xref: /linux/kernel/bpf/cpumap.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 #include <net/hotdata.h>
28 
29 #include <linux/sched.h>
30 #include <linux/workqueue.h>
31 #include <linux/kthread.h>
32 #include <linux/completion.h>
33 #include <trace/events/xdp.h>
34 #include <linux/btf_ids.h>
35 
36 #include <linux/netdevice.h>   /* netif_receive_skb_list */
37 #include <linux/etherdevice.h> /* eth_type_trans */
38 
39 /* General idea: XDP packets getting XDP redirected to another CPU,
40  * will maximum be stored/queued for one driver ->poll() call.  It is
41  * guaranteed that queueing the frame and the flush operation happen on
42  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
43  * which queue in bpf_cpu_map_entry contains packets.
44  */
45 
46 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
47 struct bpf_cpu_map_entry;
48 struct bpf_cpu_map;
49 
50 struct xdp_bulk_queue {
51 	void *q[CPU_MAP_BULK_SIZE];
52 	struct list_head flush_node;
53 	struct bpf_cpu_map_entry *obj;
54 	unsigned int count;
55 };
56 
57 /* Struct for every remote "destination" CPU in map */
58 struct bpf_cpu_map_entry {
59 	u32 cpu;    /* kthread CPU and map index */
60 	int map_id; /* Back reference to map */
61 
62 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
63 	struct xdp_bulk_queue __percpu *bulkq;
64 
65 	/* Queue with potential multi-producers, and single-consumer kthread */
66 	struct ptr_ring *queue;
67 	struct task_struct *kthread;
68 
69 	struct bpf_cpumap_val value;
70 	struct bpf_prog *prog;
71 
72 	struct completion kthread_running;
73 	struct rcu_work free_work;
74 };
75 
76 struct bpf_cpu_map {
77 	struct bpf_map map;
78 	/* Below members specific for map type */
79 	struct bpf_cpu_map_entry __rcu **cpu_map;
80 };
81 
82 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
83 
84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
85 {
86 	u32 value_size = attr->value_size;
87 	struct bpf_cpu_map *cmap;
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
92 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
93 	    attr->map_flags & ~BPF_F_NUMA_NODE)
94 		return ERR_PTR(-EINVAL);
95 
96 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
97 	if (attr->max_entries > NR_CPUS)
98 		return ERR_PTR(-E2BIG);
99 
100 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
101 	if (!cmap)
102 		return ERR_PTR(-ENOMEM);
103 
104 	bpf_map_init_from_attr(&cmap->map, attr);
105 
106 	/* Alloc array for possible remote "destination" CPUs */
107 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
108 					   sizeof(struct bpf_cpu_map_entry *),
109 					   cmap->map.numa_node);
110 	if (!cmap->cpu_map) {
111 		bpf_map_area_free(cmap);
112 		return ERR_PTR(-ENOMEM);
113 	}
114 
115 	return &cmap->map;
116 }
117 
118 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
119 {
120 	/* The tear-down procedure should have made sure that queue is
121 	 * empty.  See __cpu_map_entry_replace() and work-queue
122 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
123 	 * gracefully and warn once.
