xref: /linux/kernel/bpf/devmap.c (revision 13091aa30535b719e269f20a7bc34002bf5afae5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
21  * until all bits are cleared indicating outstanding flush operations have
22  * completed.
23  *
24  * BPF syscalls may race with BPF program calls on any of the update, delete
25  * or lookup operations. As noted above the xchg() operation also keep the
26  * netdev_map consistent in this case. From the devmap side BPF programs
27  * calling into these operations are the same as multiple user space threads
28  * making system calls.
29  *
30  * Finally, any of the above may race with a netdev_unregister notifier. The
31  * unregister notifier must search for net devices in the map structure that
32  * contain a reference to the net device and remove them. This is a two step
33  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
34  * check to see if the ifindex is the same as the net_device being removed.
35  * When removing the dev a cmpxchg() is used to ensure the correct dev is
36  * removed, in the case of a concurrent update or delete operation it is
37  * possible that the initially referenced dev is no longer in the map. As the
38  * notifier hook walks the map we know that new dev references can not be
39  * added by the user because core infrastructure ensures dev_get_by_index()
40  * calls will fail at this point.
41  */
42 #include <linux/bpf.h>
43 #include <net/xdp.h>
44 #include <linux/filter.h>
45 #include <trace/events/xdp.h>
46 
47 #define DEV_CREATE_FLAG_MASK \
48 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
49 
50 #define DEV_MAP_BULK_SIZE 16
51 struct xdp_bulk_queue {
52 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
53 	struct net_device *dev_rx;
54 	unsigned int count;
55 };
56 
57 struct bpf_dtab_netdev {
58 	struct net_device *dev; /* must be first member, due to tracepoint */
59 	struct bpf_dtab *dtab;
60 	unsigned int bit;
61 	struct xdp_bulk_queue __percpu *bulkq;
62 	struct rcu_head rcu;
63 };
64 
65 struct bpf_dtab {
66 	struct bpf_map map;
67 	struct bpf_dtab_netdev **netdev_map;
68 	unsigned long __percpu *flush_needed;
69 	struct list_head list;
70 };
71 
72 static DEFINE_SPINLOCK(dev_map_lock);
73 static LIST_HEAD(dev_map_list);
74 
75 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
76 {
77 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
78 }
79 
80 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
81 {
82 	struct bpf_dtab *dtab;
83 	int err = -EINVAL;
84 	u64 cost;
85 
86 	if (!capable(CAP_NET_ADMIN))
87 		return ERR_PTR(-EPERM);
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
92 		return ERR_PTR(-EINVAL);
93 
94 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
95 	if (!dtab)
96 		return ERR_PTR(-ENOMEM);
97 
98 	bpf_map_init_from_attr(&dtab->map, attr);
99 
100 	/* make sure page count doesn't overflow */
101 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
102 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
103 
104 	/* if map size is larger than memlock limit, reject it */
105 	err = bpf_map_charge_init(&dtab->map.memory, cost);
106 	if (err)
107 		goto free_dtab;
108 
109 	err = -ENOMEM;
110 
111 	/* A per cpu bitfield with a bit per possible net device */
112 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
113 						__alignof__(unsigned long),
114 						GFP_KERNEL | __GFP_NOWARN);
115 	if (!dtab->flush_needed)
116 		goto free_charge;
117 
118 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
119 					      sizeof(struct bpf_dtab_netdev *),
120 					      dtab->map.numa_node);
121 	if (!dtab->netdev_map)
122 		goto free_charge;
123 
124 	spin_lock(&dev_map_lock);
125 	list_add_tail_rcu(&dtab->list, &dev_map_list);
126 	spin_unlock(&dev_map_lock);
127 
128 	return &dtab->map;
129 free_charge:
130 	bpf_map_charge_finish(&dtab->map.memory);
131 free_dtab:
132 	free_percpu(dtab->flush_needed);
133 	kfree(dtab);
134 	return ERR_PTR(err);
135 }
136 
137 static void dev_map_free(struct bpf_map *map)
138 {
139 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
140 	int i, cpu;
141 
142 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
143 	 * so the programs (can be more than one that used this map) were
144 	 * disconnected from events. Wait for outstanding critical sections in
145 	 * these programs to complete. The rcu critical section only guarantees
146 	 * no further reads against netdev_map. It does __not__ ensure pending
147 	 * flush operations (if any) are complete.
