xref: /linux/kernel/bpf/cpumap.c (revision c098564d91c55d408ed31e8885b915a5e2006249)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_list */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that queueing the frame and the flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43 
44 struct xdp_bulk_queue {
45 	void *q[CPU_MAP_BULK_SIZE];
46 	struct list_head flush_node;
47 	struct bpf_cpu_map_entry *obj;
48 	unsigned int count;
49 };
50 
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 	u32 cpu;    /* kthread CPU and map index */
54 	int map_id; /* Back reference to map */
55 
56 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
57 	struct xdp_bulk_queue __percpu *bulkq;
58 
59 	struct bpf_cpu_map *cmap;
60 
61 	/* Queue with potential multi-producers, and single-consumer kthread */
62 	struct ptr_ring *queue;
63 	struct task_struct *kthread;
64 
65 	struct bpf_cpumap_val value;
66 	struct bpf_prog *prog;
67 
68 	atomic_t refcnt; /* Control when this struct can be free'ed */
69 	struct rcu_head rcu;
70 
71 	struct work_struct kthread_stop_wq;
72 };
73 
74 struct bpf_cpu_map {
75 	struct bpf_map map;
76 	/* Below members specific for map type */
77 	struct bpf_cpu_map_entry **cpu_map;
78 };
79 
80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
81 
82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
83 {
84 	u32 value_size = attr->value_size;
85 	struct bpf_cpu_map *cmap;
86 	int err = -ENOMEM;
87 
88 	if (!bpf_capable())
89 		return ERR_PTR(-EPERM);
90 
91 	/* check sanity of attributes */
92 	if (attr->max_entries == 0 || attr->key_size != 4 ||
93 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
94 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
95 	    attr->map_flags & ~BPF_F_NUMA_NODE)
96 		return ERR_PTR(-EINVAL);
97 
98 	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
99 	if (!cmap)
100 		return ERR_PTR(-ENOMEM);
101 
102 	bpf_map_init_from_attr(&cmap->map, attr);
103 
104 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
105 	if (cmap->map.max_entries > NR_CPUS) {
106 		err = -E2BIG;
107 		goto free_cmap;
108 	}
109 
110 	/* Alloc array for possible remote "destination" CPUs */
111 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112 					   sizeof(struct bpf_cpu_map_entry *),
113 					   cmap->map.numa_node);
114 	if (!cmap->cpu_map)
115 		goto free_cmap;
116 
117 	return &cmap->map;
118 free_cmap:
119 	kfree(cmap);
120 	return ERR_PTR(err);
121 }
122 
123 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
124 {
125 	atomic_inc(&rcpu->refcnt);
126 }
127 
128 /* called from workqueue, to workaround syscall using preempt_disable */
129 static void cpu_map_kthread_stop(struct work_struct *work)
130 {
131 	struct bpf_cpu_map_entry *rcpu;
132 
133 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
134 
135 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
136 	 * as it waits until all in-flight call_rcu() callbacks complete.
137 	 */
138 	rcu_barrier();
139 
140 	/* kthread_stop will wake_up_process and wait for it to complete */
141 	kthread_stop(rcpu->kthread);
142 }
143 
144 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
145 {
146 	/* The tear-down procedure should have made sure that queue is
147 	 * empty.  See __cpu_map_entry_replace() and work-queue
148 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
149 	 * gracefully and warn once.
