1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /** 8 * DOC: cpu map 9 * The 'cpumap' is primarily used as a backend map for XDP BPF helper 10 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 11 * 12 * Unlike devmap which redirects XDP frames out to another NIC device, 13 * this map type redirects raw XDP frames to another CPU. The remote 14 * CPU will do SKB-allocation and call the normal network stack. 15 */ 16 /* 17 * This is a scalability and isolation mechanism, that allow 18 * separating the early driver network XDP layer, from the rest of the 19 * netstack, and assigning dedicated CPUs for this stage. This 20 * basically allows for 10G wirespeed pre-filtering via bpf. 21 */ 22 #include <linux/bitops.h> 23 #include <linux/bpf.h> 24 #include <linux/filter.h> 25 #include <linux/ptr_ring.h> 26 #include <net/xdp.h> 27 28 #include <linux/sched.h> 29 #include <linux/workqueue.h> 30 #include <linux/kthread.h> 31 #include <trace/events/xdp.h> 32 #include <linux/btf_ids.h> 33 34 #include <linux/netdevice.h> /* netif_receive_skb_list */ 35 #include <linux/etherdevice.h> /* eth_type_trans */ 36 37 /* General idea: XDP packets getting XDP redirected to another CPU, 38 * will maximum be stored/queued for one driver ->poll() call. It is 39 * guaranteed that queueing the frame and the flush operation happen on 40 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 41 * which queue in bpf_cpu_map_entry contains packets. 42 */ 43 44 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 45 struct bpf_cpu_map_entry; 46 struct bpf_cpu_map; 47 48 struct xdp_bulk_queue { 49 void *q[CPU_MAP_BULK_SIZE]; 50 struct list_head flush_node; 51 struct bpf_cpu_map_entry *obj; 52 unsigned int count; 53 }; 54 55 /* Struct for every remote "destination" CPU in map */ 56 struct bpf_cpu_map_entry { 57 u32 cpu; /* kthread CPU and map index */ 58 int map_id; /* Back reference to map */ 59 60 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 61 struct xdp_bulk_queue __percpu *bulkq; 62 63 struct bpf_cpu_map *cmap; 64 65 /* Queue with potential multi-producers, and single-consumer kthread */ 66 struct ptr_ring *queue; 67 struct task_struct *kthread; 68 69 struct bpf_cpumap_val value; 70 struct bpf_prog *prog; 71 72 atomic_t refcnt; /* Control when this struct can be free'ed */ 73 struct rcu_head rcu; 74 75 struct work_struct kthread_stop_wq; 76 }; 77 78 struct bpf_cpu_map { 79 struct bpf_map map; 80 /* Below members specific for map type */ 81 struct bpf_cpu_map_entry __rcu **cpu_map; 82 }; 83 84 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 85 86 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 87 { 88 u32 value_size = attr->value_size; 89 struct bpf_cpu_map *cmap; 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 94 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 95 attr->map_flags & ~BPF_F_NUMA_NODE) 96 return ERR_PTR(-EINVAL); 97 98 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 99 if (attr->max_entries > NR_CPUS) 100 return ERR_PTR(-E2BIG); 101 102 cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); 103 if (!cmap) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&cmap->map, attr); 107 108 /* Alloc array for possible remote "destination" CPUs */ 109 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 110 sizeof(struct bpf_cpu_map_entry *), 111 cmap->map.numa_node); 112 if (!cmap->cpu_map) { 113 bpf_map_area_free(cmap); 114 return ERR_PTR(-ENOMEM); 115 } 116 117 return &cmap->map; 118 } 119 120 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 121 { 122 atomic_inc(&rcpu->refcnt); 123 } 124 125 /* called from workqueue, to workaround syscall using preempt_disable */ 126 static void cpu_map_kthread_stop(struct work_struct *work) 127 { 128 struct bpf_cpu_map_entry *rcpu; 129 130 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 131 132 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 133 * as it waits until all in-flight call_rcu() callbacks complete. 