148 	 */
149 
150 	spin_lock(&dev_map_lock);
151 	list_del_rcu(&dtab->list);
152 	spin_unlock(&dev_map_lock);
153 
154 	bpf_clear_redirect_map(map);
155 	synchronize_rcu();
156 
157 	/* Make sure prior __dev_map_entry_free() have completed. */
158 	rcu_barrier();
159 
160 	/* To ensure all pending flush operations have completed wait for flush
161 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
162 	 * Because the above synchronize_rcu() ensures the map is disconnected
163 	 * from the program we can assume no new bits will be set.
164 	 */
165 	for_each_online_cpu(cpu) {
166 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
167 
168 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
169 			cond_resched();
170 	}
171 
172 	for (i = 0; i < dtab->map.max_entries; i++) {
173 		struct bpf_dtab_netdev *dev;
174 
175 		dev = dtab->netdev_map[i];
176 		if (!dev)
177 			continue;
178 
179 		free_percpu(dev->bulkq);
180 		dev_put(dev->dev);
181 		kfree(dev);
182 	}
183 
184 	free_percpu(dtab->flush_needed);
185 	bpf_map_area_free(dtab->netdev_map);
186 	kfree(dtab);
187 }
188 
189 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
190 {
191 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
192 	u32 index = key ? *(u32 *)key : U32_MAX;
193 	u32 *next = next_key;
194 
195 	if (index >= dtab->map.max_entries) {
196 		*next = 0;
197 		return 0;
198 	}
199 
200 	if (index == dtab->map.max_entries - 1)
201 		return -ENOENT;
202 	*next = index + 1;
203 	return 0;
204 }
205 
206 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
207 {
208 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
209 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
210 
211 	__set_bit(bit, bitmap);
212 }
213 
214 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
215 		       struct xdp_bulk_queue *bq, u32 flags,
216 		       bool in_napi_ctx)
217 {
218 	struct net_device *dev = obj->dev;
219 	int sent = 0, drops = 0, err = 0;
220 	int i;
221 
222 	if (unlikely(!bq->count))
223 		return 0;
224 
225 	for (i = 0; i < bq->count; i++) {
226 		struct xdp_frame *xdpf = bq->q[i];
227 
228 		prefetch(xdpf);
229 	}
230 
231 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
232 	if (sent < 0) {
233 		err = sent;
234 		sent = 0;
235 		goto error;
236 	}
237 	drops = bq->count - sent;
238 out:
239 	bq->count = 0;
240 
241 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
242 			      sent, drops, bq->dev_rx, dev, err);
243 	bq->dev_rx = NULL;
244 	return 0;
245 error:
246 	/* If ndo_xdp_xmit fails with an errno, no frames have been
247 	 * xmit'ed and it's our responsibility to them free all.
248 	 */
249 	for (i = 0; i < bq->count; i++) {
250 		struct xdp_frame *xdpf = bq->q[i];
251 
252 		/* RX path under NAPI protection, can return frames faster */
253 		if (likely(in_napi_ctx))
254 			xdp_return_frame_rx_napi(xdpf);
255 		else
256 			xdp_return_frame(xdpf);
257 		drops++;
258 	}
259 	goto out;
260 }
261 
262 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
263  * from the driver before returning from its napi->poll() routine. The poll()
264  * routine is called either from busy_poll context or net_rx_action signaled
265  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
266  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
267  * is zeroed before completing to ensure all flush operations have completed.
