1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io 3 */ 4 5 /* Devmaps primary use is as a backend map for XDP BPF helper call 6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we 7 * spent some effort to ensure the datapath with redirect maps does not use 8 * any locking. This is a quick note on the details. 9 * 10 * We have three possible paths to get into the devmap control plane bpf 11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall 12 * will invoke an update, delete, or lookup operation. To ensure updates and 13 * deletes appear atomic from the datapath side xchg() is used to modify the 14 * netdev_map array. Then because the datapath does a lookup into the netdev_map 15 * array (read-only) from an RCU critical section we use call_rcu() to wait for 16 * an rcu grace period before free'ing the old data structures. This ensures the 17 * datapath always has a valid copy. However, the datapath does a "flush" 18 * operation that pushes any pending packets in the driver outside the RCU 19 * critical section. Each bpf_dtab_netdev tracks these pending operations using 20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until 21 * this list is empty, indicating outstanding flush operations have completed. 22 * 23 * BPF syscalls may race with BPF program calls on any of the update, delete 24 * or lookup operations. As noted above the xchg() operation also keep the 25 * netdev_map consistent in this case. From the devmap side BPF programs 26 * calling into these operations are the same as multiple user space threads 27 * making system calls. 28 * 29 * Finally, any of the above may race with a netdev_unregister notifier. The 30 * unregister notifier must search for net devices in the map structure that 31 * contain a reference to the net device and remove them. This is a two step 32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) 33 * check to see if the ifindex is the same as the net_device being removed. 34 * When removing the dev a cmpxchg() is used to ensure the correct dev is 35 * removed, in the case of a concurrent update or delete operation it is 36 * possible that the initially referenced dev is no longer in the map. As the 37 * notifier hook walks the map we know that new dev references can not be 38 * added by the user because core infrastructure ensures dev_get_by_index() 39 * calls will fail at this point. 40 * 41 * The devmap_hash type is a map type which interprets keys as ifindexes and 42 * indexes these using a hashmap. This allows maps that use ifindex as key to be 43 * densely packed instead of having holes in the lookup array for unused 44 * ifindexes. The setup and packet enqueue/send code is shared between the two 45 * types of devmap; only the lookup and insertion is different. 46 */ 47 #include <linux/bpf.h> 48 #include <net/xdp.h> 49 #include <linux/filter.h> 50 #include <trace/events/xdp.h> 51 #include <linux/btf_ids.h> 52 53 #define DEV_CREATE_FLAG_MASK \ 54 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) 55 56 struct xdp_dev_bulk_queue { 57 struct xdp_frame *q[DEV_MAP_BULK_SIZE]; 58 struct list_head flush_node; 59 struct net_device *dev; 60 struct net_device *dev_rx; 61 struct bpf_prog *xdp_prog; 62 unsigned int count; 63 }; 64 65 struct bpf_dtab_netdev { 66 struct net_device *dev; /* must be first member, due to tracepoint */ 67 struct hlist_node index_hlist; 68 struct bpf_prog *xdp_prog; 69 struct rcu_head rcu; 70 unsigned int idx; 71 struct bpf_devmap_val val; 72 }; 73 74 struct bpf_dtab { 75 struct bpf_map map; 76 struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ 77 struct list_head list; 78 79 /* these are only used for DEVMAP_HASH type maps */ 80 struct hlist_head *dev_index_head; 81 spinlock_t index_lock; 82 unsigned int items; 83 u32 n_buckets; 84 }; 85 86 static DEFINE_PER_CPU(struct list_head, dev_flush_list); 87 static DEFINE_SPINLOCK(dev_map_lock); 88 static LIST_HEAD(dev_map_list); 89 90 static struct hlist_head *dev_map_create_hash(unsigned int entries, 91 int numa_node) 92 { 93 int i; 94 struct hlist_head *hash; 95 96 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); 97 if (hash != NULL) 98 for (i = 0; i < entries; i++) 99 INIT_HLIST_HEAD(&hash[i]); 100 101 return hash; 102 } 103 104 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, 105 int idx) 106 { 107 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; 108 } 109 110 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) 111 { 112 u32 valsize = attr->value_size; 113 114 /* check sanity of attributes. 