150 	 */
151 	struct xdp_frame *xdpf;
152 
153 	while ((xdpf = ptr_ring_consume(ring)))
154 		if (WARN_ON_ONCE(xdpf))
155 			xdp_return_frame(xdpf);
156 }
157 
158 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
159 {
160 	if (atomic_dec_and_test(&rcpu->refcnt)) {
161 		if (rcpu->prog)
162 			bpf_prog_put(rcpu->prog);
163 		/* The queue should be empty at this point */
164 		__cpu_map_ring_cleanup(rcpu->queue);
165 		ptr_ring_cleanup(rcpu->queue, NULL);
166 		kfree(rcpu->queue);
167 		kfree(rcpu);
168 	}
169 }
170 
171 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
172 				    void **frames, int n,
173 				    struct xdp_cpumap_stats *stats)
174 {
175 	struct xdp_rxq_info rxq;
176 	struct xdp_buff xdp;
177 	int i, nframes = 0;
178 
179 	if (!rcpu->prog)
180 		return n;
181 
182 	rcu_read_lock_bh();
183 
184 	xdp_set_return_frame_no_direct();
185 	xdp.rxq = &rxq;
186 
187 	for (i = 0; i < n; i++) {
188 		struct xdp_frame *xdpf = frames[i];
189 		u32 act;
190 		int err;
191 
192 		rxq.dev = xdpf->dev_rx;
193 		rxq.mem = xdpf->mem;
194 		/* TODO: report queue_index to xdp_rxq_info */
195 
196 		xdp_convert_frame_to_buff(xdpf, &xdp);
197 
198 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
199 		switch (act) {
200 		case XDP_PASS:
201 			err = xdp_update_frame_from_buff(&xdp, xdpf);
202 			if (err < 0) {
203 				xdp_return_frame(xdpf);
204 				stats->drop++;
205 			} else {
206 				frames[nframes++] = xdpf;
207 				stats->pass++;
208 			}
209 			break;
210 		case XDP_REDIRECT:
211 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
212 					      rcpu->prog);
213 			if (unlikely(err)) {
214 				xdp_return_frame(xdpf);
215 				stats->drop++;
216 			} else {
217 				stats->redirect++;
218 			}
219 			break;
220 		default:
221 			bpf_warn_invalid_xdp_action(act);
222 			fallthrough;
223 		case XDP_DROP:
224 			xdp_return_frame(xdpf);
225 			stats->drop++;
226 			break;
227 		}
228 	}
229 
230 	if (stats->redirect)
231 		xdp_do_flush_map();
232 
233 	xdp_clear_return_frame_no_direct();
234 
235 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
236 
237 	return nframes;
238 }
239 
240 #define CPUMAP_BATCH 8
241 
242 static int cpu_map_kthread_run(void *data)
243 {
244 	struct bpf_cpu_map_entry *rcpu = data;
245 
246 	set_current_state(TASK_INTERRUPTIBLE);
247 
248 	/* When kthread gives stop order, then rcpu have been disconnected
249 	 * from map, thus no new packets can enter. Remaining in-flight
250 	 * per CPU stored packets are flushed to this queue.  Wait honoring
251 	 * kthread_stop signal until queue is empty.
252 	 */
253 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
254 		struct xdp_cpumap_stats stats = {}; /* zero stats */
255 		unsigned int kmem_alloc_drops = 0, sched = 0;
256 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
257 		void *frames[CPUMAP_BATCH];
258 		void *skbs[CPUMAP_BATCH];
259 		int i, n, m, nframes;
260 		LIST_HEAD(list);
261 
262 		/* Release CPU reschedule checks */
263 		if (__ptr_ring_empty(rcpu->queue)) {
264 			set_current_state(TASK_INTERRUPTIBLE);
265 			/* Recheck to avoid lost wake-up */
266 			if (__ptr_ring_empty(rcpu->queue)) {
267 				schedule();
268 				sched = 1;
269 			} else {
270 				__set_current_state(TASK_RUNNING);
271 			}
272 		} else {
273 			sched = cond_resched();
274 		}
275 
276 		/*
277 		 * The bpf_cpu_map_entry is single consumer, with this
278 		 * kthread CPU pinned. Lockless access to ptr_ring
279 		 * consume side valid as no-resize allowed of queue.
280 		 */
281 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
282 					       CPUMAP_BATCH);
283 		for (i = 0; i < n; i++) {
284 			void *f = frames[i];
285 			struct page *page = virt_to_page(f);
286 
287 			/* Bring struct page memory area to curr CPU. Read by
288 			 * build_skb_around via page_is_pfmemalloc(), and when
289 			 * freed written by page_frag_free call.
