xref: /linux/kernel/bpf/devmap.c (revision 08b5fa819970c318e58ab638f497633c25971813)
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15  * spent some effort to ensure the datapath with redirect maps does not use
16  * any locking. This is a quick note on the details.
17  *
18  * We have three possible paths to get into the devmap control plane bpf
19  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20  * will invoke an update, delete, or lookup operation. To ensure updates and
21  * deletes appear atomic from the datapath side xchg() is used to modify the
22  * netdev_map array. Then because the datapath does a lookup into the netdev_map
23  * array (read-only) from an RCU critical section we use call_rcu() to wait for
24  * an rcu grace period before free'ing the old data structures. This ensures the
25  * datapath always has a valid copy. However, the datapath does a "flush"
26  * operation that pushes any pending packets in the driver outside the RCU
27  * critical section. Each bpf_dtab_netdev tracks these pending operations using
28  * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29  * until all bits are cleared indicating outstanding flush operations have
30  * completed.
31  *
32  * BPF syscalls may race with BPF program calls on any of the update, delete
33  * or lookup operations. As noted above the xchg() operation also keep the
34  * netdev_map consistent in this case. From the devmap side BPF programs
35  * calling into these operations are the same as multiple user space threads
36  * making system calls.
37  *
38  * Finally, any of the above may race with a netdev_unregister notifier. The
39  * unregister notifier must search for net devices in the map structure that
40  * contain a reference to the net device and remove them. This is a two step
41  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42  * check to see if the ifindex is the same as the net_device being removed.
43  * When removing the dev a cmpxchg() is used to ensure the correct dev is
44  * removed, in the case of a concurrent update or delete operation it is
45  * possible that the initially referenced dev is no longer in the map. As the
46  * notifier hook walks the map we know that new dev references can not be
47  * added by the user because core infrastructure ensures dev_get_by_index()
48  * calls will fail at this point.
49  */
50 #include <linux/bpf.h>
51 #include <net/xdp.h>
52 #include <linux/filter.h>
53 #include <trace/events/xdp.h>
54 
55 #define DEV_CREATE_FLAG_MASK \
56 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
57 
58 #define DEV_MAP_BULK_SIZE 16
59 struct xdp_bulk_queue {
60 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
61 	struct net_device *dev_rx;
62 	unsigned int count;
63 };
64 
65 struct bpf_dtab_netdev {
66 	struct net_device *dev; /* must be first member, due to tracepoint */
67 	struct bpf_dtab *dtab;
68 	unsigned int bit;
69 	struct xdp_bulk_queue __percpu *bulkq;
70 	struct rcu_head rcu;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map;
76 	unsigned long __percpu *flush_needed;
77 	struct list_head list;
78 };
79 
80 static DEFINE_SPINLOCK(dev_map_lock);
81 static LIST_HEAD(dev_map_list);
82 
83 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
84 {
85 	return BITS_TO_LONGS((u64) attr->max_entries) * sizeof(unsigned long);
86 }
87 
88 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
89 {
90 	struct bpf_dtab *dtab;
91 	int err = -EINVAL;
92 	u64 cost;
93 
94 	if (!capable(CAP_NET_ADMIN))
95 		return ERR_PTR(-EPERM);
96 
97 	/* check sanity of attributes */
98 	if (attr->max_entries == 0 || attr->key_size != 4 ||
99 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
100 		return ERR_PTR(-EINVAL);
101 
102 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
103 	if (!dtab)
104 		return ERR_PTR(-ENOMEM);
105 
106 	bpf_map_init_from_attr(&dtab->map, attr);
107 
108 	/* make sure page count doesn't overflow */
109 	cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
110 	cost += dev_map_bitmap_size(attr) * num_possible_cpus();
111 	if (cost >= U32_MAX - PAGE_SIZE)
112 		goto free_dtab;
113 
114 	dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
115 
116 	/* if map size is larger than memlock limit, reject it early */
117 	err = bpf_map_precharge_memlock(dtab->map.pages);
118 	if (err)
119 		goto free_dtab;
120 
121 	err = -ENOMEM;
122 
123 	/* A per cpu bitfield with a bit per possible net device */
124 	dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
125 						__alignof__(unsigned long),
126 						GFP_KERNEL | __GFP_NOWARN);
127 	if (!dtab->flush_needed)
128 		goto free_dtab;
129 
130 	dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
131 					      sizeof(struct bpf_dtab_netdev *),
132 					      dtab->map.numa_node);
133 	if (!dtab->netdev_map)
134 		goto free_dtab;
135 
136 	spin_lock(&dev_map_lock);
137 	list_add_tail_rcu(&dtab->list, &dev_map_list);
138 	spin_unlock(&dev_map_lock);
139 
140 	return &dtab->map;
141 free_dtab:
142 	free_percpu(dtab->flush_needed);
143 	kfree(dtab);
144 	return ERR_PTR(err);
145 }
146 
147 static void dev_map_free(struct bpf_map *map)
148 {
149 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
150 	int i, cpu;
151 
152 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
153 	 * so the programs (can be more than one that used this map) were
154 	 * disconnected from events. Wait for outstanding critical sections in
155 	 * these programs to complete. The rcu critical section only guarantees
156 	 * no further reads against netdev_map. It does __not__ ensure pending
157 	 * flush operations (if any) are complete.
