 lockdep_is_held(&dtab->index_lock))
269 		if (dev->idx == key)
270 			return dev;
271 
272 	return NULL;
273 }
274 
275 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
276 				    void *next_key)
277 {
278 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
279 	u32 idx, *next = next_key;
280 	struct bpf_dtab_netdev *dev, *next_dev;
281 	struct hlist_head *head;
282 	int i = 0;
283 
284 	if (!key)
285 		goto find_first;
286 
287 	idx = *(u32 *)key;
288 
289 	dev = __dev_map_hash_lookup_elem(map, idx);
290 	if (!dev)
291 		goto find_first;
292 
293 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
294 				    struct bpf_dtab_netdev, index_hlist);
295 
296 	if (next_dev) {
297 		*next = next_dev->idx;
298 		return 0;
299 	}
300 
301 	i = idx & (dtab->n_buckets - 1);
302 	i++;
303 
304  find_first:
305 	for (; i < dtab->n_buckets; i++) {
306 		head = dev_map_index_hash(dtab, i);
307 
308 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
309 					    struct bpf_dtab_netdev,
310 					    index_hlist);
311 		if (next_dev) {
312 			*next = next_dev->idx;
313 			return 0;
314 		}
315 	}
316 
317 	return -ENOENT;
318 }
319 
320 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
321 {
322 	struct net_device *dev = bq->dev;
323 	int sent = 0, drops = 0, err = 0;
324 	int i;
325 
326 	if (unlikely(!bq->count))
327 		return 0;
328 
329 	for (i = 0; i < bq->count; i++) {
330 		struct xdp_frame *xdpf = bq->q[i];
331 
332 		prefetch(xdpf);
333 	}
334 
335 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
336 	if (sent < 0) {
337 		err = sent;
338 		sent = 0;
339 		goto error;
340 	}
341 	drops = bq->count - sent;
342 out:
343 	bq->count = 0;
344 
345 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
346 	bq->dev_rx = NULL;
347 	__list_del_clearprev(&bq->flush_node);
348 	return 0;
349 error:
350 	/* If ndo_xdp_xmit fails with an errno, no frames have been
351 	 * xmit'ed and it's our responsibility to them free all.
352 	 */
353 	for (i = 0; i < bq->count; i++) {
354 		struct xdp_frame *xdpf = bq->q[i];
355 
356 		xdp_return_frame_rx_napi(xdpf);
357 		drops++;
358 	}
359 	goto out;
360 }
361 
362 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
363  * from the driver before returning from its napi->poll() routine. The poll()
364  * routine is called either from busy_poll context or net_rx_action signaled
365  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
366  * net device can be torn down. On devmap tear down we ensure the flush list
367  * is empty before completing to ensure all flush operations have completed.
368  * When drivers update the bpf program they may need to ensure any flush ops
369  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
370  * because both wait for napi context to exit.
371  */
372 void __dev_flush(void)
373 {
374 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
375 	struct xdp_dev_bulk_queue *bq, *tmp;
376 
377 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
378 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
379 }
380 
381 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
382  * update happens in parallel here a dev_put wont happen until after reading the
383  * ifindex.
384  */
385 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
386 {
387 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
388 	struct bpf_dtab_netdev *obj;
389 
390 	if (key >= map->max_entries)
391 		return NULL;
392 
393 	obj = READ_ONCE(dtab->netdev_map[key]);
394 	return obj;
395 }
396 
397 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
398  * Thus, safe percpu variable access.
399  */
400 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
401 		      struct net_device *dev_rx)
402 {
403 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
404 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
405 
406 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
407 		bq_xmit_all(bq, 0);
408 
409 	/* Ingress dev_rx will be the same for all xdp_frame's in
410 	 * bulk_queue, because bq stored per-CPU and must be flushed
411 	 * from net_device drivers NAPI func end.
