xref: /linux/kernel/bpf/cpumap.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 /* bpf/cpumap.c
2  *
3  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4  * Released under terms in GPL version 2.  See COPYING.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that setting flush bit and flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct xdp_bulk_queue {
42 	void *q[CPU_MAP_BULK_SIZE];
43 	unsigned int count;
44 };
45 
46 /* Struct for every remote "destination" CPU in map */
47 struct bpf_cpu_map_entry {
48 	u32 cpu;    /* kthread CPU and map index */
49 	int map_id; /* Back reference to map */
50 	u32 qsize;  /* Queue size placeholder for map lookup */
51 
52 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
53 	struct xdp_bulk_queue __percpu *bulkq;
54 
55 	/* Queue with potential multi-producers, and single-consumer kthread */
56 	struct ptr_ring *queue;
57 	struct task_struct *kthread;
58 	struct work_struct kthread_stop_wq;
59 
60 	atomic_t refcnt; /* Control when this struct can be free'ed */
61 	struct rcu_head rcu;
62 };
63 
64 struct bpf_cpu_map {
65 	struct bpf_map map;
66 	/* Below members specific for map type */
67 	struct bpf_cpu_map_entry **cpu_map;
68 	unsigned long __percpu *flush_needed;
69 };
70 
71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
72 			     struct xdp_bulk_queue *bq, bool in_napi_ctx);
73 
74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
75 {
76 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
77 }
78 
79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
80 {
81 	struct bpf_cpu_map *cmap;
82 	int err = -ENOMEM;
83 	u64 cost;
84 	int ret;
85 
86 	if (!capable(CAP_SYS_ADMIN))
87 		return ERR_PTR(-EPERM);
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
92 		return ERR_PTR(-EINVAL);
93 
94 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
95 	if (!cmap)
96 		return ERR_PTR(-ENOMEM);
97 
98 	bpf_map_init_from_attr(&cmap->map, attr);
99 
100 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
101 	if (cmap->map.max_entries > NR_CPUS) {
102 		err = -E2BIG;
103 		goto free_cmap;
104 	}
105 
106 	/* make sure page count doesn't overflow */
107 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
108 	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
109 
110 	/* Notice returns -EPERM on if map size is larger than memlock limit */
111 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
112 	if (ret) {
113 		err = ret;
114 		goto free_cmap;
115 	}
116 
117 	/* A per cpu bitfield with a bit per possible CPU in map  */
118 	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
119 					    __alignof__(unsigned long));
120 	if (!cmap->flush_needed)
121 		goto free_charge;
122 
123 	/* Alloc array for possible remote "destination" CPUs */
124 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
125 					   sizeof(struct bpf_cpu_map_entry *),
126 					   cmap->map.numa_node);
127 	if (!cmap->cpu_map)
128 		goto free_percpu;
129 
130 	return &cmap->map;
131 free_percpu:
132 	free_percpu(cmap->flush_needed);
133 free_charge:
134 	bpf_map_charge_finish(&cmap->map.memory);
135 free_cmap:
136 	kfree(cmap);
137 	return ERR_PTR(err);
138 }
139 
140 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
141 {
142 	atomic_inc(&rcpu->refcnt);
143 }
144 
145 /* called from workqueue, to workaround syscall using preempt_disable */
146 static void cpu_map_kthread_stop(struct work_struct *work)
147 {
148 	struct bpf_cpu_map_entry *rcpu;
149 
150 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
151 
152 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
153 	 * as it waits until all in-flight call_rcu() callbacks complete.
154 	 */
155 	rcu_barrier();
156 
157 	/* kthread_stop will wake_up_process and wait for it to complete */
158 	kthread_stop(rcpu->kthread);
159 }
160 
161 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
162 					 struct xdp_frame *xdpf,
163 					 struct sk_buff *skb)
164 {
165 	unsigned int hard_start_headroom;
166 	unsigned int frame_size;
167 	void *pkt_data_start;
168 
169 	/* Part of headroom was reserved to xdpf */
170 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
171 
172 	/* build_skb need to place skb_shared_info after SKB end, and
173 	 * also want to know the memory "truesize".  Thus, need to
174 	 * know the memory frame size backing xdp_buff.
175 	 *
176 	 * XDP was designed to have PAGE_SIZE frames, but this
177 	 * assumption is not longer true with ixgbe and i40e.  It
178 	 * would be preferred to set frame_size to 2048 or 4096
179 	 * depending on the driver.
180 	 *   frame_size = 2048;
181 	 *   frame_len  = frame_size - sizeof(*xdp_frame);
182 	 *
183 	 * Instead, with info avail, skb_shared_info in placed after
184 	 * packet len.  This, unfortunately fakes the truesize.
185 	 * Another disadvantage of this approach, the skb_shared_info
186 	 * is not at a fixed memory location, with mixed length
187 	 * packets, which is bad for cache-line hotness.