2 value sizes supported: 115 * 4 bytes: ifindex 116 * 8 bytes: ifindex + prog fd 117 */ 118 if (attr->max_entries == 0 || attr->key_size != 4 || 119 (valsize != offsetofend(struct bpf_devmap_val, ifindex) && 120 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || 121 attr->map_flags & ~DEV_CREATE_FLAG_MASK) 122 return -EINVAL; 123 124 /* Lookup returns a pointer straight to dev->ifindex, so make sure the 125 * verifier prevents writes from the BPF side 126 */ 127 attr->map_flags |= BPF_F_RDONLY_PROG; 128 129 130 bpf_map_init_from_attr(&dtab->map, attr); 131 132 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 133 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); 134 135 if (!dtab->n_buckets) /* Overflow check */ 136 return -EINVAL; 137 } 138 139 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 140 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, 141 dtab->map.numa_node); 142 if (!dtab->dev_index_head) 143 return -ENOMEM; 144 145 spin_lock_init(&dtab->index_lock); 146 } else { 147 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * 148 sizeof(struct bpf_dtab_netdev *), 149 dtab->map.numa_node); 150 if (!dtab->netdev_map) 151 return -ENOMEM; 152 } 153 154 return 0; 155 } 156 157 static struct bpf_map *dev_map_alloc(union bpf_attr *attr) 158 { 159 struct bpf_dtab *dtab; 160 int err; 161 162 dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); 163 if (!dtab) 164 return ERR_PTR(-ENOMEM); 165 166 err = dev_map_init_map(dtab, attr); 167 if (err) { 168 bpf_map_area_free(dtab); 169 return ERR_PTR(err); 170 } 171 172 spin_lock(&dev_map_lock); 173 list_add_tail_rcu(&dtab->list, &dev_map_list); 174 spin_unlock(&dev_map_lock); 175 176 return &dtab->map; 177 } 178 179 static void dev_map_free(struct bpf_map *map) 180 { 181 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 182 int i; 183 184 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 185 * so the programs (can be more than one that used this map) were 186 * disconnected from events. The following synchronize_rcu() guarantees 187 * both rcu read critical sections complete and waits for 188 * preempt-disable regions (NAPI being the relevant context here) so we 189 * are certain there will be no further reads against the netdev_map and 190 * all flush operations are complete. Flush operations can only be done 191 * from NAPI context for this reason. 192 */ 193 194 spin_lock(&dev_map_lock); 195 list_del_rcu(&dtab->list); 196 spin_unlock(&dev_map_lock); 197 198 bpf_clear_redirect_map(map); 199 synchronize_rcu(); 200 201 /* Make sure prior __dev_map_entry_free() have completed. */ 202 rcu_barrier(); 203 204 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 205 for (i = 0; i < dtab->n_buckets; i++) { 206 struct bpf_dtab_netdev *dev; 207 struct hlist_head *head; 208 struct hlist_node *next; 209 210 head = dev_map_index_hash(dtab, i); 211 212 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 213 hlist_del_rcu(&dev->index_hlist); 214 if (dev->xdp_prog) 215 bpf_prog_put(dev->xdp_prog); 216 dev_put(dev->dev); 217 kfree(dev); 218 } 219 } 220 221 bpf_map_area_free(dtab->dev_index_head); 222 } else { 223 for (i = 0; i < dtab->map.max_entries; i++) { 224 struct bpf_dtab_netdev *dev; 225 226 dev = rcu_dereference_raw(dtab->netdev_map[i]); 227 if (!dev) 228 continue; 229 230 if (dev->xdp_prog) 231 bpf_prog_put(dev->xdp_prog); 232 dev_put(dev->dev); 233 kfree(dev); 234 } 235 236 bpf_map_area_free(dtab->netdev_map); 237 } 238 239 bpf_map_area_free(dtab); 240 } 241 242 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 243 { 244 