290 			 */
291 			prefetchw(page);
292 		}
293 
294 		/* Support running another XDP prog on this CPU */
295 		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
296 		if (nframes) {
297 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
298 			if (unlikely(m == 0)) {
299 				for (i = 0; i < nframes; i++)
300 					skbs[i] = NULL; /* effect: xdp_return_frame */
301 				kmem_alloc_drops += nframes;
302 			}
303 		}
304 
305 		local_bh_disable();
306 		for (i = 0; i < nframes; i++) {
307 			struct xdp_frame *xdpf = frames[i];
308 			struct sk_buff *skb = skbs[i];
309 
310 			skb = __xdp_build_skb_from_frame(xdpf, skb,
311 							 xdpf->dev_rx);
312 			if (!skb) {
313 				xdp_return_frame(xdpf);
314 				continue;
315 			}
316 
317 			list_add_tail(&skb->list, &list);
318 		}
319 		netif_receive_skb_list(&list);
320 
321 		/* Feedback loop via tracepoint */
322 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
323 					 sched, &stats);
324 
325 		local_bh_enable(); /* resched point, may call do_softirq() */
326 	}
327 	__set_current_state(TASK_RUNNING);
328 
329 	put_cpu_map_entry(rcpu);
330 	return 0;
331 }
332 
333 bool cpu_map_prog_allowed(struct bpf_map *map)
334 {
335 	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
336 	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
337 }
338 
339 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
340 {
341 	struct bpf_prog *prog;
342 
343 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
344 	if (IS_ERR(prog))
345 		return PTR_ERR(prog);
346 
347 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
348 		bpf_prog_put(prog);
349 		return -EINVAL;
350 	}
351 
352 	rcpu->value.bpf_prog.id = prog->aux->id;
353 	rcpu->prog = prog;
354 
355 	return 0;
356 }
357 
358 static struct bpf_cpu_map_entry *
359 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
360 		      u32 cpu)
361 {
362 	int numa, err, i, fd = value->bpf_prog.fd;
363 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
364 	struct bpf_cpu_map_entry *rcpu;
365 	struct xdp_bulk_queue *bq;
366 
367 	/* Have map->numa_node, but choose node of redirect target CPU */
368 	numa = cpu_to_node(cpu);
369 
370 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
371 	if (!rcpu)
372 		return NULL;
373 
374 	/* Alloc percpu bulkq */
375 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
376 					   sizeof(void *), gfp);
377 	if (!rcpu->bulkq)
378 		goto free_rcu;
379 
380 	for_each_possible_cpu(i) {
381 		bq = per_cpu_ptr(rcpu->bulkq, i);
382 		bq->obj = rcpu;
383 	}
384 
385 	/* Alloc queue */
386 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
387 					   numa);
388 	if (!rcpu->queue)
389 		goto free_bulkq;
390 
391 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
392 	if (err)
393 		goto free_queue;
394 
395 	rcpu->cpu    = cpu;
396 	rcpu->map_id = map->id;
397 	rcpu->value.qsize  = value->qsize;
398 
399 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
400 		goto free_ptr_ring;
401 
402 	/* Setup kthread */
403 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
404 					       "cpumap/%d/map:%d", cpu,
405 					       map->id);
406 	if (IS_ERR(rcpu->kthread))
407 		goto free_prog;
408 
409 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
410 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
411 
412 	/* Make sure kthread runs on a single CPU */
413 	kthread_bind(rcpu->kthread, cpu);
414 	wake_up_process(rcpu->kthread);
415 
416 	return rcpu;
417 
418 free_prog:
419 	if (rcpu->prog)
420 		bpf_prog_put(rcpu->prog);
421 free_ptr_ring:
422 	ptr_ring_cleanup(rcpu->queue, NULL);
423 free_queue:
424 	kfree(rcpu->queue);
425 free_bulkq:
426 	free_percpu(rcpu->bulkq);
427 free_rcu:
428 	kfree(rcpu);
429 	return NULL;
430 }
431 
432 static void __cpu_map_entry_free(struct rcu_head *rcu)
433 {
434 	struct bpf_cpu_map_entry *rcpu;
435 
436 	/* This cpu_map_entry have been disconnected from map and one
437 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
438 	 * new packets and cannot change/set flush_needed that can
439 	 * find this entry.
440 	 */
441 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
442 
443 	free_percpu(rcpu->bulkq);
444 	/* Cannot kthread_stop() here, last put free rcpu resources */
445 	put_cpu_map_entry(rcpu);
446 }
447 
448 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
449  * ensure any driver rcu critical sections have completed, but this
450  * does not guarantee a flush has happened yet. Because driver side
451  * rcu_read_lock/unlock only protects the running XDP program.  The
452  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
453  * pending flush op doesn't fail.
