1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 * 7 * This program is distributed in the hope that it will be useful, but 8 * WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * General Public License for more details. 11 */ 12 13 /* Devmaps primary use is as a backend map for XDP BPF helper call 14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 15 * spent some effort to ensure the datapath with redirect maps does not use 16 * any locking. This is a quick note on the details. 17 * 18 * We have three possible paths to get into the devmap control plane bpf 19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 20 * will invoke an update, delete, or lookup operation. To ensure updates and 21 * deletes appear atomic from the datapath side xchg() is used to modify the 22 * netdev_map array. Then because the datapath does a lookup into the netdev_map 23 * array (read-only) from an RCU critical section we use call_rcu() to wait for 24 * an rcu grace period before free'ing the old data structures. This ensures the 25 * datapath always has a valid copy. However, the datapath does a "flush" 26 * operation that pushes any pending packets in the driver outside the RCU 27 * critical section. Each bpf_dtab_netdev tracks these pending operations using 28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed 29 * until all bits are cleared indicating outstanding flush operations have 30 * completed. 31 * 32 * BPF syscalls may race with BPF program calls on any of the update, delete 33 * or lookup operations. As noted above the xchg() operation also keep the 34 * netdev_map consistent in this case. From the devmap side BPF programs 35 * calling into these operations are the same as multiple user space threads 36 * making system calls. 37 * 38 * Finally, any of the above may race with a netdev_unregister notifier. The 39 * unregister notifier must search for net devices in the map structure that 40 * contain a reference to the net device and remove them. This is a two step 41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 42 * check to see if the ifindex is the same as the net_device being removed. 43 * When removing the dev a cmpxchg() is used to ensure the correct dev is 44 * removed, in the case of a concurrent update or delete operation it is 45 * possible that the initially referenced dev is no longer in the map. As the 46 * notifier hook walks the map we know that new dev references can not be 47 * added by the user because core infrastructure ensures dev_get_by_index() 48 * calls will fail at this point. 49 */ 50 #include <linux/bpf.h> 51 #include <linux/filter.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct bpf_dtab_netdev { 57 struct net_device *dev; 58 struct bpf_dtab *dtab; 59 unsigned int bit; 60 struct rcu_head rcu; 61 }; 62 63 struct bpf_dtab { 64 struct bpf_map map; 65 struct bpf_dtab_netdev **netdev_map; 66 unsigned long __percpu *flush_needed; 67 struct list_head list; 68 }; 69 70 static DEFINE_SPINLOCK(dev_map_lock); 71 static LIST_HEAD(dev_map_list); 72 73 static u64 dev_map_bitmap_size(const union bpf_attr *attr) 74 { 75 return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long); 76 } 77 78 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 79 { 80 struct bpf_dtab *dtab; 81 int err = -EINVAL; 82 u64 cost; 83 84 if (!capable(CAP_NET_ADMIN)) 85 return ERR_PTR(-EPERM); 86 87 /* check sanity of attributes */ 88 if (attr->max_entries == 0 || attr->key_size != 4 || 89 attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK) 90 return ERR_PTR(-EINVAL); 91 92 dtab = kzalloc(sizeof(*dtab), GFP_USER); 93 if (!dtab) 94 return ERR_PTR(-ENOMEM); 95 96 bpf_map_init_from_attr(&dtab->map, attr); 97 98 /* make sure page count doesn't overflow */ 99 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *); 100 cost += dev_map_bitmap_size(attr) * num_possible_cpus(); 101 if (cost >= U32_MAX - PAGE_SIZE) 102 goto free_dtab; 103 104 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 105 106 /* if map size is larger than memlock limit, reject it early */ 107 err = bpf_map_precharge_memlock(dtab->map.pages); 108 if (err) 109 goto free_dtab; 110 111 err = -ENOMEM; 112 113 /* A per cpu bitfield with a bit per possible net device */ 114 dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr), 