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 245 u32 index = key ? *(u32 *)key : U32_MAX; 246 u32 *next = next_key; 247 248 if (index >= dtab->map.max_entries) { 249 *next = 0; 250 return 0; 251 } 252 253 if (index == dtab->map.max_entries - 1) 254 return -ENOENT; 255 *next = index + 1; 256 return 0; 257 } 258 259 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 260 * by local_bh_disable() (from XDP calls inside NAPI). The 261 * rcu_read_lock_bh_held() below makes lockdep accept both. 262 */ 263 static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) 264 { 265 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 266 struct hlist_head *head = dev_map_index_hash(dtab, key); 267 struct bpf_dtab_netdev *dev; 268 269 hlist_for_each_entry_rcu(dev, head, index_hlist, 270 lockdep_is_held(&dtab->index_lock)) 271 if (dev->idx == key) 272 return dev; 273 274 return NULL; 275 } 276 277 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, 278 void *next_key) 279 { 280 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 281 u32 idx, *next = next_key; 282 struct bpf_dtab_netdev *dev, *next_dev; 283 struct hlist_head *head; 284 int i = 0; 285 286 if (!key) 287 goto find_first; 288 289 idx = *(u32 *)key; 290 291 dev = __dev_map_hash_lookup_elem(map, idx); 292 if (!dev) 293 goto find_first; 294 295 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), 296 struct bpf_dtab_netdev, index_hlist); 297 298 if (next_dev) { 299 *next = next_dev->idx; 300 return 0; 301 } 302 303 i = idx & (dtab->n_buckets - 1); 304 i++; 305 306 find_first: 307 for (; i < dtab->n_buckets; i++) { 308 head = dev_map_index_hash(dtab, i); 309 310 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), 311 struct bpf_dtab_netdev, 312 index_hlist); 313 if (next_dev) { 314 *next = next_dev->idx; 315 return 0; 316 } 317 } 318 319 return -ENOENT; 320 } 321 322 static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, 323 struct xdp_frame **frames, int n, 324 struct net_device *dev) 325 { 326 struct xdp_txq_info txq = { .dev = dev }; 327 struct xdp_buff xdp; 328 int i, nframes = 0; 329 330 for (i = 0; i < n; i++) { 331 struct xdp_frame *xdpf = frames[i]; 332 u32 act; 333 int err; 334 335 xdp_convert_frame_to_buff(xdpf, &xdp); 336 xdp.txq = &txq; 337 338 act = bpf_prog_run_xdp(xdp_prog, &xdp); 339 switch (act) { 340 case XDP_PASS: 341 err = xdp_update_frame_from_buff(&xdp, xdpf); 342 if (unlikely(err < 0)) 343 xdp_return_frame_rx_napi(xdpf); 344 else 345 frames[nframes++] = xdpf; 346 break; 347 default: 348 bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); 349 fallthrough; 350 case XDP_ABORTED: 351 trace_xdp_exception(dev, xdp_prog, act); 352 fallthrough; 353 case XDP_DROP: 354 xdp_return_frame_rx_napi(xdpf); 355 break; 356 } 357 } 358 return nframes; /* sent frames count */ 359 } 360 361 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) 362 { 363 struct net_device *dev = bq->dev; 364 unsigned int cnt = bq->count; 365 int sent = 0, err = 0; 366 int to_send = cnt; 367 int i; 368 369 if (unlikely(!cnt)) 370 return; 371 372 for (i = 0; i < cnt; i++) { 373 struct xdp_frame *xdpf = bq->q[i]; 374 375 prefetch(xdpf); 376 } 377 378 if (bq->xdp_prog) { 379 to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev); 380 if (!to_send) 381 goto out; 382 } 383 384 sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); 385 if (sent < 0) { 386 /* If ndo_xdp_xmit fails with an errno, no frames have 387 * been xmit'ed. 388 */ 389 err = sent; 390 sent = 0; 391 } 392 393 /* If not all frames have been transmitted, it is our 394 * responsibility to free them 395 */ 396 for (i = sent; unlikely(i < to_send); i++) 397 xdp_return_frame_rx_napi(bq->q[i]); 398 399 out: 400 bq->count = 0; 401 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); 402 } 403 404 /* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the 405 * driver before returning from its napi->poll() routine. See the comment above 406 * xdp_do_flush() in filter.c. 407 */ 408 void __dev_flush(void) 409 { 410 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 