454  *
455  * The bpf_cpu_map_entry is still used by the kthread, and there can
456  * still be pending packets (in queue and percpu bulkq).  A refcnt
457  * makes sure to last user (kthread_stop vs. call_rcu) free memory
458  * resources.
459  *
460  * The rcu callback __cpu_map_entry_free flush remaining packets in
461  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
462  * preemption, cannot call kthread_stop() to make sure queue is empty.
463  * Instead a work_queue is started for stopping kthread,
464  * cpu_map_kthread_stop, which waits for an RCU grace period before
465  * stopping kthread, emptying the queue.
466  */
467 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
468 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
469 {
470 	struct bpf_cpu_map_entry *old_rcpu;
471 
472 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
473 	if (old_rcpu) {
474 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
475 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
476 		schedule_work(&old_rcpu->kthread_stop_wq);
477 	}
478 }
479 
480 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
481 {
482 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
483 	u32 key_cpu = *(u32 *)key;
484 
485 	if (key_cpu >= map->max_entries)
486 		return -EINVAL;
487 
488 	/* notice caller map_delete_elem() use preempt_disable() */
489 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
490 	return 0;
491 }
492 
493 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
494 			       u64 map_flags)
495 {
496 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
497 	struct bpf_cpumap_val cpumap_value = {};
498 	struct bpf_cpu_map_entry *rcpu;
499 	/* Array index key correspond to CPU number */
500 	u32 key_cpu = *(u32 *)key;
501 
502 	memcpy(&cpumap_value, value, map->value_size);
503 
504 	if (unlikely(map_flags > BPF_EXIST))
505 		return -EINVAL;
506 	if (unlikely(key_cpu >= cmap->map.max_entries))
507 		return -E2BIG;
508 	if (unlikely(map_flags == BPF_NOEXIST))
509 		return -EEXIST;
510 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
511 		return -EOVERFLOW;
512 
513 	/* Make sure CPU is a valid possible cpu */
514 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
515 		return -ENODEV;
516 
517 	if (cpumap_value.qsize == 0) {
518 		rcpu = NULL; /* Same as deleting */
519 	} else {
520 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
521 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
522 		if (!rcpu)
523 			return -ENOMEM;
524 		rcpu->cmap = cmap;
525 	}
526 	rcu_read_lock();
527 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
528 	rcu_read_unlock();
529 	return 0;
530 }
531 
532 static void cpu_map_free(struct bpf_map *map)
533 {
534 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
535 	u32 i;
536 
537 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
538 	 * so the bpf programs (can be more than one that used this map) were
539 	 * disconnected from events. Wait for outstanding critical sections in
540 	 * these programs to complete. The rcu critical section only guarantees
541 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
542 	 * It does __not__ ensure pending flush operations (if any) are
543 	 * complete.
544 	 */
545 
546 	synchronize_rcu();
547 
548 	/* For cpu_map the remote CPUs can still be using the entries
549 	 * (struct bpf_cpu_map_entry).