124 	 */
125 	void *ptr;
126 
127 	while ((ptr = ptr_ring_consume(ring))) {
128 		WARN_ON_ONCE(1);
129 		if (unlikely(__ptr_test_bit(0, &ptr))) {
130 			__ptr_clear_bit(0, &ptr);
131 			kfree_skb(ptr);
132 			continue;
133 		}
134 		xdp_return_frame(ptr);
135 	}
136 }
137 
138 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
139 				     struct list_head *listp,
140 				     struct xdp_cpumap_stats *stats)
141 {
142 	struct sk_buff *skb, *tmp;
143 	struct xdp_buff xdp;
144 	u32 act;
145 	int err;
146 
147 	list_for_each_entry_safe(skb, tmp, listp, list) {
148 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
149 		switch (act) {
150 		case XDP_PASS:
151 			break;
152 		case XDP_REDIRECT:
153 			skb_list_del_init(skb);
154 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
155 						      rcpu->prog);
156 			if (unlikely(err)) {
157 				kfree_skb(skb);
158 				stats->drop++;
159 			} else {
160 				stats->redirect++;
161 			}
162 			return;
163 		default:
164 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
165 			fallthrough;
166 		case XDP_ABORTED:
167 			trace_xdp_exception(skb->dev, rcpu->prog, act);
168 			fallthrough;
169 		case XDP_DROP:
170 			skb_list_del_init(skb);
171 			kfree_skb(skb);
172 			stats->drop++;
173 			return;
174 		}
175 	}
176 }
177 
178 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
179 				    void **frames, int n,
180 				    struct xdp_cpumap_stats *stats)
181 {
182 	struct xdp_rxq_info rxq = {};
183 	struct xdp_buff xdp;
184 	int i, nframes = 0;
185 
186 	xdp_set_return_frame_no_direct();
187 	xdp.rxq = &rxq;
188 
189 	for (i = 0; i < n; i++) {
190 		struct xdp_frame *xdpf = frames[i];
191 		u32 act;
192 		int err;
193 
194 		rxq.dev = xdpf->dev_rx;
195 		rxq.mem = xdpf->mem;
196 		/* TODO: report queue_index to xdp_rxq_info */
197 
198 		xdp_convert_frame_to_buff(xdpf, &xdp);
199 
200 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
201 		switch (act) {
202 		case XDP_PASS:
203 			err = xdp_update_frame_from_buff(&xdp, xdpf);
204 			if (err < 0) {
205 				xdp_return_frame(xdpf);
206 				stats->drop++;
207 			} else {
208 				frames[nframes++] = xdpf;
209 				stats->pass++;
210 			}
211 			break;
212 		case XDP_REDIRECT:
213 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
214 					      rcpu->prog);
215 			if (unlikely(err)) {
216 				xdp_return_frame(xdpf);
217 				stats->drop++;
218 			} else {
219 				stats->redirect++;
220 			}
221 			break;
222 		default:
223 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
224 			fallthrough;
225 		case XDP_DROP:
226 			xdp_return_frame(xdpf);
227 			stats->drop++;
228 			break;
229 		}
230 	}
231 
232 	xdp_clear_return_frame_no_direct();
233 
234 	return nframes;
235 }
236 
237 #define CPUMAP_BATCH 8
238 
239 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
240 				int xdp_n, struct xdp_cpumap_stats *stats,
241 				struct list_head *list)
242 {
243 	int nframes;
244 
245 	if (!rcpu->prog)
246 		return xdp_n;
247 
248 	rcu_read_lock_bh();
249 
250 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
251 
252 	if (stats->redirect)
253 		xdp_do_flush();
254 
255 	if (unlikely(!list_empty(list)))
256 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
257 
258 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
259 
260 	return nframes;
261 }
262 
263 static int cpu_map_kthread_run(void *data)
264 {
265 	struct bpf_cpu_map_entry *rcpu = data;
266 
267 	complete(&rcpu->kthread_running);
268 	set_current_state(TASK_INTERRUPTIBLE);
269 
270 	/* When kthread gives stop order, then rcpu have been disconnected
271 	 * from map, thus no new packets can enter. Remaining in-flight
272 	 * per CPU stored packets are flushed to this queue.  Wait honoring
273 	 * kthread_stop signal until queue is empty.