411 struct xdp_dev_bulk_queue *bq, *tmp; 412 413 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 414 bq_xmit_all(bq, XDP_XMIT_FLUSH); 415 bq->dev_rx = NULL; 416 bq->xdp_prog = NULL; 417 __list_del_clearprev(&bq->flush_node); 418 } 419 } 420 421 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 422 * by local_bh_disable() (from XDP calls inside NAPI). The 423 * rcu_read_lock_bh_held() below makes lockdep accept both. 424 */ 425 static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) 426 { 427 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 428 struct bpf_dtab_netdev *obj; 429 430 if (key >= map->max_entries) 431 return NULL; 432 433 obj = rcu_dereference_check(dtab->netdev_map[key], 434 rcu_read_lock_bh_held()); 435 return obj; 436 } 437 438 /* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu 439 * variable access, and map elements stick around. See comment above 440 * xdp_do_flush() in filter.c. 441 */ 442 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 443 struct net_device *dev_rx, struct bpf_prog *xdp_prog) 444 { 445 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list); 446 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); 447 448 if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) 449 bq_xmit_all(bq, 0); 450 451 /* Ingress dev_rx will be the same for all xdp_frame's in 452 * bulk_queue, because bq stored per-CPU and must be flushed 453 * from net_device drivers NAPI func end. 454 * 455 * Do the same with xdp_prog and flush_list since these fields 456 * are only ever modified together. 457 */ 458 if (!bq->dev_rx) { 459 bq->dev_rx = dev_rx; 460 bq->xdp_prog = xdp_prog; 461 list_add(&bq->flush_node, flush_list); 462 } 463 464 bq->q[bq->count++] = xdpf; 465 } 466 467 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 468 struct net_device *dev_rx, 469 struct bpf_prog *xdp_prog) 470 { 471 int err; 472 473 if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 474 return -EOPNOTSUPP; 475 476 if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 477 xdp_frame_has_frags(xdpf))) 478 return -EOPNOTSUPP; 479 480 err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); 481 if (unlikely(err)) 482 return err; 483 484 bq_enqueue(dev, xdpf, dev_rx, xdp_prog); 485 return 0; 486 } 487 488 static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) 489 { 490 struct xdp_txq_info txq = { .dev = dst->dev }; 491 struct xdp_buff xdp; 492 u32 act; 493 494 if (!dst->xdp_prog) 495 return XDP_PASS; 496 497 __skb_pull(skb, skb->mac_len); 498 xdp.txq = &txq; 499 500 act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); 501 switch (act) { 502 case XDP_PASS: 503 __skb_push(skb, skb->mac_len); 504 break; 505 default: 506 bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); 507 fallthrough; 508 case XDP_ABORTED: 509 trace_xdp_exception(dst->dev, dst->xdp_prog, act); 510 fallthrough; 511 case XDP_DROP: 512 kfree_skb(skb); 513 break; 514 } 515 516 return act; 517 } 518 519 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 520 struct net_device *dev_rx) 521 { 522 return __xdp_enqueue(dev, xdpf, dev_rx, NULL); 523 } 524 525 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 526 struct net_device *dev_rx) 527 { 528 struct net_device *dev = dst->dev; 529 530 return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); 531 } 532 533 static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) 534 { 535 if (!obj) 536 return false; 537 538 if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) 539 return false; 540 541 if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && 542 xdp_frame_has_frags(xdpf))) 543 return false; 544 545 if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) 546 return false; 547 548 return true; 549 } 550 551 static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, 552 struct net_device *dev_rx, 553 struct xdp_frame *xdpf) 554 { 555 struct xdp_frame *nxdpf; 556 557 nxdpf = xdpf_clone(xdpf); 558 if (!nxdpf) 559 return -ENOMEM; 560 561 bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); 562 563 return 0; 564 } 565 566 static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) 567 { 568 while (num_excluded--) { 569 if (ifindex == excluded[num_excluded]) 570 return true; 571 } 572 return false; 573 } 574 575 /* Get ifindex of each upper device. 