550 	 */
551 	for (i = 0; i < cmap->map.max_entries; i++) {
552 		struct bpf_cpu_map_entry *rcpu;
553 
554 		rcpu = READ_ONCE(cmap->cpu_map[i]);
555 		if (!rcpu)
556 			continue;
557 
558 		/* bq flush and cleanup happens after RCU grace-period */
559 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
560 	}
561 	bpf_map_area_free(cmap->cpu_map);
562 	kfree(cmap);
563 }
564 
565 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
566 {
567 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
568 	struct bpf_cpu_map_entry *rcpu;
569 
570 	if (key >= map->max_entries)
571 		return NULL;
572 
573 	rcpu = READ_ONCE(cmap->cpu_map[key]);
574 	return rcpu;
575 }
576 
577 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
578 {
579 	struct bpf_cpu_map_entry *rcpu =
580 		__cpu_map_lookup_elem(map, *(u32 *)key);
581 
582 	return rcpu ? &rcpu->value : NULL;
583 }
584 
585 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
586 {
587 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
588 	u32 index = key ? *(u32 *)key : U32_MAX;
589 	u32 *next = next_key;
590 
591 	if (index >= cmap->map.max_entries) {
592 		*next = 0;
593 		return 0;
594 	}
595 
596 	if (index == cmap->map.max_entries - 1)
597 		return -ENOENT;
598 	*next = index + 1;
599 	return 0;
600 }
601 
602 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
603 {
604 	return __bpf_xdp_redirect_map(map, ifindex, flags, __cpu_map_lookup_elem);
605 }
606 
607 static int cpu_map_btf_id;
608 const struct bpf_map_ops cpu_map_ops = {
609 	.map_meta_equal		= bpf_map_meta_equal,
610 	.map_alloc		= cpu_map_alloc,
611 	.map_free		= cpu_map_free,
612 	.map_delete_elem	= cpu_map_delete_elem,
613 	.map_update_elem	= cpu_map_update_elem,
614 	.map_lookup_elem	= cpu_map_lookup_elem,
615 	.map_get_next_key	= cpu_map_get_next_key,
616 	.map_check_btf		= map_check_no_btf,
617 	.map_btf_name		= "bpf_cpu_map",
618 	.map_btf_id		= &cpu_map_btf_id,
619 	.map_redirect		= cpu_map_redirect,
620 };
621 
622 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
623 {
624 	struct bpf_cpu_map_entry *rcpu = bq->obj;
625 	unsigned int processed = 0, drops = 0;
626 	const int to_cpu = rcpu->cpu;
627 	struct ptr_ring *q;
628 	int i;
629 
630 	if (unlikely(!bq->count))
631 		return;
632 
633 	q = rcpu->queue;
634 	spin_lock(&q->producer_lock);
635 
636 	for (i = 0; i < bq->count; i++) {
637 		struct xdp_frame *xdpf = bq->q[i];
638 		int err;
639 
640 		err = __ptr_ring_produce(q, xdpf);
641 		if (err) {
642 			drops++;
643 			xdp_return_frame_rx_napi(xdpf);
644 		}
645 		processed++;
646 	}
647 	bq->count = 0;
648 	spin_unlock(&q->producer_lock);
649 
650 	__list_del_clearprev(&bq->flush_node);
651 
652 	/* Feedback loop via tracepoints */
653 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
654 }
655 
656 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
657  * Thus, safe percpu variable access.
658  */
659 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
660 {
661 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
662 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
663 
664 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
665 		bq_flush_to_queue(bq);
666 
667 	/* Notice, xdp_buff/page MUST be queued here, long enough for
668 	 * driver to code invoking us to finished, due to driver
669 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
670 	 *
671 	 * Thus, incoming xdp_frame is always queued here (else we race
672 	 * with another CPU on page-refcnt and remaining driver code).
673 	 * Queue time is very short, as driver will invoke flush
674 	 * operation, when completing napi->poll call.
675 	 */
676 	bq->q[bq->count++] = xdpf;
677 
678 	if (!bq->flush_node.prev)
679 		list_add(&bq->flush_node, flush_list);
680 }
681 
682 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
683 		    struct net_device *dev_rx)
684 {
685 	struct xdp_frame *xdpf;
686 
687 	xdpf = xdp_convert_buff_to_frame(xdp);
688 	if (unlikely(!xdpf))
689 		return -EOVERFLOW;
690 
691 	/* Info needed when constructing SKB on remote CPU */
692 	xdpf->dev_rx = dev_rx;
693 
694 	bq_enqueue(rcpu, xdpf);
695 	return 0;
696 }
697 
698 void __cpu_map_flush(void)
699 {
700 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
701 	struct xdp_bulk_queue *bq, *tmp;
702 
703 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
704 		bq_flush_to_queue(bq);
705 
706 		/* If already running, costs spin_lock_irqsave + smb_mb */
707 		wake_up_process(bq->obj->kthread);
708 	}
709 }
710 
711 static int __init cpu_map_init(void)
712 {
713 	int cpu;
714 
715 	for_each_possible_cpu(cpu)
716 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
717 	return 0;
718 }
719 
720 subsys_initcall(cpu_map_init);
721