412 	 */
413 	if (!bq->dev_rx)
414 		bq->dev_rx = dev_rx;
415 
416 	bq->q[bq->count++] = xdpf;
417 
418 	if (!bq->flush_node.prev)
419 		list_add(&bq->flush_node, flush_list);
420 
421 	return 0;
422 }
423 
424 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
425 			       struct net_device *dev_rx)
426 {
427 	struct xdp_frame *xdpf;
428 	int err;
429 
430 	if (!dev->netdev_ops->ndo_xdp_xmit)
431 		return -EOPNOTSUPP;
432 
433 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
434 	if (unlikely(err))
435 		return err;
436 
437 	xdpf = convert_to_xdp_frame(xdp);
438 	if (unlikely(!xdpf))
439 		return -EOVERFLOW;
440 
441 	return bq_enqueue(dev, xdpf, dev_rx);
442 }
443 
444 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
445 		    struct net_device *dev_rx)
446 {
447 	return __xdp_enqueue(dev, xdp, dev_rx);
448 }
449 
450 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
451 		    struct net_device *dev_rx)
452 {
453 	struct net_device *dev = dst->dev;
454 
455 	return __xdp_enqueue(dev, xdp, dev_rx);
456 }
457 
458 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
459 			     struct bpf_prog *xdp_prog)
460 {
461 	int err;
462 
463 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
464 	if (unlikely(err))
465 		return err;
466 	skb->dev = dst->dev;
467 	generic_xdp_tx(skb, xdp_prog);
468 
469 	return 0;
470 }
471 
472 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
473 {
474 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
475 	struct net_device *dev = obj ? obj->dev : NULL;
476 
477 	return dev ? &dev->ifindex : NULL;
478 }
479 
480 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
481 {
482 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
483 								*(u32 *)key);
484 	struct net_device *dev = obj ? obj->dev : NULL;
485 
486 	return dev ? &dev->ifindex : NULL;
487 }
488 
489 static void __dev_map_entry_free(struct rcu_head *rcu)
490 {
491 	struct bpf_dtab_netdev *dev;
492 
493 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
494 	dev_put(dev->dev);
495 	kfree(dev);
496 }
497 
498 static int dev_map_delete_elem(struct bpf_map *map, void *key)
499 {
500 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
501 	struct bpf_dtab_netdev *old_dev;
502 	int k = *(u32 *)key;
503 
504 	if (k >= map->max_entries)
505 		return -EINVAL;
506 
507 	/* Use call_rcu() here to ensure any rcu critical sections have
508 	 * completed as well as any flush operations because call_rcu
509 	 * will wait for preempt-disable region to complete, NAPI in this
510 	 * context.  And additionally, the driver tear down ensures all
511 	 * soft irqs are complete before removing the net device in the
512 	 * case of dev_put equals zero.
513 	 */
514 	old_dev = xchg(&dtab->netdev_map[k], NULL);
515 	if (old_dev)
516 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
517 	return 0;
518 }
519 
520 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
521 {
522 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
523 	struct bpf_dtab_netdev *old_dev;
524 	int k = *(u32 *)key;
525 	unsigned long flags;
526 	int ret = -ENOENT;
527 
528 	spin_lock_irqsave(&dtab->index_lock, flags);
529 
530 	old_dev = __dev_map_hash_lookup_elem(map, k);
531 	if (old_dev) {
532 		dtab->items--;
533 		hlist_del_init_rcu(&old_dev->index_hlist);
534 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
535 		ret = 0;
536 	}
537 	spin_unlock_irqrestore(&dtab->index_lock, flags);
538 
539 	return ret;
540 }
541 
542 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
543 						    struct bpf_dtab *dtab,
544 						    u32 ifindex,
545 						    unsigned int idx)
546 {
547 	struct bpf_dtab_netdev *dev;
548 
549 	dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
550 			   dtab->map.numa_node);
551 	if (!dev)
552 		return ERR_PTR(-ENOMEM);
553 
554 	dev->dev = dev_get_by_index(net, ifindex);
555 	if (!dev->dev) {
556 		kfree(dev);
557 		return ERR_PTR(-EINVAL);
558 	}
559 
560 	dev->idx = idx;
561 	dev->dtab = dtab;
562 
563 	return dev;
564 }
565 
566 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
567 				 void *key, void *value, u64 map_flags)
568 {
569 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
570 	struct bpf_dtab_netdev *dev, *old_dev;
571 	u32 ifindex = *(u32 *)value;
572 	u32 i = *(u32 *)key;
573 
574 	if (unlikely(map_flags > BPF_EXIST))
575 		return -EINVAL;
576 	if (unlikely(i >= dtab->map.max_entries))
577 		return -E2BIG;
578 	if (unlikely(map_flags == BPF_NOEXIST))
579 		return -EEXIST;
580 
581 	if (!ifindex) {
582 		dev = NULL;
583 	} else {
584 		dev = __dev_map_alloc_node(net, dtab, ifindex, i);
585 		if (IS_ERR(dev))
586 			return PTR_ERR(dev);
587 	}
588 
589 	/* Use call_rcu() here to ensure rcu critical sections have completed
590 	 * Remembering the driver side flush operation will happen before the
591 	 * net device is removed.
