xref: /linux/kernel/bpf/cpumap.c (revision f6d08d9d8543c8ee494b307804b28e2750ffedb9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that setting flush bit and flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct xdp_bulk_queue {
42 	void *q[CPU_MAP_BULK_SIZE];
43 	unsigned int count;
44 };
45 
46 /* Struct for every remote "destination" CPU in map */
47 struct bpf_cpu_map_entry {
48 	u32 cpu;    /* kthread CPU and map index */
49 	int map_id; /* Back reference to map */
50 	u32 qsize;  /* Queue size placeholder for map lookup */
51 
52 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
53 	struct xdp_bulk_queue __percpu *bulkq;
54 
55 	/* Queue with potential multi-producers, and single-consumer kthread */
56 	struct ptr_ring *queue;
57 	struct task_struct *kthread;
58 	struct work_struct kthread_stop_wq;
59 
60 	atomic_t refcnt; /* Control when this struct can be free'ed */
61 	struct rcu_head rcu;
62 };
63 
64 struct bpf_cpu_map {
65 	struct bpf_map map;
66 	/* Below members specific for map type */
67 	struct bpf_cpu_map_entry **cpu_map;
68 	unsigned long __percpu *flush_needed;
69 };
70 
71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
72 			     struct xdp_bulk_queue *bq, bool in_napi_ctx);
73 
74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
75 {
76 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
77 }
78 
79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
80 {
81 	struct bpf_cpu_map *cmap;
82 	int err = -ENOMEM;
83 	u64 cost;
84 	int ret;
85 
86 	if (!capable(CAP_SYS_ADMIN))
87 		return ERR_PTR(-EPERM);
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
92 		return ERR_PTR(-EINVAL);
93 
94 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
95 	if (!cmap)
96 		return ERR_PTR(-ENOMEM);
97 
98 	bpf_map_init_from_attr(&cmap->map, attr);
99 
100 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
101 	if (cmap->map.max_entries > NR_CPUS) {
102 		err = -E2BIG;
103 		goto free_cmap;
104 	}
105 
106 	/* make sure page count doesn't overflow */
107 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
108 	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
109 
110 	/* Notice returns -EPERM on if map size is larger than memlock limit */
111 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
112 	if (ret) {
113 		err = ret;
114 		goto free_cmap;
115 	}
116 
117 	/* A per cpu bitfield with a bit per possible CPU in map  */
118 	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
119 					    __alignof__(unsigned long));
120 	if (!cmap->flush_needed)
121 		goto free_charge;
122 
123 	/* Alloc array for possible remote "destination" CPUs */
124 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
125 					   sizeof(struct bpf_cpu_map_entry *),
126 					   cmap->map.numa_node);
127 	if (!cmap->cpu_map)
128 		goto free_percpu;
129 
130 	return &cmap->map;
131 free_percpu:
132 	free_percpu(cmap->flush_needed);
133 free_charge:
134 	bpf_map_charge_finish(&cmap->map.memory);
135 free_cmap:
136 	kfree(cmap);
137 	return ERR_PTR(err);
138 }
139 
140 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
141 {
142 	atomic_inc(&rcpu->refcnt);
143 }
144 
145 /* called from workqueue, to workaround syscall using preempt_disable */
146 static void cpu_map_kthread_stop(struct work_struct *work)
147 {
148 	struct bpf_cpu_map_entry *rcpu;
149 
150 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
151 
152 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
153 	 * as it waits until all in-flight call_rcu() callbacks complete.
154 	 */
155 	rcu_barrier();
156 
157 	/* kthread_stop will wake_up_process and wait for it to complete */
158 	kthread_stop(rcpu->kthread);
159 }
160 
161 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
162 					 struct xdp_frame *xdpf,
163 					 struct sk_buff *skb)
164 {
165 	unsigned int hard_start_headroom;
166 	unsigned int frame_size;
167 	void *pkt_data_start;
168 
169 	/* Part of headroom was reserved to xdpf */
170 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
171 
172 	/* build_skb need to place skb_shared_info after SKB end, and
173 	 * also want to know the memory "truesize".  Thus, need to
174 	 * know the memory frame size backing xdp_buff.