274 	 */
275 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
276 		struct xdp_cpumap_stats stats = {}; /* zero stats */
277 		unsigned int kmem_alloc_drops = 0, sched = 0;
278 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
279 		int i, n, m, nframes, xdp_n;
280 		void *frames[CPUMAP_BATCH];
281 		void *skbs[CPUMAP_BATCH];
282 		LIST_HEAD(list);
283 
284 		/* Release CPU reschedule checks */
285 		if (__ptr_ring_empty(rcpu->queue)) {
286 			set_current_state(TASK_INTERRUPTIBLE);
287 			/* Recheck to avoid lost wake-up */
288 			if (__ptr_ring_empty(rcpu->queue)) {
289 				schedule();
290 				sched = 1;
291 			} else {
292 				__set_current_state(TASK_RUNNING);
293 			}
294 		} else {
295 			sched = cond_resched();
296 		}
297 
298 		/*
299 		 * The bpf_cpu_map_entry is single consumer, with this
300 		 * kthread CPU pinned. Lockless access to ptr_ring
301 		 * consume side valid as no-resize allowed of queue.
302 		 */
303 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
304 					       CPUMAP_BATCH);
305 		for (i = 0, xdp_n = 0; i < n; i++) {
306 			void *f = frames[i];
307 			struct page *page;
308 
309 			if (unlikely(__ptr_test_bit(0, &f))) {
310 				struct sk_buff *skb = f;
311 
312 				__ptr_clear_bit(0, &skb);
313 				list_add_tail(&skb->list, &list);
314 				continue;
315 			}
316 
317 			frames[xdp_n++] = f;
318 			page = virt_to_page(f);
319 
320 			/* Bring struct page memory area to curr CPU. Read by
321 			 * build_skb_around via page_is_pfmemalloc(), and when
322 			 * freed written by page_frag_free call.
323 			 */
324 			prefetchw(page);
325 		}
326 
327 		/* Support running another XDP prog on this CPU */
328 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
329 		if (nframes) {
330 			m = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
331 						  gfp, nframes, skbs);
332 			if (unlikely(m == 0)) {
333 				for (i = 0; i < nframes; i++)
334 					skbs[i] = NULL; /* effect: xdp_return_frame */
335 				kmem_alloc_drops += nframes;
336 			}
337 		}
338 
339 		local_bh_disable();
340 		for (i = 0; i < nframes; i++) {
341 			struct xdp_frame *xdpf = frames[i];
342 			struct sk_buff *skb = skbs[i];
343 
344 			skb = __xdp_build_skb_from_frame(xdpf, skb,
345 							 xdpf->dev_rx);
346 			if (!skb) {
347 				xdp_return_frame(xdpf);
348 				continue;
349 			}
350 
351 			list_add_tail(&skb->list, &list);
352 		}
353 		netif_receive_skb_list(&list);
354 
355 		/* Feedback loop via tracepoint */
356 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
357 					 sched, &stats);
358 
359 		local_bh_enable(); /* resched point, may call do_softirq() */
360 	}
361 	__set_current_state(TASK_RUNNING);
362 
363 	return 0;
364 }
365 
366 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
367 				      struct bpf_map *map, int fd)
368 {
369 	struct bpf_prog *prog;
370 
371 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
372 	if (IS_ERR(prog))
373 		return PTR_ERR(prog);
374 
375 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
376 	    !bpf_prog_map_compatible(map, prog)) {
377 		bpf_prog_put(prog);
378 		return -EINVAL;
379 	}
380 
381 	rcpu->value.bpf_prog.id = prog->aux->id;
382 	rcpu->prog = prog;
383 
384 	return 0;
385 }
386 
387 static struct bpf_cpu_map_entry *
388 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
389 		      u32 cpu)
390 {
391 	int numa, err, i, fd = value->bpf_prog.fd;
