xref: /linux/kernel/bpf/cpumap.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /* bpf/cpumap.c
2  *
3  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4  * Released under terms in GPL version 2.  See COPYING.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that setting flush bit and flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct xdp_bulk_queue {
42 	void *q[CPU_MAP_BULK_SIZE];
43 	unsigned int count;
44 };
45 
46 /* Struct for every remote "destination" CPU in map */
47 struct bpf_cpu_map_entry {
48 	u32 cpu;    /* kthread CPU and map index */
49 	int map_id; /* Back reference to map */
50 	u32 qsize;  /* Queue size placeholder for map lookup */
51 
52 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
53 	struct xdp_bulk_queue __percpu *bulkq;
54 
55 	/* Queue with potential multi-producers, and single-consumer kthread */
56 	struct ptr_ring *queue;
57 	struct task_struct *kthread;
58 	struct work_struct kthread_stop_wq;
59 
60 	atomic_t refcnt; /* Control when this struct can be free'ed */
61 	struct rcu_head rcu;
62 };
63 
64 struct bpf_cpu_map {
65 	struct bpf_map map;
66 	/* Below members specific for map type */
67 	struct bpf_cpu_map_entry **cpu_map;
68 	unsigned long __percpu *flush_needed;
69 };
70 
71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
72 			     struct xdp_bulk_queue *bq, bool in_napi_ctx);
73 
74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
75 {
76 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
77 }
78 
79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
80 {
81 	struct bpf_cpu_map *cmap;
82 	int err = -ENOMEM;
83 	u64 cost;
84 	int ret;
85 
86 	if (!capable(CAP_SYS_ADMIN))
87 		return ERR_PTR(-EPERM);
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
92 		return ERR_PTR(-EINVAL);
93 
94 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
95 	if (!cmap)
96 		return ERR_PTR(-ENOMEM);
97 
98 	bpf_map_init_from_attr(&cmap->map, attr);
99 
100 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
101 	if (cmap->map.max_entries > NR_CPUS) {
102 		err = -E2BIG;
103 		goto free_cmap;
104 	}
105 
106 	/* make sure page count doesn't overflow */
107 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
108 	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
109 	if (cost >= U32_MAX - PAGE_SIZE)
110 		goto free_cmap;
111 	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
112 
113 	/* Notice returns -EPERM on if map size is larger than memlock limit */
114 	ret = bpf_map_precharge_memlock(cmap->map.pages);
115 	if (ret) {
116 		err = ret;
117 		goto free_cmap;
118 	}
119 
120 	/* A per cpu bitfield with a bit per possible CPU in map  */
121 	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
122 					    __alignof__(unsigned long));
123 	if (!cmap->flush_needed)
124 		goto free_cmap;
125 
126 	/* Alloc array for possible remote "destination" CPUs */
127 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
128 					   sizeof(struct bpf_cpu_map_entry *),
129 					   cmap->map.numa_node);
130 	if (!cmap->cpu_map)
131 		goto free_percpu;
132 
133 	return &cmap->map;
134 free_percpu:
135 	free_percpu(cmap->flush_needed);
136 free_cmap:
137 	kfree(cmap);
138 	return ERR_PTR(err);
139 }
140 
141 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
142 {
143 	atomic_inc(&rcpu->refcnt);
144 }
145 
146 /* called from workqueue, to workaround syscall using preempt_disable */
147 static void cpu_map_kthread_stop(struct work_struct *work)
148 {
149 	struct bpf_cpu_map_entry *rcpu;
150 
151 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
152 
153 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
154 	 * as it waits until all in-flight call_rcu() callbacks complete.
155 	 */
156 	rcu_barrier();
157 
158 	/* kthread_stop will wake_up_process and wait for it to complete */
159 	kthread_stop(rcpu->kthread);
160 }
161 
162 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
163 					 struct xdp_frame *xdpf)
164 {
165 	unsigned int frame_size;
166 	void *pkt_data_start;
167 	struct sk_buff *skb;
168 
169 	/* build_skb need to place skb_shared_info after SKB end, and
170 	 * also want to know the memory "truesize".  Thus, need to
171 	 * know the memory frame size backing xdp_buff.