175 	 *
176 	 * XDP was designed to have PAGE_SIZE frames, but this
177 	 * assumption is not longer true with ixgbe and i40e.  It
178 	 * would be preferred to set frame_size to 2048 or 4096
179 	 * depending on the driver.
180 	 *   frame_size = 2048;
181 	 *   frame_len  = frame_size - sizeof(*xdp_frame);
182 	 *
183 	 * Instead, with info avail, skb_shared_info in placed after
184 	 * packet len.  This, unfortunately fakes the truesize.
185 	 * Another disadvantage of this approach, the skb_shared_info
186 	 * is not at a fixed memory location, with mixed length
187 	 * packets, which is bad for cache-line hotness.
188 	 */
189 	frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
190 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
191 
192 	pkt_data_start = xdpf->data - hard_start_headroom;
193 	skb = build_skb_around(skb, pkt_data_start, frame_size);
194 	if (unlikely(!skb))
195 		return NULL;
196 
197 	skb_reserve(skb, hard_start_headroom);
198 	__skb_put(skb, xdpf->len);
199 	if (xdpf->metasize)
200 		skb_metadata_set(skb, xdpf->metasize);
201 
202 	/* Essential SKB info: protocol and skb->dev */
203 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
204 
205 	/* Optional SKB info, currently missing:
206 	 * - HW checksum info		(skb->ip_summed)
207 	 * - HW RX hash			(skb_set_hash)
208 	 * - RX ring dev queue index	(skb_record_rx_queue)
209 	 */
210 
211 	/* Until page_pool get SKB return path, release DMA here */
212 	xdp_release_frame(xdpf);
213 
214 	/* Allow SKB to reuse area used by xdp_frame */
215 	xdp_scrub_frame(xdpf);
216 
217 	return skb;
218 }
219 
220 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
221 {
222 	/* The tear-down procedure should have made sure that queue is
223 	 * empty.  See __cpu_map_entry_replace() and work-queue
224 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
225 	 * gracefully and warn once.
226 	 */
227 	struct xdp_frame *xdpf;
228 
229 	while ((xdpf = ptr_ring_consume(ring)))
230 		if (WARN_ON_ONCE(xdpf))
231 			xdp_return_frame(xdpf);
232 }
233 
234 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
235 {
236 	if (atomic_dec_and_test(&rcpu->refcnt)) {
237 		/* The queue should be empty at this point */
238 		__cpu_map_ring_cleanup(rcpu->queue);
239 		ptr_ring_cleanup(rcpu->queue, NULL);
240 		kfree(rcpu->queue);
241 		kfree(rcpu);
242 	}
243 }
244 
245 #define CPUMAP_BATCH 8
246 
247 static int cpu_map_kthread_run(void *data)
248 {
249 	struct bpf_cpu_map_entry *rcpu = data;
250 
251 	set_current_state(TASK_INTERRUPTIBLE);
252 
253 	/* When kthread gives stop order, then rcpu have been disconnected
254 	 * from map, thus no new packets can enter. Remaining in-flight
255 	 * per CPU stored packets are flushed to this queue.  Wait honoring
256 	 * kthread_stop signal until queue is empty.
257 	 */
258 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
259 		unsigned int drops = 0, sched = 0;
260 		void *frames[CPUMAP_BATCH];
261 		void *skbs[CPUMAP_BATCH];
262 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
263 		int i, n, m;
264 
265 		/* Release CPU reschedule checks */
266 		if (__ptr_ring_empty(rcpu->queue)) {
267 			set_current_state(TASK_INTERRUPTIBLE);
268 			/* Recheck to avoid lost wake-up */
269 			if (__ptr_ring_empty(rcpu->queue)) {
270 				schedule();
271 				sched = 1;
272 			} else {
273 				__set_current_state(TASK_RUNNING);
274 			}
275 		} else {
276 			sched = cond_resched();
277 		}
278 
279 		/*
280 		 * The bpf_cpu_map_entry is single consumer, with this
281 		 * kthread CPU pinned. Lockless access to ptr_ring
282 		 * consume side valid as no-resize allowed of queue.
283 		 */
284 		n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
285 
286 		for (i = 0; i < n; i++) {
287 			void *f = frames[i];
288 			struct page *page = virt_to_page(f);
289 
290 			/* Bring struct page memory area to curr CPU. Read by
291 			 * build_skb_around via page_is_pfmemalloc(), and when
292 			 * freed written by page_frag_free call.