'indexes' must be able to hold at 576 * least MAX_NEST_DEV elements. 577 * Returns the number of ifindexes added. 578 */ 579 static int get_upper_ifindexes(struct net_device *dev, int *indexes) 580 { 581 struct net_device *upper; 582 struct list_head *iter; 583 int n = 0; 584 585 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 586 indexes[n++] = upper->ifindex; 587 } 588 return n; 589 } 590 591 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 592 struct bpf_map *map, bool exclude_ingress) 593 { 594 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 595 struct bpf_dtab_netdev *dst, *last_dst = NULL; 596 int excluded_devices[1+MAX_NEST_DEV]; 597 struct hlist_head *head; 598 int num_excluded = 0; 599 unsigned int i; 600 int err; 601 602 if (exclude_ingress) { 603 num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); 604 excluded_devices[num_excluded++] = dev_rx->ifindex; 605 } 606 607 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 608 for (i = 0; i < map->max_entries; i++) { 609 dst = rcu_dereference_check(dtab->netdev_map[i], 610 rcu_read_lock_bh_held()); 611 if (!is_valid_dst(dst, xdpf)) 612 continue; 613 614 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 615 continue; 616 617 /* we only need n-1 clones; last_dst enqueued below */ 618 if (!last_dst) { 619 last_dst = dst; 620 continue; 621 } 622 623 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 624 if (err) 625 return err; 626 627 last_dst = dst; 628 } 629 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 630 for (i = 0; i < dtab->n_buckets; i++) { 631 head = dev_map_index_hash(dtab, i); 632 hlist_for_each_entry_rcu(dst, head, index_hlist, 633 lockdep_is_held(&dtab->index_lock)) { 634 if (!is_valid_dst(dst, xdpf)) 635 continue; 636 637 if (is_ifindex_excluded(excluded_devices, num_excluded, 638 dst->dev->ifindex)) 639 continue; 640 641 /* we only need n-1 clones; last_dst enqueued below */ 642 if (!last_dst) { 643 last_dst = dst; 644 continue; 645 } 646 647 err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); 648 if (err) 649 return err; 650 651 last_dst = dst; 652 } 653 } 654 } 655 656 /* consume the last copy of the frame */ 657 if (last_dst) 658 bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); 659 else 660 xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ 661 662 return 0; 663 } 664 665 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 666 struct bpf_prog *xdp_prog) 667 { 668 int err; 669 670 err = xdp_ok_fwd_dev(dst->dev, skb->len); 671 if (unlikely(err)) 672 return err; 673 674 /* Redirect has already succeeded semantically at this point, so we just 675 * return 0 even if packet is dropped. Helper below takes care of 676 * freeing skb. 677 */ 678 if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) 679 return 0; 680 681 skb->dev = dst->dev; 682 generic_xdp_tx(skb, xdp_prog); 683 684 return 0; 685 } 686 687 static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, 688 struct sk_buff *skb, 689 struct bpf_prog *xdp_prog) 690 { 691 struct sk_buff *nskb; 692 int err; 693 694 nskb = skb_clone(skb, GFP_ATOMIC); 695 if (!nskb) 696 return -ENOMEM; 697 698 err = dev_map_generic_redirect(dst, nskb, xdp_prog); 699 if (unlikely(err)) { 700 consume_skb(nskb); 701 return err; 702 } 703 704 return 0; 705 } 706 707 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 708 struct bpf_prog *xdp_prog, struct bpf_map *map, 709 bool exclude_ingress) 710 { 711 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 712 struct bpf_dtab_netdev *dst, *last_dst = NULL; 713 int excluded_devices[1+MAX_NEST_DEV]; 714 struct hlist_head *head; 715 struct hlist_node *next; 716 int num_excluded = 0; 717 unsigned int i; 718 int err; 719 720 if (exclude_ingress) { 721 num_excluded = get_upper_ifindexes(dev, excluded_devices); 722 