172 	 *
173 	 * XDP was designed to have PAGE_SIZE frames, but this
174 	 * assumption is not longer true with ixgbe and i40e.  It
175 	 * would be preferred to set frame_size to 2048 or 4096
176 	 * depending on the driver.
177 	 *   frame_size = 2048;
178 	 *   frame_len  = frame_size - sizeof(*xdp_frame);
179 	 *
180 	 * Instead, with info avail, skb_shared_info in placed after
181 	 * packet len.  This, unfortunately fakes the truesize.
182 	 * Another disadvantage of this approach, the skb_shared_info
183 	 * is not at a fixed memory location, with mixed length
184 	 * packets, which is bad for cache-line hotness.
185 	 */
186 	frame_size = SKB_DATA_ALIGN(xdpf->len) + xdpf->headroom +
187 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
188 
189 	pkt_data_start = xdpf->data - xdpf->headroom;
190 	skb = build_skb(pkt_data_start, frame_size);
191 	if (!skb)
192 		return NULL;
193 
194 	skb_reserve(skb, xdpf->headroom);
195 	__skb_put(skb, xdpf->len);
196 	if (xdpf->metasize)
197 		skb_metadata_set(skb, xdpf->metasize);
198 
199 	/* Essential SKB info: protocol and skb->dev */
200 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
201 
202 	/* Optional SKB info, currently missing:
203 	 * - HW checksum info		(skb->ip_summed)
204 	 * - HW RX hash			(skb_set_hash)
205 	 * - RX ring dev queue index	(skb_record_rx_queue)
206 	 */
207 
208 	return skb;
209 }
210 
211 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
212 {
213 	/* The tear-down procedure should have made sure that queue is
214 	 * empty.  See __cpu_map_entry_replace() and work-queue
215 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
216 	 * gracefully and warn once.
217 	 */
218 	struct xdp_frame *xdpf;
219 
220 	while ((xdpf = ptr_ring_consume(ring)))
221 		if (WARN_ON_ONCE(xdpf))
222 			xdp_return_frame(xdpf);
223 }
224 
225 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
226 {
227 	if (atomic_dec_and_test(&rcpu->refcnt)) {
228 		/* The queue should be empty at this point */
229 		__cpu_map_ring_cleanup(rcpu->queue);
230 		ptr_ring_cleanup(rcpu->queue, NULL);
231 		kfree(rcpu->queue);
232 		kfree(rcpu);
233 	}
234 }
235 
236 static int cpu_map_kthread_run(void *data)
237 {
238 	struct bpf_cpu_map_entry *rcpu = data;
239 
240 	set_current_state(TASK_INTERRUPTIBLE);
241 
242 	/* When kthread gives stop order, then rcpu have been disconnected
243 	 * from map, thus no new packets can enter. Remaining in-flight
244 	 * per CPU stored packets are flushed to this queue.  Wait honoring
245 	 * kthread_stop signal until queue is empty.
246 	 */
247 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
248 		unsigned int processed = 0, drops = 0, sched = 0;
249 		struct xdp_frame *xdpf;
250 
251 		/* Release CPU reschedule checks */
252 		if (__ptr_ring_empty(rcpu->queue)) {
253 			set_current_state(TASK_INTERRUPTIBLE);
254 			/* Recheck to avoid lost wake-up */
255 			if (__ptr_ring_empty(rcpu->queue)) {
256 				schedule();
257 				sched = 1;
258 			} else {
259 				__set_current_state(TASK_RUNNING);
260 			}
261 		} else {
262 			sched = cond_resched();
263 		}
264 
265 		/* Process packets in rcpu->queue */
266 		local_bh_disable();
267 		/*
268 		 * The bpf_cpu_map_entry is single consumer, with this
269 		 * kthread CPU pinned. Lockless access to ptr_ring
270 		 * consume side valid as no-resize allowed of queue.