293 			 */
294 			prefetchw(page);
295 		}
296 
297 		m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
298 		if (unlikely(m == 0)) {
299 			for (i = 0; i < n; i++)
300 				skbs[i] = NULL; /* effect: xdp_return_frame */
301 			drops = n;
302 		}
303 
304 		local_bh_disable();
305 		for (i = 0; i < n; i++) {
306 			struct xdp_frame *xdpf = frames[i];
307 			struct sk_buff *skb = skbs[i];
308 			int ret;
309 
310 			skb = cpu_map_build_skb(rcpu, xdpf, skb);
311 			if (!skb) {
312 				xdp_return_frame(xdpf);
313 				continue;
314 			}
315 
316 			/* Inject into network stack */
317 			ret = netif_receive_skb_core(skb);
318 			if (ret == NET_RX_DROP)
319 				drops++;
320 		}
321 		/* Feedback loop via tracepoint */
322 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
323 
324 		local_bh_enable(); /* resched point, may call do_softirq() */
325 	}
326 	__set_current_state(TASK_RUNNING);
327 
328 	put_cpu_map_entry(rcpu);
329 	return 0;
330 }
331 
332 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
333 						       int map_id)
334 {
335 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
336 	struct bpf_cpu_map_entry *rcpu;
337 	int numa, err;
338 
339 	/* Have map->numa_node, but choose node of redirect target CPU */
340 	numa = cpu_to_node(cpu);
341 
342 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
343 	if (!rcpu)
344 		return NULL;
345 
346 	/* Alloc percpu bulkq */
347 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
348 					 sizeof(void *), gfp);
349 	if (!rcpu->bulkq)
350 		goto free_rcu;
351 
352 	/* Alloc queue */
353 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
354 	if (!rcpu->queue)
355 		goto free_bulkq;
356 
357 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
358 	if (err)
359 		goto free_queue;
360 
361 	rcpu->cpu    = cpu;
362 	rcpu->map_id = map_id;
363 	rcpu->qsize  = qsize;
364 
365 	/* Setup kthread */
366 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
367 					       "cpumap/%d/map:%d", cpu, map_id);
368 	if (IS_ERR(rcpu->kthread))
369 		goto free_ptr_ring;
370 
371 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
372 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
373 
374 	/* Make sure kthread runs on a single CPU */
375 	kthread_bind(rcpu->kthread, cpu);
376 	wake_up_process(rcpu->kthread);
377 
378 	return rcpu;
379 
380 free_ptr_ring:
381 	ptr_ring_cleanup(rcpu->queue, NULL);
382 free_queue:
383 	kfree(rcpu->queue);
384 free_bulkq:
385 	free_percpu(rcpu->bulkq);
386 free_rcu:
387 	kfree(rcpu);
388 	return NULL;
389 }
390 
391 static void __cpu_map_entry_free(struct rcu_head *rcu)
392 {
393 	struct bpf_cpu_map_entry *rcpu;
394 	int cpu;
395 
396 	/* This cpu_map_entry have been disconnected from map and one
397 	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
398 	 * new packets and cannot change/set flush_needed that can
399 	 * find this entry.
400 	 */
401 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
402 
403 	/* Flush remaining packets in percpu bulkq */
404 	for_each_online_cpu(cpu) {
405 		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
406 
407 		/* No concurrent bq_enqueue can run at this point */
408 		bq_flush_to_queue(rcpu, bq, false);
409 	}
410 	free_percpu(rcpu->bulkq);
411 	/* Cannot kthread_stop() here, last put free rcpu resources */
412 	put_cpu_map_entry(rcpu);
413 }
414 
415 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
416  * ensure any driver rcu critical sections have completed, but this
417  * does not guarantee a flush has happened yet. Because driver side
418  * rcu_read_lock/unlock only protects the running XDP program.  The
419  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
420  * pending flush op doesn't fail.
421  *
422  * The bpf_cpu_map_entry is still used by the kthread, and there can
423  * still be pending packets (in queue and percpu bulkq).  A refcnt
424  * makes sure to last user (kthread_stop vs. call_rcu) free memory
425  * resources.
