1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 52 #define DEV_CREATE_FLAG_MASK \ 53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 54 55 struct xdp_dev_bulk_queue { 56 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 57 struct list_head flush_node; 58 struct net_device *dev; 59 struct net_device *dev_rx; 60 unsigned int count; 61 }; 62 63 struct bpf_dtab_netdev { 64 struct net_device *dev; /* must be first member, due to tracepoint */ 65 struct hlist_node index_hlist; 66 struct bpf_dtab *dtab; 67 struct rcu_head rcu; 68 unsigned int idx; 69 }; 70 71 struct bpf_dtab { 72 struct bpf_map map; 73 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */ 74 struct list_head list; 75 76 /* these are only used for DEVMAP_HASH type maps */ 77 struct hlist_head *dev_index_head; 78 spinlock_t index_lock; 79 unsigned int items; 80 u32 n_buckets; 81 }; 82 83 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 84 static DEFINE_SPINLOCK(dev_map_lock); 85 static LIST_HEAD(dev_map_list); 86 87 static struct hlist_head *dev_map_create_hash(unsigned int entries) 88 { 89 int i; 90 struct hlist_head *hash; 91 92 hash = kmalloc_array(entries, sizeof(*hash), GFP_KERNEL); 93 if (hash != NULL) 94 for (i = 0; i < entries; i++) 95 INIT_HLIST_HEAD(&hash[i]); 96 97 return hash; 98 } 99 100 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 101 int idx) 102 { 103 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 104 } 105 106 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 107 { 108 u64 cost = 0; 109 int err; 110 111 /* check sanity of attributes */ 112 if (attr->max_entries == 0 || attr->key_size != 4 || 113 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 114 return -EINVAL; 115 116 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 117 * verifier prevents writes from the BPF side 118 */ 119 attr->map_flags |= BPF_F_RDONLY_PROG; 120 121 122 bpf_map_init_from_attr(&dtab->map, attr); 123 124 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 125 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 126 127 if (!dtab->n_buckets) /* Overflow check */ 128 return -EINVAL; 129 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets; 130 } else { 131 cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 132 } 133 134 /* if map size is larger than memlock limit, reject it */ 135 err = bpf_map_charge_init(&dtab->map.memory, cost); 136 if (err) 137 return -EINVAL; 138 139 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 140 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets); 141 if (!dtab->dev_index_head) 142 goto free_charge; 143 144 spin_lock_init(&dtab->index_lock); 145 } else { 146 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 147 sizeof(struct bpf_dtab_netdev *), 148 dtab->map.numa_node); 149 if (!dtab->netdev_map) 150 goto free_charge; 151 } 152 153 return 0; 154 155 free_charge: 156 bpf_map_charge_finish(&dtab->map.memory); 157 return -ENOMEM; 158 } 159 160 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 161 { 162 struct bpf_dtab *dtab; 163 int err; 164 165 if (!capable(CAP_NET_ADMIN)) 166 return ERR_PTR(-EPERM); 167 168 dtab = kzalloc(sizeof(*dtab), GFP_USER); 169 if (!dtab) 170 return ERR_PTR(-ENOMEM); 171 172 err = dev_map_init_map(dtab, attr); 173 if (err) { 174 kfree(dtab); 175 return ERR_PTR(err); 176 } 177 178 spin_lock(&dev_map_lock); 179 list_add_tail_rcu(&dtab->list, &dev_map_list); 180 spin_unlock(&dev_map_lock); 181 182 return &dtab->map; 183 } 184 185 static void dev_map_free(struct bpf_map *map) 186 { 187 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 188 int i; 189 190 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 191 * so the programs (can be more than one that used this map) were 192 * disconnected from events. The following synchronize_rcu() guarantees 193 * both rcu read critical sections complete and waits for 194 * preempt-disable regions (NAPI being the relevant context here) so we 195 * are certain there will be no further reads against the netdev_map and 196 * all flush operations are complete. Flush operations can only be done 197 * from NAPI context for this reason. 