271 		 */
272 		while ((xdpf = __ptr_ring_consume(rcpu->queue))) {
273 			struct sk_buff *skb;
274 			int ret;
275 
276 			skb = cpu_map_build_skb(rcpu, xdpf);
277 			if (!skb) {
278 				xdp_return_frame(xdpf);
279 				continue;
280 			}
281 
282 			/* Inject into network stack */
283 			ret = netif_receive_skb_core(skb);
284 			if (ret == NET_RX_DROP)
285 				drops++;
286 
287 			/* Limit BH-disable period */
288 			if (++processed == 8)
289 				break;
290 		}
291 		/* Feedback loop via tracepoint */
292 		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
293 
294 		local_bh_enable(); /* resched point, may call do_softirq() */
295 	}
296 	__set_current_state(TASK_RUNNING);
297 
298 	put_cpu_map_entry(rcpu);
299 	return 0;
300 }
301 
302 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
303 						       int map_id)
304 {
305 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
306 	struct bpf_cpu_map_entry *rcpu;
307 	int numa, err;
308 
309 	/* Have map->numa_node, but choose node of redirect target CPU */
310 	numa = cpu_to_node(cpu);
311 
312 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
313 	if (!rcpu)
314 		return NULL;
315 
316 	/* Alloc percpu bulkq */
317 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
318 					 sizeof(void *), gfp);
319 	if (!rcpu->bulkq)
320 		goto free_rcu;
321 
322 	/* Alloc queue */
323 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
324 	if (!rcpu->queue)
325 		goto free_bulkq;
326 
327 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
328 	if (err)
329 		goto free_queue;
330 
331 	rcpu->cpu    = cpu;
332 	rcpu->map_id = map_id;
333 	rcpu->qsize  = qsize;
334 
335 	/* Setup kthread */
336 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
337 					       "cpumap/%d/map:%d", cpu, map_id);
338 	if (IS_ERR(rcpu->kthread))
339 		goto free_ptr_ring;
340 
341 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
342 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
343 
344 	/* Make sure kthread runs on a single CPU */
345 	kthread_bind(rcpu->kthread, cpu);
346 	wake_up_process(rcpu->kthread);
347 
348 	return rcpu;
349 
350 free_ptr_ring:
351 	ptr_ring_cleanup(rcpu->queue, NULL);
352 free_queue:
353 	kfree(rcpu->queue);
354 free_bulkq:
355 	free_percpu(rcpu->bulkq);
356 free_rcu:
357 	kfree(rcpu);
358 	return NULL;
359 }
360 
361 static void __cpu_map_entry_free(struct rcu_head *rcu)
362 {
363 	struct bpf_cpu_map_entry *rcpu;
364 	int cpu;
365 
366 	/* This cpu_map_entry have been disconnected from map and one
367 	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
368 	 * new packets and cannot change/set flush_needed that can
369 	 * find this entry.
370 	 */
371 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
372 
373 	/* Flush remaining packets in percpu bulkq */
374 	for_each_online_cpu(cpu) {
375 		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
376 
377 		/* No concurrent bq_enqueue can run at this point */
378 		bq_flush_to_queue(rcpu, bq, false);
379 	}
380 	free_percpu(rcpu->bulkq);
381 	/* Cannot kthread_stop() here, last put free rcpu resources */
382 	put_cpu_map_entry(rcpu);
383 }
384 
385 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
386  * ensure any driver rcu critical sections have completed, but this
387  * does not guarantee a flush has happened yet. Because driver side
388  * rcu_read_lock/unlock only protects the running XDP program.  The
389  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
390  * pending flush op doesn't fail.
391  *
392  * The bpf_cpu_map_entry is still used by the kthread, and there can
393  * still be pending packets (in queue and percpu bulkq).  A refcnt
394  * makes sure to last user (kthread_stop vs. call_rcu) free memory
395  * resources.
396  *
397  * The rcu callback __cpu_map_entry_free flush remaining packets in
398  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
399  * preemption, cannot call kthread_stop() to make sure queue is empty.
400  * Instead a work_queue is started for stopping kthread,
401  * cpu_map_kthread_stop, which waits for an RCU graze period before
402  * stopping kthread, emptying the queue.