392 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
393 	struct bpf_cpu_map_entry *rcpu;
394 	struct xdp_bulk_queue *bq;
395 
396 	/* Have map->numa_node, but choose node of redirect target CPU */
397 	numa = cpu_to_node(cpu);
398 
399 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
400 	if (!rcpu)
401 		return NULL;
402 
403 	/* Alloc percpu bulkq */
404 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
405 					   sizeof(void *), gfp);
406 	if (!rcpu->bulkq)
407 		goto free_rcu;
408 
409 	for_each_possible_cpu(i) {
410 		bq = per_cpu_ptr(rcpu->bulkq, i);
411 		bq->obj = rcpu;
412 	}
413 
414 	/* Alloc queue */
415 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
416 					   numa);
417 	if (!rcpu->queue)
418 		goto free_bulkq;
419 
420 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
421 	if (err)
422 		goto free_queue;
423 
424 	rcpu->cpu    = cpu;
425 	rcpu->map_id = map->id;
426 	rcpu->value.qsize  = value->qsize;
427 
428 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
429 		goto free_ptr_ring;
430 
431 	/* Setup kthread */
432 	init_completion(&rcpu->kthread_running);
433 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
434 					       "cpumap/%d/map:%d", cpu,
435 					       map->id);
436 	if (IS_ERR(rcpu->kthread))
437 		goto free_prog;
438 
439 	/* Make sure kthread runs on a single CPU */
440 	kthread_bind(rcpu->kthread, cpu);
441 	wake_up_process(rcpu->kthread);
442 
443 	/* Make sure kthread has been running, so kthread_stop() will not
444 	 * stop the kthread prematurely and all pending frames or skbs
445 	 * will be handled by the kthread before kthread_stop() returns.
446 	 */
447 	wait_for_completion(&rcpu->kthread_running);
448 
449 	return rcpu;
450 
451 free_prog:
452 	if (rcpu->prog)
453 		bpf_prog_put(rcpu->prog);
454 free_ptr_ring:
455 	ptr_ring_cleanup(rcpu->queue, NULL);
456 free_queue:
457 	kfree(rcpu->queue);
458 free_bulkq:
459 	free_percpu(rcpu->bulkq);
460 free_rcu:
461 	kfree(rcpu);
462 	return NULL;
463 }
464 
465 static void __cpu_map_entry_free(struct work_struct *work)
466 {
467 	struct bpf_cpu_map_entry *rcpu;
468 
469 	/* This cpu_map_entry have been disconnected from map and one
470 	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
471 	 * new packets and cannot change/set flush_needed that can
472 	 * find this entry.
473 	 */
474 	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
475 
476 	/* kthread_stop will wake_up_process and wait for it to complete.
477 	 * cpu_map_kthread_run() makes sure the pointer ring is empty
478 	 * before exiting.
479 	 */
480 	kthread_stop(rcpu->kthread);
481 
482 	if (rcpu->prog)
483 		bpf_prog_put(rcpu->prog);
484 	/* The queue should be empty at this point */
485 	__cpu_map_ring_cleanup(rcpu->queue);
486 	ptr_ring_cleanup(rcpu->queue, NULL);
487 	kfree(rcpu->queue);
488 	free_percpu(rcpu->bulkq);
489 	kfree(rcpu);
490 }
491 
492 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
493  * entry is no longer in use before freeing. We use queue_rcu_work() to call
494  * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
495  * period. This means that (a) all pending enqueue and flush operations have
496  * completed (because of the RCU callback), and (b) we are in a workqueue
497  * context where we can stop the kthread and wait for it to exit before freeing
498  * everything.