426  *
427  * The rcu callback __cpu_map_entry_free flush remaining packets in
428  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
429  * preemption, cannot call kthread_stop() to make sure queue is empty.
430  * Instead a work_queue is started for stopping kthread,
431  * cpu_map_kthread_stop, which waits for an RCU graze period before
432  * stopping kthread, emptying the queue.
433  */
434 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
435 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
436 {
437 	struct bpf_cpu_map_entry *old_rcpu;
438 
439 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
440 	if (old_rcpu) {
441 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
442 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
443 		schedule_work(&old_rcpu->kthread_stop_wq);
444 	}
445 }
446 
447 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
448 {
449 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
450 	u32 key_cpu = *(u32 *)key;
451 
452 	if (key_cpu >= map->max_entries)
453 		return -EINVAL;
454 
455 	/* notice caller map_delete_elem() use preempt_disable() */
456 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
457 	return 0;
458 }
459 
460 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
461 			       u64 map_flags)
462 {
463 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
464 	struct bpf_cpu_map_entry *rcpu;
465 
466 	/* Array index key correspond to CPU number */
467 	u32 key_cpu = *(u32 *)key;
468 	/* Value is the queue size */
469 	u32 qsize = *(u32 *)value;
470 
471 	if (unlikely(map_flags > BPF_EXIST))
472 		return -EINVAL;
473 	if (unlikely(key_cpu >= cmap->map.max_entries))
474 		return -E2BIG;
475 	if (unlikely(map_flags == BPF_NOEXIST))
476 		return -EEXIST;
477 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
478 		return -EOVERFLOW;
479 
480 	/* Make sure CPU is a valid possible cpu */
481 	if (!cpu_possible(key_cpu))
482 		return -ENODEV;
483 
484 	if (qsize == 0) {
485 		rcpu = NULL; /* Same as deleting */
486 	} else {
487 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
488 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
489 		if (!rcpu)
490 			return -ENOMEM;
491 	}
492 	rcu_read_lock();
493 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
494 	rcu_read_unlock();
495 	return 0;
496 }
497 
498 static void cpu_map_free(struct bpf_map *map)
499 {
500 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
501 	int cpu;
502 	u32 i;
503 
504 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
505 	 * so the bpf programs (can be more than one that used this map) were
506 	 * disconnected from events. Wait for outstanding critical sections in
507 	 * these programs to complete. The rcu critical section only guarantees
508 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
509 	 * It does __not__ ensure pending flush operations (if any) are
510 	 * complete.
511 	 */
512 
513 	bpf_clear_redirect_map(map);
514 	synchronize_rcu();
515 
516 	/* To ensure all pending flush operations have completed wait for flush
517 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
518 	 * Because the above synchronize_rcu() ensures the map is disconnected
519 	 * from the program we can assume no new bits will be set.
520 	 */
521 	for_each_online_cpu(cpu) {
522 		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
523 
524 		while (!bitmap_empty(bitmap, cmap->map.max_entries))
525 			cond_resched();
526 	}
527 
528 	/* For cpu_map the remote CPUs can still be using the entries
529 	 * (struct bpf_cpu_map_entry).