198 */ 199 200 spin_lock(&dev_map_lock); 201 list_del_rcu(&dtab->list); 202 spin_unlock(&dev_map_lock); 203 204 bpf_clear_redirect_map(map); 205 synchronize_rcu(); 206 207 /* Make sure prior __dev_map_entry_free() have completed. */ 208 rcu_barrier(); 209 210 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 211 for (i = 0; i < dtab->n_buckets; i++) { 212 struct bpf_dtab_netdev *dev; 213 struct hlist_head *head; 214 struct hlist_node *next; 215 216 head = dev_map_index_hash(dtab, i); 217 218 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 219 hlist_del_rcu(&dev->index_hlist); 220 dev_put(dev->dev); 221 kfree(dev); 222 } 223 } 224 225 kfree(dtab->dev_index_head); 226 } else { 227 for (i = 0; i < dtab->map.max_entries; i++) { 228 struct bpf_dtab_netdev *dev; 229 230 dev = dtab->netdev_map[i]; 231 if (!dev) 232 continue; 233 234 dev_put(dev->dev); 235 kfree(dev); 236 } 237 238 bpf_map_area_free(dtab->netdev_map); 239 } 240 241 kfree(dtab); 242 } 243 244 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 245 { 246 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 247 u32 index = key ? *(u32 *)key : U32_MAX; 248 u32 *next = next_key; 249 250 if (index >= dtab->map.max_entries) { 251 *next = 0; 252 return 0; 253 } 254 255 if (index == dtab->map.max_entries - 1) 256 return -ENOENT; 257 *next = index + 1; 258 return 0; 259 } 260 261 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 262 { 263 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 264 struct hlist_head *head = dev_map_index_hash(dtab, key); 265 struct bpf_dtab_netdev *dev; 266 267 hlist_for_each_entry_rcu(dev, head, index_hlist, 268 lockdep_is_held(&dtab->index_lock)) 269 if (dev->idx == key) 270 return dev; 271 272 return NULL; 273 } 274 275 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 276 void *next_key) 277 { 278 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 279 u32 idx, *next = next_key; 280 struct bpf_dtab_netdev *dev, *next_dev; 281 struct hlist_head *head; 282 int i = 0; 283 284 if (!key) 285 goto find_first; 286 287 idx = *(u32 *)key; 288 289 dev = __dev_map_hash_lookup_elem(map, idx); 290 if (!dev) 291 goto find_first; 292 293 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 294 struct bpf_dtab_netdev, index_hlist); 295 296 if (next_dev) { 297 *next = next_dev->idx; 298 return 0; 299 } 300 301 i = idx & (dtab->n_buckets - 1); 302 i++; 303 304 find_first: 305 for (; i < dtab->n_buckets; i++) { 306 head = dev_map_index_hash(dtab, i); 307 308 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 309 struct bpf_dtab_netdev, 310 index_hlist); 311 if (next_dev) { 312 *next = next_dev->idx; 313 return 0; 314 } 315 } 316 317 return -ENOENT; 318 } 319 320 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 321 { 322 struct net_device *dev = bq->dev; 323 int sent = 0, drops = 0, err = 0; 324 int i; 325 326 if (unlikely(!bq->count)) 327 return 0; 328 329 for (i = 0; i < bq->count; i++) { 330 struct xdp_frame *xdpf = bq->q[i]; 331 332 prefetch(xdpf); 333 } 334 335 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags); 336 if (sent < 0) { 337 err = sent; 338 sent = 0; 339 goto error; 340 } 341 drops = bq->count - sent; 342 out: 343 bq->count = 0; 344 345 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err); 346 bq->dev_rx = NULL; 347 __list_del_clearprev(&bq->flush_node); 348 return 0; 349 error: 350 /* If ndo_xdp_xmit fails with an errno, no frames have been 351 * xmit'ed and it's our responsibility to them free all. 352 */ 353 for (i = 0; i < bq->count; i++) { 354 struct xdp_frame *xdpf = bq->q[i]; 355 356 xdp_return_frame_rx_napi(xdpf); 357 drops++; 358 } 359 goto out; 360 } 361 362 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled 363 * from the driver before returning from its napi->poll() routine. The poll() 364 * routine is called either from busy_poll context or net_rx_action signaled 365 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 366 * net device can be torn down. On devmap tear down we ensure the flush list 367 * is empty before completing to ensure all flush operations have completed. 