115 __alignof__(unsigned long), 116 GFP_KERNEL | __GFP_NOWARN); 117 if (!dtab->flush_needed) 118 goto free_dtab; 119 120 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries * 121 sizeof(struct bpf_dtab_netdev *), 122 dtab->map.numa_node); 123 if (!dtab->netdev_map) 124 goto free_dtab; 125 126 spin_lock(&dev_map_lock); 127 list_add_tail_rcu(&dtab->list, &dev_map_list); 128 spin_unlock(&dev_map_lock); 129 130 return &dtab->map; 131 free_dtab: 132 free_percpu(dtab->flush_needed); 133 kfree(dtab); 134 return ERR_PTR(err); 135 } 136 137 static void dev_map_free(struct bpf_map *map) 138 { 139 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 140 int i, cpu; 141 142 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 143 * so the programs (can be more than one that used this map) were 144 * disconnected from events. Wait for outstanding critical sections in 145 * these programs to complete. The rcu critical section only guarantees 146 * no further reads against netdev_map. It does __not__ ensure pending 147 * flush operations (if any) are complete. 148 */ 149 150 spin_lock(&dev_map_lock); 151 list_del_rcu(&dtab->list); 152 spin_unlock(&dev_map_lock); 153 154 synchronize_rcu(); 155 156 /* To ensure all pending flush operations have completed wait for flush 157 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 158 * Because the above synchronize_rcu() ensures the map is disconnected 159 * from the program we can assume no new bits will be set. 160 */ 161 for_each_online_cpu(cpu) { 162 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu); 163 164 while (!bitmap_empty(bitmap, dtab->map.max_entries)) 165 cond_resched(); 166 } 167 168 for (i = 0; i < dtab->map.max_entries; i++) { 169 struct bpf_dtab_netdev *dev; 170 171 dev = dtab->netdev_map[i]; 172 if (!dev) 173 continue; 174 175 dev_put(dev->dev); 176 kfree(dev); 177 } 178 179 free_percpu(dtab->flush_needed); 180 bpf_map_area_free(dtab->netdev_map); 181 kfree(dtab); 182 } 183 184 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 185 { 186 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 187 u32 index = key ? *(u32 *)key : U32_MAX; 188 u32 *next = next_key; 189 190 if (index >= dtab->map.max_entries) { 191 *next = 0; 192 return 0; 193 } 194 195 if (index == dtab->map.max_entries - 1) 196 return -ENOENT; 197 *next = index + 1; 198 return 0; 199 } 200 201 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit) 202 { 203 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 204 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 205 206 __set_bit(bit, bitmap); 207 } 208 209 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled 210 * from the driver before returning from its napi->poll() routine. The poll() 211 * routine is called either from busy_poll context or net_rx_action signaled 212 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the 213 * net device can be torn down. On devmap tear down we ensure the ctx bitmap 214 * is zeroed before completing to ensure all flush operations have completed. 215 */ 216 void __dev_map_flush(struct bpf_map *map) 217 { 218 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 219 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed); 220 u32 bit; 221 222 for_each_set_bit(bit, bitmap, map->max_entries) { 223 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]); 224 struct net_device *netdev; 225 226 /* This is possible if the dev entry is removed by user space 227 * between xdp redirect and flush op. 228 */ 229 if (unlikely(!dev)) 230 continue; 231 232 __clear_bit(bit, bitmap); 233 netdev = dev->dev; 234 if (likely(netdev->netdev_ops->ndo_xdp_flush)) 235 netdev->netdev_ops->ndo_xdp_flush(netdev); 236 } 237 } 238 239 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or 240 * update happens in parallel here a dev_put wont happen until after reading the 241 * ifindex. 