158 	 */
159 
160 	spin_lock(&dev_map_lock);
161 	list_del_rcu(&dtab->list);
162 	spin_unlock(&dev_map_lock);
163 
164 	synchronize_rcu();
165 
166 	/* To ensure all pending flush operations have completed wait for flush
167 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
168 	 * Because the above synchronize_rcu() ensures the map is disconnected
169 	 * from the program we can assume no new bits will be set.
170 	 */
171 	for_each_online_cpu(cpu) {
172 		unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
173 
174 		while (!bitmap_empty(bitmap, dtab->map.max_entries))
175 			cond_resched();
176 	}
177 
178 	for (i = 0; i < dtab->map.max_entries; i++) {
179 		struct bpf_dtab_netdev *dev;
180 
181 		dev = dtab->netdev_map[i];
182 		if (!dev)
183 			continue;
184 
185 		dev_put(dev->dev);
186 		kfree(dev);
187 	}
188 
189 	free_percpu(dtab->flush_needed);
190 	bpf_map_area_free(dtab->netdev_map);
191 	kfree(dtab);
192 }
193 
194 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
195 {
196 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
197 	u32 index = key ? *(u32 *)key : U32_MAX;
198 	u32 *next = next_key;
199 
200 	if (index >= dtab->map.max_entries) {
201 		*next = 0;
202 		return 0;
203 	}
204 
205 	if (index == dtab->map.max_entries - 1)
206 		return -ENOENT;
207 	*next = index + 1;
208 	return 0;
209 }
210 
211 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
212 {
213 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
214 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
215 
216 	__set_bit(bit, bitmap);
217 }
218 
219 static int bq_xmit_all(struct bpf_dtab_netdev *obj,
220 		       struct xdp_bulk_queue *bq, u32 flags,
221 		       bool in_napi_ctx)
222 {
223 	struct net_device *dev = obj->dev;
224 	int sent = 0, drops = 0, err = 0;
225 	int i;
226 
227 	if (unlikely(!bq->count))
228 		return 0;
229 
230 	for (i = 0; i < bq->count; i++) {
231 		struct xdp_frame *xdpf = bq->q[i];
232 
233 		prefetch(xdpf);
234 	}
235 
236 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
237 	if (sent < 0) {
238 		err = sent;
239 		sent = 0;
240 		goto error;
241 	}
242 	drops = bq->count - sent;
243 out:
244 	bq->count = 0;
245 
246 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->bit,
247 			      sent, drops, bq->dev_rx, dev, err);
248 	bq->dev_rx = NULL;
249 	return 0;
250 error:
251 	/* If ndo_xdp_xmit fails with an errno, no frames have been
252 	 * xmit'ed and it's our responsibility to them free all.
253 	 */
254 	for (i = 0; i < bq->count; i++) {
255 		struct xdp_frame *xdpf = bq->q[i];
256 
257 		/* RX path under NAPI protection, can return frames faster */
258 		if (likely(in_napi_ctx))
259 			xdp_return_frame_rx_napi(xdpf);
260 		else
261 			xdp_return_frame(xdpf);
262 		drops++;
263 	}
264 	goto out;
265 }
266 
267 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
268  * from the driver before returning from its napi->poll() routine. The poll()
269  * routine is called either from busy_poll context or net_rx_action signaled
270  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
271  * net device can be torn down. On devmap tear down we ensure the ctx bitmap
272  * is zeroed before completing to ensure all flush operations have completed.