134 */ 135 rcu_barrier(); 136 137 /* kthread_stop will wake_up_process and wait for it to complete */ 138 kthread_stop(rcpu->kthread); 139 } 140 141 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 142 { 143 /* The tear-down procedure should have made sure that queue is 144 * empty. See __cpu_map_entry_replace() and work-queue 145 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 146 * gracefully and warn once. 147 */ 148 struct xdp_frame *xdpf; 149 150 while ((xdpf = ptr_ring_consume(ring))) 151 if (WARN_ON_ONCE(xdpf)) 152 xdp_return_frame(xdpf); 153 } 154 155 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 156 { 157 if (atomic_dec_and_test(&rcpu->refcnt)) { 158 if (rcpu->prog) 159 bpf_prog_put(rcpu->prog); 160 /* The queue should be empty at this point */ 161 __cpu_map_ring_cleanup(rcpu->queue); 162 ptr_ring_cleanup(rcpu->queue, NULL); 163 kfree(rcpu->queue); 164 kfree(rcpu); 165 } 166 } 167 168 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, 169 struct list_head *listp, 170 struct xdp_cpumap_stats *stats) 171 { 172 struct sk_buff *skb, *tmp; 173 struct xdp_buff xdp; 174 u32 act; 175 int err; 176 177 list_for_each_entry_safe(skb, tmp, listp, list) { 178 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); 179 switch (act) { 180 case XDP_PASS: 181 break; 182 case XDP_REDIRECT: 183 skb_list_del_init(skb); 184 err = xdp_do_generic_redirect(skb->dev, skb, &xdp, 185 rcpu->prog); 186 if (unlikely(err)) { 187 kfree_skb(skb); 188 stats->drop++; 189 } else { 190 stats->redirect++; 191 } 192 return; 193 default: 194 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 195 fallthrough; 196 case XDP_ABORTED: 197 trace_xdp_exception(skb->dev, rcpu->prog, act); 198 fallthrough; 199 case XDP_DROP: 200 skb_list_del_init(skb); 201 kfree_skb(skb); 202 stats->drop++; 203 return; 204 } 205 } 206 } 207 208 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 209 void **frames, int n, 210 struct xdp_cpumap_stats *stats) 211 { 212 struct xdp_rxq_info rxq; 213 struct xdp_buff xdp; 214 int i, nframes = 0; 215 216 xdp_set_return_frame_no_direct(); 217 xdp.rxq = &rxq; 218 219 for (i = 0; i < n; i++) { 220 struct xdp_frame *xdpf = frames[i]; 221 u32 act; 222 int err; 223 224 rxq.dev = xdpf->dev_rx; 225 rxq.mem = xdpf->mem; 226 /* TODO: report queue_index to xdp_rxq_info */ 227 228 xdp_convert_frame_to_buff(xdpf, &xdp); 229 230 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 231 switch (act) { 232 case XDP_PASS: 233 err = xdp_update_frame_from_buff(&xdp, xdpf); 234 if (err < 0) { 235 xdp_return_frame(xdpf); 236 stats->drop++; 237 } else { 238 frames[nframes++] = xdpf; 239 stats->pass++; 240 } 241 break; 242 case XDP_REDIRECT: 243 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 244 rcpu->prog); 245 if (unlikely(err)) { 246 xdp_return_frame(xdpf); 247 stats->drop++; 248 } else { 249 stats->redirect++; 250 } 251 break; 252 default: 253 bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); 254 fallthrough; 255 case XDP_DROP: 256 xdp_return_frame(xdpf); 257 stats->drop++; 258 break; 259 } 260 } 261 262 xdp_clear_return_frame_no_direct(); 263 264 return nframes; 265 } 266 267 #define CPUMAP_BATCH 8 268 269 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, 270 int xdp_n, struct xdp_cpumap_stats *stats, 271 struct list_head *list) 272 { 273 int nframes; 274 275 if (!rcpu->prog) 276 return xdp_n; 277 278 rcu_read_lock_bh(); 279 280 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats); 281 282 if (stats->redirect) 283 xdp_do_flush(); 284 285 if (unlikely(!list_empty(list))) 286 cpu_map_bpf_prog_run_skb(rcpu, list, stats); 287 288 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 289 290 return nframes; 291 } 292 293 294 static int cpu_map_kthread_run(void *data) 295 { 296 struct bpf_cpu_map_entry *rcpu = data; 297 298 set_current_state(TASK_INTERRUPTIBLE); 299 300 /* When kthread gives stop order, then rcpu have been disconnected 301 * from map, thus no new packets can enter. Remaining in-flight 302 * per CPU stored packets are flushed to this queue. Wait honoring 303 * kthread_stop signal until queue is empty. 304 */ 305 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 306 struct xdp_cpumap_stats stats = {}; /* zero stats */ 307 unsigned int kmem_alloc_drops = 0, sched = 0; 308 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 309 int i, n, m, nframes, xdp_n; 310 void *frames[CPUMAP_BATCH]; 311 void *skbs[CPUMAP_BATCH]; 312 LIST_HEAD(list); 313 314 /* Release CPU reschedule checks */ 315 if (__ptr_ring_empty(rcpu->queue)) { 316 set_current_state(TASK_INTERRUPTIBLE); 317 /* Recheck to avoid lost wake-up */ 318 if (__ptr_ring_empty(rcpu->queue)) { 319 schedule(); 320 sched = 1; 321 } else { 322 __set_current_state(TASK_RUNNING); 323 } 324 } else { 325 sched = cond_resched(); 326 } 327 328 /* 329 * The bpf_cpu_map_entry is single consumer, with this 330 * kthread CPU pinned. Lockless access to ptr_ring 331 * consume side valid as no-resize allowed of queue. 332 */ 333 n = __ptr_ring_consume_batched(rcpu->queue, frames, 334 CPUMAP_BATCH); 335 for (i = 0, xdp_n = 0; i < n; i++) { 336 void *f = frames[i]; 337 struct page *page; 338 339 if (unlikely(__ptr_test_bit(0, &f))) { 340 struct sk_buff *skb = f; 341 342 __ptr_clear_bit(0, &skb); 343 list_add_tail(&skb->list, &list); 344 continue; 345 } 346 347 frames[xdp_n++] = f; 348 page = virt_to_page(f); 349 350 /* Bring struct page memory area to curr CPU. Read by 351 * build_skb_around via page_is_pfmemalloc(), and when 352 * freed written by page_frag_free call. 353 */ 354 prefetchw(page); 355 } 356 357 /* Support running another XDP prog on this CPU */ 358 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list); 359 if (nframes) { 360 m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs); 361 if (unlikely(m == 0)) { 362 for (i = 0; i < nframes; i++) 363 skbs[i] = NULL; /* effect: xdp_return_frame */ 364 kmem_alloc_drops += nframes; 365 } 366 } 367 368 local_bh_disable(); 369 for (i = 0; i < nframes; i++) { 370 struct xdp_frame *xdpf = frames[i]; 371 struct sk_buff *skb = skbs[i]; 372 373 skb = __xdp_build_skb_from_frame(xdpf, skb, 374 xdpf->dev_rx); 375 if (!skb) { 376 xdp_return_frame(xdpf); 377 continue; 378 } 379 380 list_add_tail(&skb->list, &list); 381 } 382 netif_receive_skb_list(&list); 383 384 /* Feedback loop via tracepoint */ 385 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, 386 sched, &stats); 387 388 local_bh_enable(); /* resched point, may call do_softirq() */ 389 } 390 __set_current_state(TASK_RUNNING); 391 392 put_cpu_map_entry(rcpu); 393 return 0; 394 } 395 396 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, 397 struct bpf_map *map, int fd) 398 { 399 struct bpf_prog *prog; 400 401 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 402 if (IS_ERR(prog)) 403 return PTR_ERR(prog); 404 405 if (prog->expected_attach_type != BPF_XDP_CPUMAP || 406 !bpf_prog_map_compatible(map, prog)) { 407 bpf_prog_put(prog); 408 return -EINVAL; 409 } 410 411 rcpu->value.bpf_prog.id = prog->aux->id; 412 rcpu->prog = prog; 413 414 return 0; 415 } 416 417 static struct bpf_cpu_map_entry * 418 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 419 u32 cpu) 420 { 421 int numa, err, i, fd = value->bpf_prog.fd; 422 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 