excluded_devices[num_excluded++] = dev->ifindex; 723 } 724 725 if (map->map_type == BPF_MAP_TYPE_DEVMAP) { 726 for (i = 0; i < map->max_entries; i++) { 727 dst = rcu_dereference_check(dtab->netdev_map[i], 728 rcu_read_lock_bh_held()); 729 if (!dst) 730 continue; 731 732 if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) 733 continue; 734 735 /* we only need n-1 clones; last_dst enqueued below */ 736 if (!last_dst) { 737 last_dst = dst; 738 continue; 739 } 740 741 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 742 if (err) 743 return err; 744 745 last_dst = dst; 746 747 } 748 } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ 749 for (i = 0; i < dtab->n_buckets; i++) { 750 head = dev_map_index_hash(dtab, i); 751 hlist_for_each_entry_safe(dst, next, head, index_hlist) { 752 if (!dst) 753 continue; 754 755 if (is_ifindex_excluded(excluded_devices, num_excluded, 756 dst->dev->ifindex)) 757 continue; 758 759 /* we only need n-1 clones; last_dst enqueued below */ 760 if (!last_dst) { 761 last_dst = dst; 762 continue; 763 } 764 765 err = dev_map_redirect_clone(last_dst, skb, xdp_prog); 766 if (err) 767 return err; 768 769 last_dst = dst; 770 } 771 } 772 } 773 774 /* consume the first skb and return */ 775 if (last_dst) 776 return dev_map_generic_redirect(last_dst, skb, xdp_prog); 777 778 /* dtab is empty */ 779 consume_skb(skb); 780 return 0; 781 } 782 783 static void *dev_map_lookup_elem(struct bpf_map *map, void *key) 784 { 785 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); 786 787 return obj ? &obj->val : NULL; 788 } 789 790 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) 791 { 792 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, 793 *(u32 *)key); 794 return obj ? &obj->val : NULL; 795 } 796 797 static void __dev_map_entry_free(struct rcu_head *rcu) 798 { 799 struct bpf_dtab_netdev *dev; 800 801 dev = container_of(rcu, struct bpf_dtab_netdev, rcu); 802 if (dev->xdp_prog) 803 bpf_prog_put(dev->xdp_prog); 804 dev_put(dev->dev); 805 kfree(dev); 806 } 807 808 static long dev_map_delete_elem(struct bpf_map *map, void *key) 809 { 810 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 811 struct bpf_dtab_netdev *old_dev; 812 int k = *(u32 *)key; 813 814 if (k >= map->max_entries) 815 return -EINVAL; 816 817 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); 818 if (old_dev) { 819 call_rcu(&old_dev->rcu, __dev_map_entry_free); 820 atomic_dec((atomic_t *)&dtab->items); 821 } 822 return 0; 823 } 824 825 static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) 826 { 827 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 828 struct bpf_dtab_netdev *old_dev; 829 int k = *(u32 *)key; 830 unsigned long flags; 831 int ret = -ENOENT; 832 833 spin_lock_irqsave(&dtab->index_lock, flags); 834 835 old_dev = __dev_map_hash_lookup_elem(map, k); 836 if (old_dev) { 837 dtab->items--; 838 hlist_del_init_rcu(&old_dev->index_hlist); 839 call_rcu(&old_dev->rcu, __dev_map_entry_free); 840 ret = 0; 841 } 842 spin_unlock_irqrestore(&dtab->index_lock, flags); 843 844 return ret; 845 } 846 847 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, 848 struct bpf_dtab *dtab, 849 struct bpf_devmap_val *val, 850 unsigned int idx) 851 { 852 struct bpf_prog *prog = NULL; 853 struct bpf_dtab_netdev *dev; 854 855 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), 856 GFP_NOWAIT | __GFP_NOWARN, 857 dtab->map.numa_node); 858 if (!dev) 859 return ERR_PTR(-ENOMEM); 860 861 dev->dev = dev_get_by_index(net, val->ifindex); 862 if (!dev->dev) 863 goto err_out; 864 865 if (val->bpf_prog.fd > 0) { 866 prog = bpf_prog_get_type_dev(val->bpf_prog.fd, 867 BPF_PROG_TYPE_XDP, false); 868 if (IS_ERR(prog)) 869 goto err_put_dev; 870 if (prog->expected_attach_type != BPF_XDP_DEVMAP || 871 !bpf_prog_map_compatible(&dtab->map, prog)) 872 goto err_put_prog; 873 } 874 875 dev->idx = idx; 876 if (prog) { 877 dev->xdp_prog = prog; 878 dev->val.bpf_prog.id = prog->aux->id; 879 } else { 880 dev->xdp_prog = NULL; 881 dev->val.bpf_prog.id = 0; 882 } 883 dev->val.ifindex = val->ifindex; 884 885 return dev; 