499  */
500 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
501 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
502 {
503 	struct bpf_cpu_map_entry *old_rcpu;
504 
505 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
506 	if (old_rcpu) {
507 		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
508 		queue_rcu_work(system_wq, &old_rcpu->free_work);
509 	}
510 }
511 
512 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
513 {
514 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
515 	u32 key_cpu = *(u32 *)key;
516 
517 	if (key_cpu >= map->max_entries)
518 		return -EINVAL;
519 
520 	/* notice caller map_delete_elem() uses rcu_read_lock() */
521 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
522 	return 0;
523 }
524 
525 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
526 				u64 map_flags)
527 {
528 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
529 	struct bpf_cpumap_val cpumap_value = {};
530 	struct bpf_cpu_map_entry *rcpu;
531 	/* Array index key correspond to CPU number */
532 	u32 key_cpu = *(u32 *)key;
533 
534 	memcpy(&cpumap_value, value, map->value_size);
535 
536 	if (unlikely(map_flags > BPF_EXIST))
537 		return -EINVAL;
538 	if (unlikely(key_cpu >= cmap->map.max_entries))
539 		return -E2BIG;
540 	if (unlikely(map_flags == BPF_NOEXIST))
541 		return -EEXIST;
542 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
543 		return -EOVERFLOW;
544 
545 	/* Make sure CPU is a valid possible cpu */
546 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
547 		return -ENODEV;
548 
549 	if (cpumap_value.qsize == 0) {
550 		rcpu = NULL; /* Same as deleting */
551 	} else {
552 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
553 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
554 		if (!rcpu)
555 			return -ENOMEM;
556 	}
557 	rcu_read_lock();
558 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
559 	rcu_read_unlock();
560 	return 0;
561 }
562 
563 static void cpu_map_free(struct bpf_map *map)
564 {
565 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
566 	u32 i;
567 
568 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
569 	 * so the bpf programs (can be more than one that used this map) were
570 	 * disconnected from events. Wait for outstanding critical sections in
571 	 * these programs to complete. synchronize_rcu() below not only
572 	 * guarantees no further "XDP/bpf-side" reads against
573 	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
574 	 * (if any) are completed.
575 	 */
576 	synchronize_rcu();
577 
578 	/* The only possible user of bpf_cpu_map_entry is
579 	 * cpu_map_kthread_run().
580 	 */
581 	for (i = 0; i < cmap->map.max_entries; i++) {
582 		struct bpf_cpu_map_entry *rcpu;
583 
584 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
585 		if (!rcpu)
586 			continue;
587 
588 		/* Stop kthread and cleanup entry directly */
589 		__cpu_map_entry_free(&rcpu->free_work.work);
590 	}
591 	bpf_map_area_free(cmap->cpu_map);
592 	bpf_map_area_free(cmap);
593 }
594 
595 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
596  * by local_bh_disable() (from XDP calls inside NAPI). The
597  * rcu_read_lock_bh_held() below makes lockdep accept both.
598  */
599 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
600 {
601 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
602 	struct bpf_cpu_map_entry *rcpu;
603 
604 	if (key >= map->max_entries)
605 		return NULL;
606 
607 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
608 				     rcu_read_lock_bh_held());
609 	return rcpu;
610 }
611 
612 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
613 {
614 	struct bpf_cpu_map_entry *rcpu =
615 		__cpu_map_lookup_elem(map, *(u32 *)key);
616 
617 	return rcpu ? &rcpu->value : NULL;
618 }
619 
620 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
621 {
622 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
623 	u32 index = key ? *(u32 *)key : U32_MAX;
624 	u32 *next = next_key;
625 
626 	if (index >= cmap->map.max_entries) {
627 		*next = 0;
628 		return 0;
629 	}
630 
631 	if (index == cmap->map.max_entries - 1)
632 		return -ENOENT;
633 	*next = index + 1;
634 	return 0;
635 }
636 
637 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