423 struct bpf_cpu_map_entry *rcpu; 424 struct xdp_bulk_queue *bq; 425 426 /* Have map->numa_node, but choose node of redirect target CPU */ 427 numa = cpu_to_node(cpu); 428 429 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 430 if (!rcpu) 431 return NULL; 432 433 /* Alloc percpu bulkq */ 434 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 435 sizeof(void *), gfp); 436 if (!rcpu->bulkq) 437 goto free_rcu; 438 439 for_each_possible_cpu(i) { 440 bq = per_cpu_ptr(rcpu->bulkq, i); 441 bq->obj = rcpu; 442 } 443 444 /* Alloc queue */ 445 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 446 numa); 447 if (!rcpu->queue) 448 goto free_bulkq; 449 450 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 451 if (err) 452 goto free_queue; 453 454 rcpu->cpu = cpu; 455 rcpu->map_id = map->id; 456 rcpu->value.qsize = value->qsize; 457 458 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) 459 goto free_ptr_ring; 460 461 /* Setup kthread */ 462 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 463 "cpumap/%d/map:%d", cpu, 464 map->id); 465 if (IS_ERR(rcpu->kthread)) 466 goto free_prog; 467 468 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 469 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 470 471 /* Make sure kthread runs on a single CPU */ 472 kthread_bind(rcpu->kthread, cpu); 473 wake_up_process(rcpu->kthread); 474 475 return rcpu; 476 477 free_prog: 478 if (rcpu->prog) 479 bpf_prog_put(rcpu->prog); 480 free_ptr_ring: 481 ptr_ring_cleanup(rcpu->queue, NULL); 482 free_queue: 483 kfree(rcpu->queue); 484 free_bulkq: 485 free_percpu(rcpu->bulkq); 486 free_rcu: 487 kfree(rcpu); 488 return NULL; 489 } 490 491 static void __cpu_map_entry_free(struct rcu_head *rcu) 492 { 493 struct bpf_cpu_map_entry *rcpu; 494 495 /* This cpu_map_entry have been disconnected from map and one 496 * RCU grace-period have elapsed. Thus, XDP cannot queue any 497 * new packets and cannot change/set flush_needed that can 498 * find this entry. 499 */ 500 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 501 502 free_percpu(rcpu->bulkq); 503 /* Cannot kthread_stop() here, last put free rcpu resources */ 504 put_cpu_map_entry(rcpu); 505 } 506 507 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 508 * ensure any driver rcu critical sections have completed, but this 509 * does not guarantee a flush has happened yet. Because driver side 510 * rcu_read_lock/unlock only protects the running XDP program. The 511 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 512 * pending flush op doesn't fail. 513 * 514 * The bpf_cpu_map_entry is still used by the kthread, and there can 515 * still be pending packets (in queue and percpu bulkq). A refcnt 516 * makes sure to last user (kthread_stop vs. call_rcu) free memory 517 * resources. 518 * 519 * The rcu callback __cpu_map_entry_free flush remaining packets in 520 * percpu bulkq to queue. Due to caller map_delete_elem() disable 521 * preemption, cannot call kthread_stop() to make sure queue is empty. 522 * Instead a work_queue is started for stopping kthread, 523 * cpu_map_kthread_stop, which waits for an RCU grace period before 524 * stopping kthread, emptying the queue. 525 */ 526 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 527 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 528 { 529 struct bpf_cpu_map_entry *old_rcpu; 530 531 old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); 532 if (old_rcpu) { 533 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 534 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 535 schedule_work(&old_rcpu->kthread_stop_wq); 536 } 537 } 538 539 static long cpu_map_delete_elem(struct bpf_map *map, void *key) 540 { 541 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 