592 	 */
593 	old_dev = xchg(&dtab->netdev_map[i], dev);
594 	if (old_dev)
595 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
596 
597 	return 0;
598 }
599 
600 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
601 			       u64 map_flags)
602 {
603 	return __dev_map_update_elem(current->nsproxy->net_ns,
604 				     map, key, value, map_flags);
605 }
606 
607 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
608 				     void *key, void *value, u64 map_flags)
609 {
610 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
611 	struct bpf_dtab_netdev *dev, *old_dev;
612 	u32 ifindex = *(u32 *)value;
613 	u32 idx = *(u32 *)key;
614 	unsigned long flags;
615 	int err = -EEXIST;
616 
617 	if (unlikely(map_flags > BPF_EXIST || !ifindex))
618 		return -EINVAL;
619 
620 	spin_lock_irqsave(&dtab->index_lock, flags);
621 
622 	old_dev = __dev_map_hash_lookup_elem(map, idx);
623 	if (old_dev && (map_flags & BPF_NOEXIST))
624 		goto out_err;
625 
626 	dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
627 	if (IS_ERR(dev)) {
628 		err = PTR_ERR(dev);
629 		goto out_err;
630 	}
631 
632 	if (old_dev) {
633 		hlist_del_rcu(&old_dev->index_hlist);
634 	} else {
635 		if (dtab->items >= dtab->map.max_entries) {
636 			spin_unlock_irqrestore(&dtab->index_lock, flags);
637 			call_rcu(&dev->rcu, __dev_map_entry_free);
638 			return -E2BIG;
639 		}
640 		dtab->items++;
641 	}
642 
643 	hlist_add_head_rcu(&dev->index_hlist,
644 			   dev_map_index_hash(dtab, idx));
645 	spin_unlock_irqrestore(&dtab->index_lock, flags);
646 
647 	if (old_dev)
648 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
649 
650 	return 0;
651 
652 out_err:
653 	spin_unlock_irqrestore(&dtab->index_lock, flags);
654 	return err;
655 }
656 
657 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
658 				   u64 map_flags)
659 {
660 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
661 					 map, key, value, map_flags);
662 }
663 
664 const struct bpf_map_ops dev_map_ops = {
665 	.map_alloc = dev_map_alloc,
666 	.map_free = dev_map_free,
667 	.map_get_next_key = dev_map_get_next_key,
668 	.map_lookup_elem = dev_map_lookup_elem,
669 	.map_update_elem = dev_map_update_elem,
670 	.map_delete_elem = dev_map_delete_elem,
671 	.map_check_btf = map_check_no_btf,
672 };
673 
674 const struct bpf_map_ops dev_map_hash_ops = {
675 	.map_alloc = dev_map_alloc,
676 	.map_free = dev_map_free,
677 	.map_get_next_key = dev_map_hash_get_next_key,
678 	.map_lookup_elem = dev_map_hash_lookup_elem,
679 	.map_update_elem = dev_map_hash_update_elem,
680 	.map_delete_elem = dev_map_hash_delete_elem,
681 	.map_check_btf = map_check_no_btf,
682 };
683 
684 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
685 				       struct net_device *netdev)
686 {
687 	unsigned long flags;
688 	u32 i;
689 
690 	spin_lock_irqsave(&dtab->index_lock, flags);
691 	for (i = 0; i < dtab->n_buckets; i++) {
692 		struct bpf_dtab_netdev *dev;
693 		struct hlist_head *head;
694 		struct hlist_node *next;
695 
696 		head = dev_map_index_hash(dtab, i);
697 
698 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
699 			if (netdev != dev->dev)
700 				continue;
701 
702 			dtab->items--;
703 			hlist_del_rcu(&dev->index_hlist);
704 			call_rcu(&dev->rcu, __dev_map_entry_free);
705 		}
706 	}
707 	spin_unlock_irqrestore(&dtab->index_lock, flags);
708 }
709 
710 static int dev_map_notification(struct notifier_block *notifier,
711 				ulong event, void *ptr)
712 {
713 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
714 	struct bpf_dtab *dtab;
715 	int i, cpu;
716 
717 	switch (event) {
718 	case NETDEV_REGISTER:
719 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
720 			break;
721 
722 		/* will be freed in free_netdev() */
723 		netdev->xdp_bulkq =
724 			__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
725 					   sizeof(void *), GFP_ATOMIC);
726 		if (!netdev->xdp_bulkq)
727 			return NOTIFY_BAD;
728 
729 		for_each_possible_cpu(cpu)
730 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
731 		break;
732 	case NETDEV_UNREGISTER:
733 		/* This rcu_read_lock/unlock pair is needed because
734 		 * dev_map_list is an RCU list AND to ensure a delete
735 		 * operation does not free a netdev_map entry while we
736 		 * are comparing it against the netdev being unregistered.
737 		 */
738 		rcu_read_lock();
739 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
740 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
741 				dev_map_hash_remove_netdev(dtab, netdev);
742 				continue;
743 			}
744 
745 			for (i = 0; i < dtab->map.max_entries; i++) {
746 				struct bpf_dtab_netdev *dev, *odev;
747 
748 				dev = READ_ONCE(dtab->netdev_map[i]);
749 				if (!dev || netdev != dev->dev)
750 					continue;
751 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
752 				if (dev == odev)
753 					call_rcu(&dev->rcu,
754 						 __dev_map_entry_free);
755 			}
756 		}
757 		rcu_read_unlock();
758 		break;
759 	default:
760 		break;
761 	}
762 	return NOTIFY_OK;
763 }
764 
765 static struct notifier_block dev_map_notifier = {
766 	.notifier_call = dev_map_notification,
767 };
768 
769 static int __init dev_map_init(void)
770 {
771 	int cpu;
772 
773 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
774 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
775 		     offsetof(struct _bpf_dtab_netdev, dev));
776 	register_netdevice_notifier(&dev_map_notifier);
777 
778 	for_each_possible_cpu(cpu)
779 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
780 	return 0;
781 }
782 
783 subsys_initcall(dev_map_init);
784