368 * When drivers update the bpf program they may need to ensure any flush ops 369 * are also complete. Using synchronize_rcu or call_rcu will suffice for this 370 * because both wait for napi context to exit. 371 */ 372 void __dev_flush(void) 373 { 374 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 375 struct xdp_dev_bulk_queue *bq, *tmp; 376 377 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) 378 bq_xmit_all(bq, XDP_XMIT_FLUSH); 379 } 380 381 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 382 * update happens in parallel here a dev_put wont happen until after reading the 383 * ifindex. 384 */ 385 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 386 { 387 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 388 struct bpf_dtab_netdev *obj; 389 390 if (key >= map->max_entries) 391 return NULL; 392 393 obj = READ_ONCE(dtab->netdev_map[key]); 394 return obj; 395 } 396 397 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 398 * Thus, safe percpu variable access. 399 */ 400 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 401 struct net_device *dev_rx) 402 { 403 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 404 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 405 406 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 407 bq_xmit_all(bq, 0); 408 409 /* Ingress dev_rx will be the same for all xdp_frame's in 410 * bulk_queue, because bq stored per-CPU and must be flushed 411 * from net_device drivers NAPI func end. 412 */ 413 if (!bq->dev_rx) 414 bq->dev_rx = dev_rx; 415 416 bq->q[bq->count++] = xdpf; 417 418 if (!bq->flush_node.prev) 419 list_add(&bq->flush_node, flush_list); 420 421 return 0; 422 } 423 424 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 425 struct net_device *dev_rx) 426 { 427 struct xdp_frame *xdpf; 428 int err; 429 430 if (!dev->netdev_ops->ndo_xdp_xmit) 431 return -EOPNOTSUPP; 432 433 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); 434 if (unlikely(err)) 435 return err; 436 437 xdpf = convert_to_xdp_frame(xdp); 438 if (unlikely(!xdpf)) 439 return -EOVERFLOW; 440 441 return bq_enqueue(dev, xdpf, dev_rx); 442 } 443 444 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp, 445 struct net_device *dev_rx) 446 { 447 return __xdp_enqueue(dev, xdp, dev_rx); 448 } 449 450 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, 451 struct net_device *dev_rx) 452 { 453 struct net_device *dev = dst->dev; 454 455 return __xdp_enqueue(dev, xdp, dev_rx); 456 } 457 458 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 459 struct bpf_prog *xdp_prog) 460 { 461 int err; 462 463 err = xdp_ok_fwd_dev(dst->dev, skb->len); 464 if (unlikely(err)) 465 return err; 466 skb->dev = dst->dev; 467 generic_xdp_tx(skb, xdp_prog); 468 469 return 0; 470 } 471 472 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 473 { 474 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 475 struct net_device *dev = obj ? obj->dev : NULL; 476 477 return dev ? &dev->ifindex : NULL; 478 } 479 480 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 481 { 482 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 483 *(u32 *)key); 484 struct net_device *dev = obj ? obj->dev : NULL; 485 486 return dev ? &dev->ifindex : NULL; 487 } 488 489 static void __dev_map_entry_free(struct rcu_head *rcu) 490 { 491 struct bpf_dtab_netdev *dev; 492 493 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 494 dev_put(dev->dev); 495 kfree(dev); 496 } 497 498 static int dev_map_delete_elem(struct bpf_map *map, void *key) 499 { 500 