542 u32 key_cpu = *(u32 *)key; 543 544 if (key_cpu >= map->max_entries) 545 return -EINVAL; 546 547 /* notice caller map_delete_elem() use preempt_disable() */ 548 __cpu_map_entry_replace(cmap, key_cpu, NULL); 549 return 0; 550 } 551 552 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 553 u64 map_flags) 554 { 555 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 556 struct bpf_cpumap_val cpumap_value = {}; 557 struct bpf_cpu_map_entry *rcpu; 558 /* Array index key correspond to CPU number */ 559 u32 key_cpu = *(u32 *)key; 560 561 memcpy(&cpumap_value, value, map->value_size); 562 563 if (unlikely(map_flags > BPF_EXIST)) 564 return -EINVAL; 565 if (unlikely(key_cpu >= cmap->map.max_entries)) 566 return -E2BIG; 567 if (unlikely(map_flags == BPF_NOEXIST)) 568 return -EEXIST; 569 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 570 return -EOVERFLOW; 571 572 /* Make sure CPU is a valid possible cpu */ 573 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 574 return -ENODEV; 575 576 if (cpumap_value.qsize == 0) { 577 rcpu = NULL; /* Same as deleting */ 578 } else { 579 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 580 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 581 if (!rcpu) 582 return -ENOMEM; 583 rcpu->cmap = cmap; 584 } 585 rcu_read_lock(); 586 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 587 rcu_read_unlock(); 588 return 0; 589 } 590 591 static void cpu_map_free(struct bpf_map *map) 592 { 593 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 594 u32 i; 595 596 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 597 * so the bpf programs (can be more than one that used this map) were 598 * disconnected from events. Wait for outstanding critical sections in 599 * these programs to complete. The rcu critical section only guarantees 600 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 601 * It does __not__ ensure pending flush operations (if any) are 602 * complete. 603 */ 604 605 synchronize_rcu(); 606 607 /* For cpu_map the remote CPUs can still be using the entries 608 * (struct bpf_cpu_map_entry). 609 */ 610 for (i = 0; i < cmap->map.max_entries; i++) { 611 struct bpf_cpu_map_entry *rcpu; 612 613 rcpu = rcu_dereference_raw(cmap->cpu_map[i]); 614 if (!rcpu) 615 continue; 616 617 /* bq flush and cleanup happens after RCU grace-period */ 618 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 619 } 620 bpf_map_area_free(cmap->cpu_map); 621 bpf_map_area_free(cmap); 622 } 623 624 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or 625 * by local_bh_disable() (from XDP calls inside NAPI). The 626 * rcu_read_lock_bh_held() below makes lockdep accept both. 627 */ 628 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 629 { 630 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 631 struct bpf_cpu_map_entry *rcpu; 632 633 if (key >= map->max_entries) 634 return NULL; 635 636 rcpu = rcu_dereference_check(cmap->cpu_map[key], 637 rcu_read_lock_bh_held()); 638 return rcpu; 639 } 640 641 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 642 { 643 struct bpf_cpu_map_entry *rcpu = 644 __cpu_map_lookup_elem(map, *(u32 *)key); 645 646 return rcpu ? &rcpu->value : NULL; 647 } 648 649 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 650 { 651 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 652 u32 index = key ? *(u32 *)key : U32_MAX; 653 u32 *next = next_key; 654 655 if (index >= cmap->map.max_entries) { 656 *next = 0; 657 return 0; 658 } 659 660 if (index == cmap->map.max_entries - 1) 661 return -ENOENT; 662 *next = index + 1; 663 return 0; 664 } 665 666 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) 667 { 668 return __bpf_xdp_redirect_map(map, index, flags, 0, 669 __cpu_map_lookup_elem); 670 } 671 672 static