530 	 */
531 	for (i = 0; i < cmap->map.max_entries; i++) {
532 		struct bpf_cpu_map_entry *rcpu;
533 
534 		rcpu = READ_ONCE(cmap->cpu_map[i]);
535 		if (!rcpu)
536 			continue;
537 
538 		/* bq flush and cleanup happens after RCU graze-period */
539 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
540 	}
541 	free_percpu(cmap->flush_needed);
542 	bpf_map_area_free(cmap->cpu_map);
543 	kfree(cmap);
544 }
545 
546 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
547 {
548 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
549 	struct bpf_cpu_map_entry *rcpu;
550 
551 	if (key >= map->max_entries)
552 		return NULL;
553 
554 	rcpu = READ_ONCE(cmap->cpu_map[key]);
555 	return rcpu;
556 }
557 
558 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
559 {
560 	struct bpf_cpu_map_entry *rcpu =
561 		__cpu_map_lookup_elem(map, *(u32 *)key);
562 
563 	return rcpu ? &rcpu->qsize : NULL;
564 }
565 
566 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
567 {
568 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569 	u32 index = key ? *(u32 *)key : U32_MAX;
570 	u32 *next = next_key;
571 
572 	if (index >= cmap->map.max_entries) {
573 		*next = 0;
574 		return 0;
575 	}
576 
577 	if (index == cmap->map.max_entries - 1)
578 		return -ENOENT;
579 	*next = index + 1;
580 	return 0;
581 }
582 
583 const struct bpf_map_ops cpu_map_ops = {
584 	.map_alloc		= cpu_map_alloc,
585 	.map_free		= cpu_map_free,
586 	.map_delete_elem	= cpu_map_delete_elem,
587 	.map_update_elem	= cpu_map_update_elem,
588 	.map_lookup_elem	= cpu_map_lookup_elem,
589 	.map_get_next_key	= cpu_map_get_next_key,
590 	.map_check_btf		= map_check_no_btf,
591 };
592 
593 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
594 			     struct xdp_bulk_queue *bq, bool in_napi_ctx)
595 {
596 	unsigned int processed = 0, drops = 0;
597 	const int to_cpu = rcpu->cpu;
598 	struct ptr_ring *q;
599 	int i;
600 
601 	if (unlikely(!bq->count))
602 		return 0;
603 
604 	q = rcpu->queue;
605 	spin_lock(&q->producer_lock);
606 
607 	for (i = 0; i < bq->count; i++) {
608 		struct xdp_frame *xdpf = bq->q[i];
609 		int err;
610 
611 		err = __ptr_ring_produce(q, xdpf);
612 		if (err) {
613 			drops++;
614 			if (likely(in_napi_ctx))
615 				xdp_return_frame_rx_napi(xdpf);
616 			else
617 				xdp_return_frame(xdpf);
618 		}
619 		processed++;
620 	}
621 	bq->count = 0;
622 	spin_unlock(&q->producer_lock);
623 
624 	/* Feedback loop via tracepoints */
625 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
626 	return 0;
627 }
628 
629 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
630  * Thus, safe percpu variable access.
631  */
632 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
633 {
634 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
635 
636 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
637 		bq_flush_to_queue(rcpu, bq, true);
638 
639 	/* Notice, xdp_buff/page MUST be queued here, long enough for
640 	 * driver to code invoking us to finished, due to driver
641 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
642 	 *
643 	 * Thus, incoming xdp_frame is always queued here (else we race
644 	 * with another CPU on page-refcnt and remaining driver code).
645 	 * Queue time is very short, as driver will invoke flush
646 	 * operation, when completing napi->poll call.
647 	 */
648 	bq->q[bq->count++] = xdpf;
649 	return 0;
650 }
651 
652 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
653 		    struct net_device *dev_rx)
654 {
655 	struct xdp_frame *xdpf;
656 
657 	xdpf = convert_to_xdp_frame(xdp);
658 	if (unlikely(!xdpf))
659 		return -EOVERFLOW;
660 
661 	/* Info needed when constructing SKB on remote CPU */
662 	xdpf->dev_rx = dev_rx;
663 
664 	bq_enqueue(rcpu, xdpf);
665 	return 0;
666 }
667 
668 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
669 {
670 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
671 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
672 
673 	__set_bit(bit, bitmap);
674 }
675 
676 void __cpu_map_flush(struct bpf_map *map)
677 {
678 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
679 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
680 	u32 bit;
681 
682 	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
683 	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
684 	 * bitmap indicate which percpu bulkq have packets.
685 	 */
686 	for_each_set_bit(bit, bitmap, map->max_entries) {
687 		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
688 		struct xdp_bulk_queue *bq;
689 
690 		/* This is possible if entry is removed by user space
691 		 * between xdp redirect and flush op.
692 		 */
693 		if (unlikely(!rcpu))
694 			continue;
695 
696 		__clear_bit(bit, bitmap);
697 
698 		/* Flush all frames in bulkq to real queue */
699 		bq = this_cpu_ptr(rcpu->bulkq);
700 		bq_flush_to_queue(rcpu, bq, true);
701 
702 		/* If already running, costs spin_lock_irqsave + smb_mb */
703 		wake_up_process(rcpu->kthread);
704 	}
705 }
706