242 */ 243 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 244 { 245 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 246 struct bpf_dtab_netdev *dev; 247 248 if (key >= map->max_entries) 249 return NULL; 250 251 dev = READ_ONCE(dtab->netdev_map[key]); 252 return dev ? dev->dev : NULL; 253 } 254 255 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 256 { 257 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key); 258 259 return dev ? &dev->ifindex : NULL; 260 } 261 262 static void dev_map_flush_old(struct bpf_dtab_netdev *dev) 263 { 264 if (dev->dev->netdev_ops->ndo_xdp_flush) { 265 struct net_device *fl = dev->dev; 266 unsigned long *bitmap; 267 int cpu; 268 269 for_each_online_cpu(cpu) { 270 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu); 271 __clear_bit(dev->bit, bitmap); 272 273 fl->netdev_ops->ndo_xdp_flush(dev->dev); 274 } 275 } 276 } 277 278 static void __dev_map_entry_free(struct rcu_head *rcu) 279 { 280 struct bpf_dtab_netdev *dev; 281 282 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 283 dev_map_flush_old(dev); 284 dev_put(dev->dev); 285 kfree(dev); 286 } 287 288 static int dev_map_delete_elem(struct bpf_map *map, void *key) 289 { 290 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 291 struct bpf_dtab_netdev *old_dev; 292 int k = *(u32 *)key; 293 294 if (k >= map->max_entries) 295 return -EINVAL; 296 297 /* Use call_rcu() here to ensure any rcu critical sections have 298 * completed, but this does not guarantee a flush has happened 299 * yet. Because driver side rcu_read_lock/unlock only protects the 300 * running XDP program. However, for pending flush operations the 301 * dev and ctx are stored in another per cpu map. And additionally, 302 * the driver tear down ensures all soft irqs are complete before 303 * removing the net device in the case of dev_put equals zero. 304 */ 305 old_dev = xchg(&dtab->netdev_map[k], NULL); 306 if (old_dev) 307 call_rcu(&old_dev->rcu, __dev_map_entry_free); 308 return 0; 309 } 310 311 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value, 312 u64 map_flags) 313 { 314 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 315 struct net *net = current->nsproxy->net_ns; 316 struct bpf_dtab_netdev *dev, *old_dev; 317 u32 i = *(u32 *)key; 318 u32 ifindex = *(u32 *)value; 319 320 if (unlikely(map_flags > BPF_EXIST)) 321 return -EINVAL; 322 if (unlikely(i >= dtab->map.max_entries)) 323 return -E2BIG; 324 if (unlikely(map_flags == BPF_NOEXIST)) 325 return -EEXIST; 326 327 if (!ifindex) { 328 dev = NULL; 329 } else { 330 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN, 331 map->numa_node); 332 if (!dev) 333 return -ENOMEM; 334 335 dev->dev = dev_get_by_index(net, ifindex); 336 if (!dev->dev) { 337 kfree(dev); 338 return -EINVAL; 339 } 340 341 dev->bit = i; 342 dev->dtab = dtab; 343 } 344 345 /* Use call_rcu() here to ensure rcu critical sections have completed 346 * Remembering the driver side flush operation will happen before the 347 * net device is removed. 348 */ 349 old_dev = xchg(&dtab->netdev_map[i], dev); 350 if (old_dev) 351 call_rcu(&old_dev->rcu, __dev_map_entry_free); 352 353 return 0; 354 } 355 356 const struct bpf_map_ops dev_map_ops = { 357 .map_alloc = dev_map_alloc, 358 .map_free = dev_map_free, 359 .map_get_next_key = dev_map_get_next_key, 360 .map_lookup_elem = dev_map_lookup_elem, 361 .map_update_elem = dev_map_update_elem, 362 .map_delete_elem = dev_map_delete_elem, 363 }; 364 365 static int dev_map_notification(struct notifier_block *notifier, 366 ulong event, void *ptr) 367 { 368 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 369 struct bpf_dtab *dtab; 370 int i; 371 372 switch (event) { 373 case NETDEV_UNREGISTER: 374 /* This rcu_read_lock/unlock pair is needed because 375 * dev_map_list is an RCU list AND to ensure a delete 376 * operation does not free a netdev_map entry while we 377 * are comparing it against the netdev being unregistered. 378 */ 379 rcu_read_lock(); 380 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 381 for (i = 0; i < dtab->map.max_entries; i++) { 382 struct bpf_dtab_netdev *dev, *odev; 383 384 dev = READ_ONCE(dtab->netdev_map[i]); 385 if (!dev || 386 dev->dev->ifindex != netdev->ifindex) 387 continue; 388 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL); 389 if (dev == odev) 390 call_rcu(&dev->rcu, 391 __dev_map_entry_free); 392 } 393 } 394 rcu_read_unlock(); 395 break; 396 default: 397 break; 398 } 399 return NOTIFY_OK; 400 } 401 402 static struct notifier_block dev_map_notifier = { 403 .notifier_call = dev_map_notification, 404 }; 405 406 static int __init dev_map_init(void) 407 { 408 register_netdevice_notifier(&dev_map_notifier); 409 return 0; 410 } 411 412 subsys_initcall(dev_map_init); 413