273  */
274 void __dev_map_flush(struct bpf_map *map)
275 {
276 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
277 	unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
278 	u32 bit;
279 
280 	for_each_set_bit(bit, bitmap, map->max_entries) {
281 		struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
282 		struct xdp_bulk_queue *bq;
283 
284 		/* This is possible if the dev entry is removed by user space
285 		 * between xdp redirect and flush op.
286 		 */
287 		if (unlikely(!dev))
288 			continue;
289 
290 		__clear_bit(bit, bitmap);
291 
292 		bq = this_cpu_ptr(dev->bulkq);
293 		bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, true);
294 	}
295 }
296 
297 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
298  * update happens in parallel here a dev_put wont happen until after reading the
299  * ifindex.
300  */
301 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
302 {
303 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
304 	struct bpf_dtab_netdev *obj;
305 
306 	if (key >= map->max_entries)
307 		return NULL;
308 
309 	obj = READ_ONCE(dtab->netdev_map[key]);
310 	return obj;
311 }
312 
313 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
314  * Thus, safe percpu variable access.
315  */
316 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
317 		      struct net_device *dev_rx)
318 
319 {
320 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
321 
322 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
323 		bq_xmit_all(obj, bq, 0, true);
324 
325 	/* Ingress dev_rx will be the same for all xdp_frame's in
326 	 * bulk_queue, because bq stored per-CPU and must be flushed
327 	 * from net_device drivers NAPI func end.
328 	 */
329 	if (!bq->dev_rx)
330 		bq->dev_rx = dev_rx;
331 
332 	bq->q[bq->count++] = xdpf;
333 	return 0;
334 }
335 
336 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
337 		    struct net_device *dev_rx)
338 {
339 	struct net_device *dev = dst->dev;
340 	struct xdp_frame *xdpf;
341 	int err;
342 
343 	if (!dev->netdev_ops->ndo_xdp_xmit)
344 		return -EOPNOTSUPP;
345 
346 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
347 	if (unlikely(err))
348 		return err;
349 
350 	xdpf = convert_to_xdp_frame(xdp);
351 	if (unlikely(!xdpf))
352 		return -EOVERFLOW;
353 
354 	return bq_enqueue(dst, xdpf, dev_rx);
355 }
356 
357 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
358 			     struct bpf_prog *xdp_prog)
359 {
360 	int err;
361 
362 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
363 	if (unlikely(err))
364 		return err;
365 	skb->dev = dst->dev;
366 	generic_xdp_tx(skb, xdp_prog);
367 
368 	return 0;
369 }
370 
371 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
372 {
373 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
374 	struct net_device *dev = obj ? obj->dev : NULL;
375 
376 	return dev ? &dev->ifindex : NULL;
377 }
378 
379 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
380 {
381 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
382 		struct xdp_bulk_queue *bq;
383 		unsigned long *bitmap;
384 
385 		int cpu;
386 
387 		for_each_online_cpu(cpu) {
388 			bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
389 			__clear_bit(dev->bit, bitmap);
390 
391 			bq = per_cpu_ptr(dev->bulkq, cpu);
392 			bq_xmit_all(dev, bq, XDP_XMIT_FLUSH, false);
393 		}
394 	}
395 }
396 
397 static void __dev_map_entry_free(struct rcu_head *rcu)
398 {
399 	struct bpf_dtab_netdev *dev;
400 
401 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
402 	dev_map_flush_old(dev);
403 	free_percpu(dev->bulkq);
404 	dev_put(dev->dev);
405 	kfree(dev);
406 }
407 
408 static int dev_map_delete_elem(struct bpf_map *map, void *key)
409 {
410 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
411 	struct bpf_dtab_netdev *old_dev;
412 	int k = *(u32 *)key;
413 
414 	if (k >= map->max_entries)
415 		return -EINVAL;
416 
417 	/* Use call_rcu() here to ensure any rcu critical sections have
418 	 * completed, but this does not guarantee a flush has happened
419 	 * yet. Because driver side rcu_read_lock/unlock only protects the
420 	 * running XDP program. However, for pending flush operations the
421 	 * dev and ctx are stored in another per cpu map. And additionally,
422 	 * the driver tear down ensures all soft irqs are complete before
423 	 * removing the net device in the case of dev_put equals zero.