403  */
404 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
405 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
406 {
407 	struct bpf_cpu_map_entry *old_rcpu;
408 
409 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
410 	if (old_rcpu) {
411 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
412 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
413 		schedule_work(&old_rcpu->kthread_stop_wq);
414 	}
415 }
416 
417 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
418 {
419 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
420 	u32 key_cpu = *(u32 *)key;
421 
422 	if (key_cpu >= map->max_entries)
423 		return -EINVAL;
424 
425 	/* notice caller map_delete_elem() use preempt_disable() */
426 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
427 	return 0;
428 }
429 
430 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
431 			       u64 map_flags)
432 {
433 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
434 	struct bpf_cpu_map_entry *rcpu;
435 
436 	/* Array index key correspond to CPU number */
437 	u32 key_cpu = *(u32 *)key;
438 	/* Value is the queue size */
439 	u32 qsize = *(u32 *)value;
440 
441 	if (unlikely(map_flags > BPF_EXIST))
442 		return -EINVAL;
443 	if (unlikely(key_cpu >= cmap->map.max_entries))
444 		return -E2BIG;
445 	if (unlikely(map_flags == BPF_NOEXIST))
446 		return -EEXIST;
447 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
448 		return -EOVERFLOW;
449 
450 	/* Make sure CPU is a valid possible cpu */
451 	if (!cpu_possible(key_cpu))
452 		return -ENODEV;
453 
454 	if (qsize == 0) {
455 		rcpu = NULL; /* Same as deleting */
456 	} else {
457 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
458 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
459 		if (!rcpu)
460 			return -ENOMEM;
461 	}
462 	rcu_read_lock();
463 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
464 	rcu_read_unlock();
465 	return 0;
466 }
467 
468 static void cpu_map_free(struct bpf_map *map)
469 {
470 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
471 	int cpu;
472 	u32 i;
473 
474 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
475 	 * so the bpf programs (can be more than one that used this map) were
476 	 * disconnected from events. Wait for outstanding critical sections in
477 	 * these programs to complete. The rcu critical section only guarantees
478 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
479 	 * It does __not__ ensure pending flush operations (if any) are
480 	 * complete.
481 	 */
482 
483 	bpf_clear_redirect_map(map);
484 	synchronize_rcu();
485 
486 	/* To ensure all pending flush operations have completed wait for flush
487 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
488 	 * Because the above synchronize_rcu() ensures the map is disconnected
489 	 * from the program we can assume no new bits will be set.
490 	 */
491 	for_each_online_cpu(cpu) {
492 		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
493 
494 		while (!bitmap_empty(bitmap, cmap->map.max_entries))
495 			cond_resched();
496 	}
497 
498 	/* For cpu_map the remote CPUs can still be using the entries
499 	 * (struct bpf_cpu_map_entry).