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 501 struct bpf_dtab_netdev *old_dev; 502 int k = *(u32 *)key; 503 504 if (k >= map->max_entries) 505 return -EINVAL; 506 507 /* Use call_rcu() here to ensure any rcu critical sections have 508 * completed as well as any flush operations because call_rcu 509 * will wait for preempt-disable region to complete, NAPI in this 510 * context. And additionally, the driver tear down ensures all 511 * soft irqs are complete before removing the net device in the 512 * case of dev_put equals zero. 513 */ 514 old_dev = xchg(&dtab->netdev_map[k], NULL); 515 if (old_dev) 516 call_rcu(&old_dev->rcu, __dev_map_entry_free); 517 return 0; 518 } 519 520 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key) 521 { 522 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 523 struct bpf_dtab_netdev *old_dev; 524 int k = *(u32 *)key; 525 unsigned long flags; 526 int ret = -ENOENT; 527 528 spin_lock_irqsave(&dtab->index_lock, flags); 529 530 old_dev = __dev_map_hash_lookup_elem(map, k); 531 if (old_dev) { 532 dtab->items--; 533 hlist_del_init_rcu(&old_dev->index_hlist); 534 call_rcu(&old_dev->rcu, __dev_map_entry_free); 535 ret = 0; 536 } 537 spin_unlock_irqrestore(&dtab->index_lock, flags); 538 539 return ret; 540 } 541 542 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 543 struct bpf_dtab *dtab, 544 u32 ifindex, 545 unsigned int idx) 546 { 547 struct bpf_dtab_netdev *dev; 548 549 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 550 dtab->map.numa_node); 551 if (!dev) 552 return ERR_PTR(-ENOMEM); 553 554 dev->dev = dev_get_by_index(net, ifindex); 555 if (!dev->dev) { 556 kfree(dev); 557 return ERR_PTR(-EINVAL); 558 } 559 560 dev->idx = idx; 561 dev->dtab = dtab; 562 563 return dev; 564 } 565 566 static int __dev_map_update_elem(struct net *net, struct bpf_map *map, 567 void *key, void *value, u64 map_flags) 568 { 569 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 570 struct bpf_dtab_netdev *dev, *old_dev; 571 u32 ifindex = *(u32 *)value; 572 u32 i = *(u32 *)key; 573 574 if (unlikely(map_flags > BPF_EXIST)) 575 return -EINVAL; 576 if (unlikely(i >= dtab->map.max_entries)) 577 return -E2BIG; 578 if (unlikely(map_flags == BPF_NOEXIST)) 579 return -EEXIST; 580 581 if (!ifindex) { 582 dev = NULL; 583 } else { 584 dev = __dev_map_alloc_node(net, dtab, ifindex, i); 585 if (IS_ERR(dev)) 586 return PTR_ERR(dev); 587 } 588 589 /* Use call_rcu() here to ensure rcu critical sections have completed 590 * Remembering the driver side flush operation will happen before the 591 * net device is removed. 592 */ 593 old_dev = xchg(&dtab->netdev_map[i], dev); 594 if (old_dev) 595 call_rcu(&old_dev->rcu, __dev_map_entry_free); 596 597 return 0; 598 } 599 600 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 601 u64 map_flags) 602 { 603 return __dev_map_update_elem(current->nsproxy->net_ns, 604 map, key, value, map_flags); 605 } 606 607 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 608 void *key, void *value, u64 map_flags) 609 { 610 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 611 struct bpf_dtab_netdev *dev, *old_dev; 612 u32 ifindex = *(u32 *)value; 613 u32 idx = *(u32 *)key; 614 unsigned long flags; 615 int err = -EEXIST; 616 617 if (unlikely(map_flags > BPF_EXIST || !ifindex)) 618 return -EINVAL; 619 620 spin_lock_irqsave(&dtab->index_lock, flags); 621 622 old_dev = __dev_map_hash_lookup_elem(map, idx); 623 if (old_dev && (map_flags & BPF_NOEXIST)) 624 goto out_err; 625 626 dev = __dev_map_alloc_node(net, dtab, ifindex, idx); 627 if (IS_ERR(dev)) { 628 err = PTR_ERR(dev); 629 goto out_err; 630 } 631 632 if (old_dev) { 633 hlist_del_rcu(&old_dev->index_hlist); 634 } else { 635 if (dtab->items >= dtab->map.max_entries) { 636 spin_unlock_irqrestore(&dtab->index_lock, flags); 637 call_rcu(&dev->rcu, __dev_map_entry_free); 638 return -E2BIG; 639 } 640 dtab->items++; 641 } 642 643 