886 err_put_prog: 887 bpf_prog_put(prog); 888 err_put_dev: 889 dev_put(dev->dev); 890 err_out: 891 kfree(dev); 892 return ERR_PTR(-EINVAL); 893 } 894 895 static long __dev_map_update_elem(struct net *net, struct bpf_map *map, 896 void *key, void *value, u64 map_flags) 897 { 898 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 899 struct bpf_dtab_netdev *dev, *old_dev; 900 struct bpf_devmap_val val = {}; 901 u32 i = *(u32 *)key; 902 903 if (unlikely(map_flags > BPF_EXIST)) 904 return -EINVAL; 905 if (unlikely(i >= dtab->map.max_entries)) 906 return -E2BIG; 907 if (unlikely(map_flags == BPF_NOEXIST)) 908 return -EEXIST; 909 910 /* already verified value_size <= sizeof val */ 911 memcpy(&val, value, map->value_size); 912 913 if (!val.ifindex) { 914 dev = NULL; 915 /* can not specify fd if ifindex is 0 */ 916 if (val.bpf_prog.fd > 0) 917 return -EINVAL; 918 } else { 919 dev = __dev_map_alloc_node(net, dtab, &val, i); 920 if (IS_ERR(dev)) 921 return PTR_ERR(dev); 922 } 923 924 /* Use call_rcu() here to ensure rcu critical sections have completed 925 * Remembering the driver side flush operation will happen before the 926 * net device is removed. 927 */ 928 old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); 929 if (old_dev) 930 call_rcu(&old_dev->rcu, __dev_map_entry_free); 931 else 932 atomic_inc((atomic_t *)&dtab->items); 933 934 return 0; 935 } 936 937 static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, 938 u64 map_flags) 939 { 940 return __dev_map_update_elem(current->nsproxy->net_ns, 941 map, key, value, map_flags); 942 } 943 944 static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, 945 void *key, void *value, u64 map_flags) 946 { 947 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 948 struct bpf_dtab_netdev *dev, *old_dev; 949 struct bpf_devmap_val val = {}; 950 u32 idx = *(u32 *)key; 951 unsigned long flags; 952 int err = -EEXIST; 953 954 /* already verified value_size <= sizeof val */ 955 memcpy(&val, value, map->value_size); 956 957 if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) 958 return -EINVAL; 959 960 spin_lock_irqsave(&dtab->index_lock, flags); 961 962 old_dev = __dev_map_hash_lookup_elem(map, idx); 963 if (old_dev && (map_flags & BPF_NOEXIST)) 964 goto out_err; 965 966 dev = __dev_map_alloc_node(net, dtab, &val, idx); 967 if (IS_ERR(dev)) { 968 err = PTR_ERR(dev); 969 goto out_err; 970 } 971 972 if (old_dev) { 973 hlist_del_rcu(&old_dev->index_hlist); 974 } else { 975 if (dtab->items >= dtab->map.max_entries) { 976 spin_unlock_irqrestore(&dtab->index_lock, flags); 977 call_rcu(&dev->rcu, __dev_map_entry_free); 978 return -E2BIG; 979 } 980 dtab->items++; 981 } 982 983 hlist_add_head_rcu(&dev->index_hlist, 984 dev_map_index_hash(dtab, idx)); 985 spin_unlock_irqrestore(&dtab->index_lock, flags); 986 987 if (old_dev) 988 call_rcu(&old_dev->rcu, __dev_map_entry_free); 989 990 return 0; 991 992 out_err: 993 spin_unlock_irqrestore(&dtab->index_lock, flags); 994 return err; 995 } 996 997 static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, 998 u64 map_flags) 999 { 1000 return __dev_map_hash_update_elem(current->nsproxy->net_ns, 1001 map, key, value, map_flags); 1002 } 1003 1004 static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1005 { 1006 return __bpf_xdp_redirect_map(map, ifindex, flags, 1007 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1008 __dev_map_lookup_elem); 1009 } 1010 1011 static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) 1012 { 1013 return __bpf_xdp_redirect_map(map, ifindex, flags, 1014 BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, 1015 __dev_map_hash_lookup_elem); 1016 } 1017 1018 static u64 dev_map_mem_usage(const struct bpf_map *map) 1019 { 1020 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); 1021 u64 usage = sizeof(struct bpf_dtab); 1022 1023 if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) 1024 usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); 1025 else 1026 usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); 1027 usage += atomic_read((atomic_t *)&dtab->items) * 1028 (u64)sizeof(struct bpf_dtab_netdev); 1029 return usage; 1030 } 1031 1032 BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) 1033 const struct bpf_map_ops dev_map_ops = { 1034 .map_meta_equal = bpf_map_meta_equal, 1035 .map_alloc = dev_map_alloc, 1036 .map_free = dev_map_free, 1037 .map_get_next_key = dev_map_get_next_key, 1038 .map_lookup_elem = dev_map_lookup_elem, 1039 .map_update_elem = dev_map_update_elem, 1040 .map_delete_elem = dev_map_delete_elem, 1041 .map_check_btf = map_check_no_btf, 1042 .map_mem_usage = dev_map_mem_usage, 1043 .map_btf_id = &dev_map_btf_ids[0], 1044 .map_redirect = dev_map_redirect, 1045 }; 1046 1047 const struct bpf_map_ops dev_map_hash_ops = { 1048 .map_meta_equal = bpf_map_meta_equal, 1049 .map_alloc = dev_map_alloc, 1050 .map_free = dev_map_free, 1051 .map_get_next_key = dev_map_hash_get_next_key, 1052 .map_lookup_elem = dev_map_hash_lookup_elem, 1053 .map_update_elem = dev_map_hash_update_elem, 1054 .map_delete_elem = dev_map_hash_delete_elem, 1055 .map_check_btf = map_check_no_btf, 1056 .map_mem_usage = dev_map_mem_usage, 1057 .map_btf_id = &dev_map_btf_ids[0], 1058 .map_redirect = dev_hash_map_redirect, 1059 }; 1060 1061 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, 1062 struct net_device *netdev) 1063 { 1064 unsigned long flags; 1065 u32 i; 1066 1067 spin_lock_irqsave(&dtab->index_lock, flags); 1068 for (i = 0; i < dtab->n_buckets; i++) { 1069 struct bpf_dtab_netdev *dev; 1070 struct hlist_head *head; 1071 struct hlist_node *next; 1072 1073 head = dev_map_index_hash(dtab, i); 1074 1075 hlist_for_each_entry_safe(dev, next, head, index_hlist) { 1076 if (netdev != dev->dev) 1077 continue; 1078 1079 dtab->items--; 1080 hlist_del_rcu(&dev->index_hlist); 1081 call_rcu(&dev->rcu, __dev_map_entry_free); 1082 } 1083 } 1084 spin_unlock_irqrestore(&dtab->index_lock, flags); 1085 } 1086 1087 static int dev_map_notification(struct notifier_block *notifier, 1088 ulong event, void *ptr) 1089 { 1090 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 1091 struct bpf_dtab *dtab; 1092 int i, cpu; 1093 1094 switch (event) { 1095 case NETDEV_REGISTER: 1096 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) 1097 break; 1098 1099 /* will be freed in free_netdev() */ 1100 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); 1101 if (!netdev->xdp_bulkq) 1102 return NOTIFY_BAD; 1103 1104 for_each_possible_cpu(cpu) 1105 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; 1106 break; 1107 case NETDEV_UNREGISTER: 1108 /* This rcu_read_lock/unlock pair is needed because 1109 * dev_map_list is an RCU list AND to ensure a delete 1110 * operation does not free a netdev_map entry while we 1111 * are comparing it against the netdev being unregistered. 1112 */ 1113 rcu_read_lock(); 1114 list_for_each_entry_rcu(dtab, &dev_map_list, list) { 1115 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { 1116 dev_map_hash_remove_netdev(dtab, netdev); 1117 continue; 1118 } 1119 1120 for (i = 0; i < dtab->map.max_entries; i++) { 1121 struct bpf_dtab_netdev *dev, *odev; 1122 1123 dev = rcu_dereference(dtab->netdev_map[i]); 1124 if (!dev || netdev != dev->dev) 1125 continue; 1126 odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); 1127 if (dev == odev) { 1128 call_rcu(&dev->rcu, 1129 __dev_map_entry_free); 1130 atomic_dec((atomic_t *)&dtab->items); 1131 } 1132 } 1133 } 1134 rcu_read_unlock(); 1135 break; 1136 default: 1137 break; 1138 } 1139 return NOTIFY_OK; 1140 } 1141 1142 static struct notifier_block dev_map_notifier = { 1143 .notifier_call = dev_map_notification, 1144 }; 1145 1146 static int __init dev_map_init(void) 1147 { 1148 int cpu; 1149 1150 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ 1151 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != 1152 offsetof(struct _bpf_dtab_netdev, dev)); 1153 register_netdevice_notifier(&dev_map_notifier); 1154 1155 for_each_possible_cpu(cpu) 1156 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu)); 1157 return 0; 1158 } 1159 1160 subsys_initcall(dev_map_init); 1161