268  */
269 void __dev_map_flush(struct bpf_map *map)
270 {
271 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
272 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
273 	u32 bit;
274 
275 	rcu_read_lock();
276 	for_each_set_bit(bit, bitmap, map->max_entries) {
277 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
278 		struct xdp_bulk_queue *bq;
279 
280 		/* This is possible if the dev entry is removed by user space
281 		 * between xdp redirect and flush op.
282 		 */
283 		if (unlikely(!dev))
284 			continue;
285 
286 		bq = this_cpu_ptr(dev->bulkq);
287 		bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
288 
289 		__clear_bit(bit, bitmap);
290 	}
291 	rcu_read_unlock();
292 }
293 
294 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
295  * update happens in parallel here a dev_put wont happen until after reading the
296  * ifindex.
297  */
298 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
299 {
300 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
301 	struct bpf_dtab_netdev *obj;
302 
303 	if (key >= map->max_entries)
304 		return NULL;
305 
306 	obj = READ_ONCE(dtab->netdev_map[key]);
307 	return obj;
308 }
309 
310 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
311  * Thus, safe percpu variable access.
312  */
313 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
314 		      struct net_device *dev_rx)
315 
316 {
317 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
318 
319 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
320 		bq_xmit_all(obj, bq, 0, true);
321 
322 	/* Ingress dev_rx will be the same for all xdp_frame's in
323 	 * bulk_queue, because bq stored per-CPU and must be flushed
324 	 * from net_device drivers NAPI func end.
325 	 */
326 	if (!bq->dev_rx)
327 		bq->dev_rx = dev_rx;
328 
329 	bq->q[bq->count++] = xdpf;
330 	return 0;
331 }
332 
333 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
334 		    struct net_device *dev_rx)
335 {
336 	struct net_device *dev = dst->dev;
337 	struct xdp_frame *xdpf;
338 	int err;
339 
340 	if (!dev->netdev_ops->ndo_xdp_xmit)
341 		return -EOPNOTSUPP;
342 
343 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
344 	if (unlikely(err))
345 		return err;
346 
347 	xdpf = convert_to_xdp_frame(xdp);
348 	if (unlikely(!xdpf))
349 		return -EOVERFLOW;
350 
351 	return bq_enqueue(dst, xdpf, dev_rx);
352 }
353 
354 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
355 			     struct bpf_prog *xdp_prog)
356 {
357 	int err;
358 
359 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
360 	if (unlikely(err))
361 		return err;
362 	skb->dev = dst->dev;
363 	generic_xdp_tx(skb, xdp_prog);
364 
365 	return 0;
366 }
367 
368 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
369 {
370 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
371 	struct net_device *dev = obj ? obj->dev : NULL;
372 
373 	return dev ? &dev->ifindex : NULL;
374 }
375 
376 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
377 {
378 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
379 		struct xdp_bulk_queue *bq;
380 		unsigned long *bitmap;
381 
382 		int cpu;
383 
384 		rcu_read_lock();
385 		for_each_online_cpu(cpu) {
386 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
387 			__clear_bit(dev->bit, bitmap);
388 
389 			bq = per_cpu_ptr(dev->bulkq, cpu);
390 			bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
391 		}
392 		rcu_read_unlock();
393 	}
394 }
395 
396 static void __dev_map_entry_free(struct rcu_head *rcu)
397 {
398 	struct bpf_dtab_netdev *dev;
399 
400 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
401 	dev_map_flush_old(dev);
402 	free_percpu(dev->bulkq);
403 	dev_put(dev->dev);
404 	kfree(dev);
405 }
406 
407 static int dev_map_delete_elem(struct bpf_map *map, void *key)
408 {
409 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
410 	struct bpf_dtab_netdev *old_dev;
411 	int k = *(u32 *)key;
412 
413 	if (k >= map->max_entries)
414 		return -EINVAL;
415 
416 	/* Use call_rcu() here to ensure any rcu critical sections have
417 	 * completed, but this does not guarantee a flush has happened
418 	 * yet. Because driver side rcu_read_lock/unlock only protects the
419 	 * running XDP program. However, for pending flush operations the
420 	 * dev and ctx are stored in another per cpu map. And additionally,
421 	 * the driver tear down ensures all soft irqs are complete before
422 	 * removing the net device in the case of dev_put equals zero.