638 {
639 	return __bpf_xdp_redirect_map(map, index, flags, 0,
640 				      __cpu_map_lookup_elem);
641 }
642 
643 static u64 cpu_map_mem_usage(const struct bpf_map *map)
644 {
645 	u64 usage = sizeof(struct bpf_cpu_map);
646 
647 	/* Currently the dynamically allocated elements are not counted */
648 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
649 	return usage;
650 }
651 
652 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
653 const struct bpf_map_ops cpu_map_ops = {
654 	.map_meta_equal		= bpf_map_meta_equal,
655 	.map_alloc		= cpu_map_alloc,
656 	.map_free		= cpu_map_free,
657 	.map_delete_elem	= cpu_map_delete_elem,
658 	.map_update_elem	= cpu_map_update_elem,
659 	.map_lookup_elem	= cpu_map_lookup_elem,
660 	.map_get_next_key	= cpu_map_get_next_key,
661 	.map_check_btf		= map_check_no_btf,
662 	.map_mem_usage		= cpu_map_mem_usage,
663 	.map_btf_id		= &cpu_map_btf_ids[0],
664 	.map_redirect		= cpu_map_redirect,
665 };
666 
667 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
668 {
669 	struct bpf_cpu_map_entry *rcpu = bq->obj;
670 	unsigned int processed = 0, drops = 0;
671 	const int to_cpu = rcpu->cpu;
672 	struct ptr_ring *q;
673 	int i;
674 
675 	if (unlikely(!bq->count))
676 		return;
677 
678 	q = rcpu->queue;
679 	spin_lock(&q->producer_lock);
680 
681 	for (i = 0; i < bq->count; i++) {
682 		struct xdp_frame *xdpf = bq->q[i];
683 		int err;
684 
685 		err = __ptr_ring_produce(q, xdpf);
686 		if (err) {
687 			drops++;
688 			xdp_return_frame_rx_napi(xdpf);
689 		}
690 		processed++;
691 	}
692 	bq->count = 0;
693 	spin_unlock(&q->producer_lock);
694 
695 	__list_del_clearprev(&bq->flush_node);
696 
697 	/* Feedback loop via tracepoints */
698 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
699 }
700 
701 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
702  * Thus, safe percpu variable access.
703  */
704 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
705 {
706 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
707 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
708 
709 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
710 		bq_flush_to_queue(bq);
711 
712 	/* Notice, xdp_buff/page MUST be queued here, long enough for
713 	 * driver to code invoking us to finished, due to driver
714 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
715 	 *
716 	 * Thus, incoming xdp_frame is always queued here (else we race
717 	 * with another CPU on page-refcnt and remaining driver code).
718 	 * Queue time is very short, as driver will invoke flush
719 	 * operation, when completing napi->poll call.
720 	 */
721 	bq->q[bq->count++] = xdpf;
722 
723 	if (!bq->flush_node.prev)
724 		list_add(&bq->flush_node, flush_list);
725 }
726 
727 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
728 		    struct net_device *dev_rx)
729 {
730 	/* Info needed when constructing SKB on remote CPU */
731 	xdpf->dev_rx = dev_rx;
732 
733 	bq_enqueue(rcpu, xdpf);
734 	return 0;
735 }
736 
737 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
738 			     struct sk_buff *skb)
739 {
740 	int ret;
741 
742 	__skb_pull(skb, skb->mac_len);
743 	skb_set_redirected(skb, false);
744 	__ptr_set_bit(0, &skb);
745 
746 	ret = ptr_ring_produce(rcpu->queue, skb);
747 	if (ret < 0)
748 		goto trace;
749 
750 	wake_up_process(rcpu->kthread);
751 trace:
752 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
753 	return ret;
754 }
755 
756 void __cpu_map_flush(void)
757 {
758 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
759 	struct xdp_bulk_queue *bq, *tmp;
760 
761 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
762 		bq_flush_to_queue(bq);
763 
764 		/* If already running, costs spin_lock_irqsave + smb_mb */
765 		wake_up_process(bq->obj->kthread);
766 	}
767 }
768 
769 #ifdef CONFIG_DEBUG_NET
770 bool cpu_map_check_flush(void)
771 {
772 	if (list_empty(this_cpu_ptr(&cpu_map_flush_list)))
773 		return false;
774 	__cpu_map_flush();
775 	return true;
776 }
777 #endif
778 
779 static int __init cpu_map_init(void)
780 {
781 	int cpu;
782 
783 	for_each_possible_cpu(cpu)
784 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
785 	return 0;
786 }
787 
788 subsys_initcall(cpu_map_init);
789