500 	 */
501 	for (i = 0; i < cmap->map.max_entries; i++) {
502 		struct bpf_cpu_map_entry *rcpu;
503 
504 		rcpu = READ_ONCE(cmap->cpu_map[i]);
505 		if (!rcpu)
506 			continue;
507 
508 		/* bq flush and cleanup happens after RCU graze-period */
509 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
510 	}
511 	free_percpu(cmap->flush_needed);
512 	bpf_map_area_free(cmap->cpu_map);
513 	kfree(cmap);
514 }
515 
516 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
517 {
518 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
519 	struct bpf_cpu_map_entry *rcpu;
520 
521 	if (key >= map->max_entries)
522 		return NULL;
523 
524 	rcpu = READ_ONCE(cmap->cpu_map[key]);
525 	return rcpu;
526 }
527 
528 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
529 {
530 	struct bpf_cpu_map_entry *rcpu =
531 		__cpu_map_lookup_elem(map, *(u32 *)key);
532 
533 	return rcpu ? &rcpu->qsize : NULL;
534 }
535 
536 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
537 {
538 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
539 	u32 index = key ? *(u32 *)key : U32_MAX;
540 	u32 *next = next_key;
541 
542 	if (index >= cmap->map.max_entries) {
543 		*next = 0;
544 		return 0;
545 	}
546 
547 	if (index == cmap->map.max_entries - 1)
548 		return -ENOENT;
549 	*next = index + 1;
550 	return 0;
551 }
552 
553 const struct bpf_map_ops cpu_map_ops = {
554 	.map_alloc		= cpu_map_alloc,
555 	.map_free		= cpu_map_free,
556 	.map_delete_elem	= cpu_map_delete_elem,
557 	.map_update_elem	= cpu_map_update_elem,
558 	.map_lookup_elem	= cpu_map_lookup_elem,
559 	.map_get_next_key	= cpu_map_get_next_key,
560 	.map_check_btf		= map_check_no_btf,
561 };
562 
563 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
564 			     struct xdp_bulk_queue *bq, bool in_napi_ctx)
565 {
566 	unsigned int processed = 0, drops = 0;
567 	const int to_cpu = rcpu->cpu;
568 	struct ptr_ring *q;
569 	int i;
570 
571 	if (unlikely(!bq->count))
572 		return 0;
573 
574 	q = rcpu->queue;
575 	spin_lock(&q->producer_lock);
576 
577 	for (i = 0; i < bq->count; i++) {
578 		struct xdp_frame *xdpf = bq->q[i];
579 		int err;
580 
581 		err = __ptr_ring_produce(q, xdpf);
582 		if (err) {
583 			drops++;
584 			if (likely(in_napi_ctx))
585 				xdp_return_frame_rx_napi(xdpf);
586 			else
587 				xdp_return_frame(xdpf);
588 		}
589 		processed++;
590 	}
591 	bq->count = 0;
592 	spin_unlock(&q->producer_lock);
593 
594 	/* Feedback loop via tracepoints */
595 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
596 	return 0;
597 }
598 
599 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
600  * Thus, safe percpu variable access.
601  */
602 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
603 {
604 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
605 
606 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
607 		bq_flush_to_queue(rcpu, bq, true);
608 
609 	/* Notice, xdp_buff/page MUST be queued here, long enough for
610 	 * driver to code invoking us to finished, due to driver
611 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
612 	 *
613 	 * Thus, incoming xdp_frame is always queued here (else we race
614 	 * with another CPU on page-refcnt and remaining driver code).
615 	 * Queue time is very short, as driver will invoke flush
616 	 * operation, when completing napi->poll call.
617 	 */
618 	bq->q[bq->count++] = xdpf;
619 	return 0;
620 }
621 
622 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
623 		    struct net_device *dev_rx)
624 {
625 	struct xdp_frame *xdpf;
626 
627 	xdpf = convert_to_xdp_frame(xdp);
628 	if (unlikely(!xdpf))
629 		return -EOVERFLOW;
630 
631 	/* Info needed when constructing SKB on remote CPU */
632 	xdpf->dev_rx = dev_rx;
633 
634 	bq_enqueue(rcpu, xdpf);
635 	return 0;
636 }
637 
638 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
639 {
640 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
641 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
642 
643 	__set_bit(bit, bitmap);
644 }
645 
646 void __cpu_map_flush(struct bpf_map *map)
647 {
648 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
649 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
650 	u32 bit;
651 
652 	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
653 	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
654 	 * bitmap indicate which percpu bulkq have packets.
655 	 */
656 	for_each_set_bit(bit, bitmap, map->max_entries) {
657 		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
658 		struct xdp_bulk_queue *bq;
659 
660 		/* This is possible if entry is removed by user space
661 		 * between xdp redirect and flush op.
662 		 */
663 		if (unlikely(!rcpu))
664 			continue;
665 
666 		__clear_bit(bit, bitmap);
667 
668 		/* Flush all frames in bulkq to real queue */
669 		bq = this_cpu_ptr(rcpu->bulkq);
670 		bq_flush_to_queue(rcpu, bq, true);
671 
672 		/* If already running, costs spin_lock_irqsave + smb_mb */
673 		wake_up_process(rcpu->kthread);
674 	}
675 }
676