424 	 */
425 	old_dev = xchg(&dtab->netdev_map[k], NULL);
426 	if (old_dev)
427 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
428 	return 0;
429 }
430 
431 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
432 				u64 map_flags)
433 {
434 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
435 	struct net *net = current->nsproxy->net_ns;
436 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
437 	struct bpf_dtab_netdev *dev, *old_dev;
438 	u32 i = *(u32 *)key;
439 	u32 ifindex = *(u32 *)value;
440 
441 	if (unlikely(map_flags > BPF_EXIST))
442 		return -EINVAL;
443 	if (unlikely(i >= dtab->map.max_entries))
444 		return -E2BIG;
445 	if (unlikely(map_flags == BPF_NOEXIST))
446 		return -EEXIST;
447 
448 	if (!ifindex) {
449 		dev = NULL;
450 	} else {
451 		dev = kmalloc_node(sizeof(*dev), gfp, map->numa_node);
452 		if (!dev)
453 			return -ENOMEM;
454 
455 		dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
456 						sizeof(void *), gfp);
457 		if (!dev->bulkq) {
458 			kfree(dev);
459 			return -ENOMEM;
460 		}
461 
462 		dev->dev = dev_get_by_index(net, ifindex);
463 		if (!dev->dev) {
464 			free_percpu(dev->bulkq);
465 			kfree(dev);
466 			return -EINVAL;
467 		}
468 
469 		dev->bit = i;
470 		dev->dtab = dtab;
471 	}
472 
473 	/* Use call_rcu() here to ensure rcu critical sections have completed
474 	 * Remembering the driver side flush operation will happen before the
475 	 * net device is removed.
476 	 */
477 	old_dev = xchg(&dtab->netdev_map[i], dev);
478 	if (old_dev)
479 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
480 
481 	return 0;
482 }
483 
484 const struct bpf_map_ops dev_map_ops = {
485 	.map_alloc = dev_map_alloc,
486 	.map_free = dev_map_free,
487 	.map_get_next_key = dev_map_get_next_key,
488 	.map_lookup_elem = dev_map_lookup_elem,
489 	.map_update_elem = dev_map_update_elem,
490 	.map_delete_elem = dev_map_delete_elem,
491 	.map_check_btf = map_check_no_btf,
492 };
493 
494 static int dev_map_notification(struct notifier_block *notifier,
495 				ulong event, void *ptr)
496 {
497 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
498 	struct bpf_dtab *dtab;
499 	int i;
500 
501 	switch (event) {
502 	case NETDEV_UNREGISTER:
503 		/* This rcu_read_lock/unlock pair is needed because
504 		 * dev_map_list is an RCU list AND to ensure a delete
505 		 * operation does not free a netdev_map entry while we
506 		 * are comparing it against the netdev being unregistered.
507 		 */
508 		rcu_read_lock();
509 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
510 			for (i = 0; i < dtab->map.max_entries; i++) {
511 				struct bpf_dtab_netdev *dev, *odev;
512 
513 				dev = READ_ONCE(dtab->netdev_map[i]);
514 				if (!dev ||
515 				    dev->dev->ifindex != netdev->ifindex)
516 					continue;
517 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
518 				if (dev == odev)
519 					call_rcu(&dev->rcu,
520 						 __dev_map_entry_free);
521 			}
522 		}
523 		rcu_read_unlock();
524 		break;
525 	default:
526 		break;
527 	}
528 	return NOTIFY_OK;
529 }
530 
531 static struct notifier_block dev_map_notifier = {
532 	.notifier_call = dev_map_notification,
533 };
534 
535 static int __init dev_map_init(void)
536 {
537 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
538 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
539 		     offsetof(struct _bpf_dtab_netdev, dev));
540 	register_netdevice_notifier(&dev_map_notifier);
541 	return 0;
542 }
543 
544 subsys_initcall(dev_map_init);
545