u64 cpu_map_mem_usage(const struct bpf_map *map) 673 { 674 u64 usage = sizeof(struct bpf_cpu_map); 675 676 /* Currently the dynamically allocated elements are not counted */ 677 usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); 678 return usage; 679 } 680 681 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) 682 const struct bpf_map_ops cpu_map_ops = { 683 .map_meta_equal = bpf_map_meta_equal, 684 .map_alloc = cpu_map_alloc, 685 .map_free = cpu_map_free, 686 .map_delete_elem = cpu_map_delete_elem, 687 .map_update_elem = cpu_map_update_elem, 688 .map_lookup_elem = cpu_map_lookup_elem, 689 .map_get_next_key = cpu_map_get_next_key, 690 .map_check_btf = map_check_no_btf, 691 .map_mem_usage = cpu_map_mem_usage, 692 .map_btf_id = &cpu_map_btf_ids[0], 693 .map_redirect = cpu_map_redirect, 694 }; 695 696 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 697 { 698 struct bpf_cpu_map_entry *rcpu = bq->obj; 699 unsigned int processed = 0, drops = 0; 700 const int to_cpu = rcpu->cpu; 701 struct ptr_ring *q; 702 int i; 703 704 if (unlikely(!bq->count)) 705 return; 706 707 q = rcpu->queue; 708 spin_lock(&q->producer_lock); 709 710 for (i = 0; i < bq->count; i++) { 711 struct xdp_frame *xdpf = bq->q[i]; 712 int err; 713 714 err = __ptr_ring_produce(q, xdpf); 715 if (err) { 716 drops++; 717 xdp_return_frame_rx_napi(xdpf); 718 } 719 processed++; 720 } 721 bq->count = 0; 722 spin_unlock(&q->producer_lock); 723 724 __list_del_clearprev(&bq->flush_node); 725 726 /* Feedback loop via tracepoints */ 727 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 728 } 729 730 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 731 * Thus, safe percpu variable access. 732 */ 733 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 734 { 735 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 736 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 737 738 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 739 bq_flush_to_queue(bq); 740 741 /* Notice, xdp_buff/page MUST be queued here, long enough for 742 * driver to code invoking us to finished, due to driver 743 * (e.g. ixgbe) recycle tricks based on page-refcnt. 744 * 745 * Thus, incoming xdp_frame is always queued here (else we race 746 * with another CPU on page-refcnt and remaining driver code). 747 * Queue time is very short, as driver will invoke flush 748 * operation, when completing napi->poll call. 749 */ 750 bq->q[bq->count++] = xdpf; 751 752 if (!bq->flush_node.prev) 753 list_add(&bq->flush_node, flush_list); 754 } 755 756 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 757 struct net_device *dev_rx) 758 { 759 /* Info needed when constructing SKB on remote CPU */ 760 xdpf->dev_rx = dev_rx; 761 762 bq_enqueue(rcpu, xdpf); 763 return 0; 764 } 765 766 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 767 struct sk_buff *skb) 768 { 769 int ret; 770 771 __skb_pull(skb, skb->mac_len); 772 skb_set_redirected(skb, false); 773 __ptr_set_bit(0, &skb); 774 775 ret = ptr_ring_produce(rcpu->queue, skb); 776 if (ret < 0) 777 goto trace; 778 779 wake_up_process(rcpu->kthread); 780 trace: 781 trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); 782 return ret; 783 } 784 785 void __cpu_map_flush(void) 786 { 787 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 788 struct xdp_bulk_queue *bq, *tmp; 789 790 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 791 bq_flush_to_queue(bq); 792 793 /* If already running, costs spin_lock_irqsave + smb_mb */ 794 wake_up_process(bq->obj->kthread); 795 } 796 } 797 798 static int __init cpu_map_init(void) 799 { 800 int cpu; 801 802 for_each_possible_cpu(cpu) 803 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 804 return 0; 805 } 806 807 subsys_initcall(cpu_map_init); 808