hlist_add_head_rcu(&dev->index_hlist, 644 dev_map_index_hash(dtab, idx)); 645 spin_unlock_irqrestore(&dtab->index_lock, flags); 646 647 if (old_dev) 648 call_rcu(&old_dev->rcu, __dev_map_entry_free); 649 650 return 0; 651 652 out_err: 653 spin_unlock_irqrestore(&dtab->index_lock, flags); 654 return err; 655 } 656 657 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 658 u64 map_flags) 659 { 660 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 661 map, key, value, map_flags); 662 } 663 664 const struct bpf_map_ops dev_map_ops = { 665 .map_alloc = dev_map_alloc, 666 .map_free = dev_map_free, 667 .map_get_next_key = dev_map_get_next_key, 668 .map_lookup_elem = dev_map_lookup_elem, 669 .map_update_elem = dev_map_update_elem, 670 .map_delete_elem = dev_map_delete_elem, 671 .map_check_btf = map_check_no_btf, 672 }; 673 674 const struct bpf_map_ops dev_map_hash_ops = { 675 .map_alloc = dev_map_alloc, 676 .map_free = dev_map_free, 677 .map_get_next_key = dev_map_hash_get_next_key, 678 .map_lookup_elem = dev_map_hash_lookup_elem, 679 .map_update_elem = dev_map_hash_update_elem, 680 .map_delete_elem = dev_map_hash_delete_elem, 681 .map_check_btf = map_check_no_btf, 682 }; 683 684 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 685 struct net_device *netdev) 686 { 687 unsigned long flags; 688 u32 i; 689 690 spin_lock_irqsave(&dtab->index_lock, flags); 691 for (i = 0; i < dtab->n_buckets; i++) { 692 struct bpf_dtab_netdev *dev; 693 struct hlist_head *head; 694 struct hlist_node *next; 695 696 head = dev_map_index_hash(dtab, i); 697 698 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 699 if (netdev != dev->dev) 700 continue; 701 702 dtab->items--; 703 hlist_del_rcu(&dev->index_hlist); 704 call_rcu(&dev->rcu, __dev_map_entry_free); 705 } 706 } 707 spin_unlock_irqrestore(&dtab->index_lock, flags); 708 } 709 710 static int dev_map_notification(struct notifier_block *notifier, 711 ulong event, void *ptr) 712 { 713 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 714 struct bpf_dtab *dtab; 715 int i, cpu; 716 717 switch (event) { 718 case NETDEV_REGISTER: 719 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 720 break; 721 722 /* will be freed in free_netdev() */ 723 netdev->xdp_bulkq = 724 __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue), 725 sizeof(void *), GFP_ATOMIC); 726 if (!netdev->xdp_bulkq) 727 return NOTIFY_BAD; 728 729 for_each_possible_cpu(cpu) 730 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 731 break; 732 case NETDEV_UNREGISTER: 733 /* This rcu_read_lock/unlock pair is needed because 734 * dev_map_list is an RCU list AND to ensure a delete 735 * operation does not free a netdev_map entry while we 736 * are comparing it against the netdev being unregistered. 737 */ 738 rcu_read_lock(); 739 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 740 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 741 dev_map_hash_remove_netdev(dtab, netdev); 742 continue; 743 } 744 745 for (i = 0; i < dtab->map.max_entries; i++) { 746 struct bpf_dtab_netdev *dev, *odev; 747 748 dev = READ_ONCE(dtab->netdev_map[i]); 749 if (!dev || netdev != dev->dev) 750 continue; 751 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 752 if (dev == odev) 753 call_rcu(&dev->rcu, 754 __dev_map_entry_free); 755 } 756 } 757 rcu_read_unlock(); 758 break; 759 default: 760 break; 761 } 762 return NOTIFY_OK; 763 } 764 765 static struct notifier_block dev_map_notifier = { 766 .notifier_call = dev_map_notification, 767 }; 768 769 static int __init dev_map_init(void) 770 { 771 int cpu; 772 773 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 774 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 775 offsetof(struct _bpf_dtab_netdev, dev)); 776 register_netdevice_notifier(&dev_map_notifier); 777 778 for_each_possible_cpu(cpu) 779 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 780 return 0; 781 } 782 783 subsys_initcall(dev_map_init); 784