423 	 */
424 	old_dev = xchg(&dtab->netdev_map[k], NULL);
425 	if (old_dev)
426 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
427 	return 0;
428 }
429 
430 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
431 				u64 map_flags)
432 {
433 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
434 	struct net *net = current->nsproxy->net_ns;
435 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
436 	struct bpf_dtab_netdev *dev, *old_dev;
437 	u32 i = *(u32 *)key;
438 	u32 ifindex = *(u32 *)value;
439 
440 	if (unlikely(map_flags > BPF_EXIST))
441 		return -EINVAL;
442 	if (unlikely(i >= dtab->map.max_entries))
443 		return -E2BIG;
444 	if (unlikely(map_flags == BPF_NOEXIST))
445 		return -EEXIST;
446 
447 	if (!ifindex) {
448 		dev = NULL;
449 	} else {
450 		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
451 		if (!dev)
452 			return -ENOMEM;
453 
454 		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
455 						sizeof(void *), gfp);
456 		if (!dev->bulkq) {
457 			kfree(dev);
458 			return -ENOMEM;
459 		}
460 
461 		dev->dev = dev_get_by_index(net, ifindex);
462 		if (!dev->dev) {
463 			free_percpu(dev->bulkq);
464 			kfree(dev);
465 			return -EINVAL;
466 		}
467 
468 		dev->bit = i;
469 		dev->dtab = dtab;
470 	}
471 
472 	/* Use call_rcu() here to ensure rcu critical sections have completed
473 	 * Remembering the driver side flush operation will happen before the
474 	 * net device is removed.
475 	 */
476 	old_dev = xchg(&dtab->netdev_map[i], dev);
477 	if (old_dev)
478 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
479 
480 	return 0;
481 }
482 
483 const struct bpf_map_ops dev_map_ops = {
484 	.map_alloc = dev_map_alloc,
485 	.map_free = dev_map_free,
486 	.map_get_next_key = dev_map_get_next_key,
487 	.map_lookup_elem = dev_map_lookup_elem,
488 	.map_update_elem = dev_map_update_elem,
489 	.map_delete_elem = dev_map_delete_elem,
490 	.map_check_btf = map_check_no_btf,
491 };
492 
493 static int dev_map_notification(struct notifier_block *notifier,
494 				ulong event, void *ptr)
495 {
496 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
497 	struct bpf_dtab *dtab;
498 	int i;
499 
500 	switch (event) {
501 	case NETDEV_UNREGISTER:
502 		/* This rcu_read_lock/unlock pair is needed because
503 		 * dev_map_list is an RCU list AND to ensure a delete
504 		 * operation does not free a netdev_map entry while we
505 		 * are comparing it against the netdev being unregistered.
506 		 */
507 		rcu_read_lock();
508 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
509 			for (i = 0; i < dtab->map.max_entries; i++) {
510 				struct bpf_dtab_netdev *dev, *odev;
511 
512 				dev = READ_ONCE(dtab->netdev_map[i]);
513 				if (!dev || netdev != dev->dev)
514 					continue;
515 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
516 				if (dev == odev)
517 					call_rcu(&dev->rcu,
518 						 __dev_map_entry_free);
519 			}
520 		}
521 		rcu_read_unlock();
522 		break;
523 	default:
524 		break;
525 	}
526 	return NOTIFY_OK;
527 }
528 
529 static struct notifier_block dev_map_notifier = {
530 	.notifier_call = dev_map_notification,
531 };
532 
533 static int __init dev_map_init(void)
534 {
535 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
536 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
537 		     offsetof(struct _bpf_dtab_netdev, dev));
538 	register_netdevice_notifier(&dev_map_notifier);
539 	return 0;
540 }
541 
542 subsys_initcall(dev_map_init);
543