188 	 */
189 	frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) +
190 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
191 
192 	pkt_data_start = xdpf->data - hard_start_headroom;
193 	skb = build_skb_around(skb, pkt_data_start, frame_size);
194 	if (unlikely(!skb))
195 		return NULL;
196 
197 	skb_reserve(skb, hard_start_headroom);
198 	__skb_put(skb, xdpf->len);
199 	if (xdpf->metasize)
200 		skb_metadata_set(skb, xdpf->metasize);
201 
202 	/* Essential SKB info: protocol and skb->dev */
203 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
204 
205 	/* Optional SKB info, currently missing:
206 	 * - HW checksum info		(skb->ip_summed)
207 	 * - HW RX hash			(skb_set_hash)
208 	 * - RX ring dev queue index	(skb_record_rx_queue)
209 	 */
210 
211 	/* Allow SKB to reuse area used by xdp_frame */
212 	xdp_scrub_frame(xdpf);
213 
214 	return skb;
215 }
216 
217 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
218 {
219 	/* The tear-down procedure should have made sure that queue is
220 	 * empty.  See __cpu_map_entry_replace() and work-queue
221 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
222 	 * gracefully and warn once.
223 	 */
224 	struct xdp_frame *xdpf;
225 
226 	while ((xdpf = ptr_ring_consume(ring)))
227 		if (WARN_ON_ONCE(xdpf))
228 			xdp_return_frame(xdpf);
229 }
230 
231 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
232 {
233 	if (atomic_dec_and_test(&rcpu->refcnt)) {
234 		/* The queue should be empty at this point */
235 		__cpu_map_ring_cleanup(rcpu->queue);
236 		ptr_ring_cleanup(rcpu->queue, NULL);
237 		kfree(rcpu->queue);
238 		kfree(rcpu);
239 	}
240 }
241 
242 #define CPUMAP_BATCH 8
243 
244 static int cpu_map_kthread_run(void *data)
245 {
246 	struct bpf_cpu_map_entry *rcpu = data;
247 
248 	set_current_state(TASK_INTERRUPTIBLE);
249 
250 	/* When kthread gives stop order, then rcpu have been disconnected
251 	 * from map, thus no new packets can enter. Remaining in-flight
252 	 * per CPU stored packets are flushed to this queue.  Wait honoring
253 	 * kthread_stop signal until queue is empty.
254 	 */
255 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
256 		unsigned int drops = 0, sched = 0;
257 		void *frames[CPUMAP_BATCH];
258 		void *skbs[CPUMAP_BATCH];
259 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
260 		int i, n, m;
261 
262 		/* Release CPU reschedule checks */
263 		if (__ptr_ring_empty(rcpu->queue)) {
264 			set_current_state(TASK_INTERRUPTIBLE);
265 			/* Recheck to avoid lost wake-up */
266 			if (__ptr_ring_empty(rcpu->queue)) {
267 				schedule();
268 				sched = 1;
269 			} else {
270 				__set_current_state(TASK_RUNNING);
271 			}
272 		} else {
273 			sched = cond_resched();
274 		}
275 
276 		/*
277 		 * The bpf_cpu_map_entry is single consumer, with this
278 		 * kthread CPU pinned. Lockless access to ptr_ring
279 		 * consume side valid as no-resize allowed of queue.
280 		 */
281 		n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
282 
283 		for (i = 0; i < n; i++) {
284 			void *f = frames[i];
285 			struct page *page = virt_to_page(f);
286 
287 			/* Bring struct page memory area to curr CPU. Read by
288 			 * build_skb_around via page_is_pfmemalloc(), and when
289 			 * freed written by page_frag_free call.
290 			 */
291 			prefetchw(page);
292 		}
293 
294 		m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
295 		if (unlikely(m == 0)) {
296 			for (i = 0; i < n; i++)
297 				skbs[i] = NULL; /* effect: xdp_return_frame */
298 			drops = n;
299 		}
300 
301 		local_bh_disable();
302 		for (i = 0; i < n; i++) {
303 			struct xdp_frame *xdpf = frames[i];
304 			struct sk_buff *skb = skbs[i];
305 			int ret;
306 
307 			skb = cpu_map_build_skb(rcpu, xdpf, skb);
308 			if (!skb) {
309 				xdp_return_frame(xdpf);
310 				continue;
311 			}
312 
313 			/* Inject into network stack */
314 			ret = netif_receive_skb_core(skb);
315 			if (ret == NET_RX_DROP)
316 				drops++;
317 		}
318 		/* Feedback loop via tracepoint */
319 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
320 
321 		local_bh_enable(); /* resched point, may call do_softirq() */
322 	}
323 	__set_current_state(TASK_RUNNING);
324 
325 	put_cpu_map_entry(rcpu);
326 	return 0;
327 }
328 
329 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
330 						       int map_id)
331 {
332 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
333 	struct bpf_cpu_map_entry *rcpu;
334 	int numa, err;
335 
336 	/* Have map->numa_node, but choose node of redirect target CPU */
337 	numa = cpu_to_node(cpu);
338 
339 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
340 	if (!rcpu)
341 		return NULL;
342 
343 	/* Alloc percpu bulkq */
344 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
345 					 sizeof(void *), gfp);
346 	if (!rcpu->bulkq)
347 		goto free_rcu;
348 
349 	/* Alloc queue */
350 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
351 	if (!rcpu->queue)
352 		goto free_bulkq;
353 
354 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
355 	if (err)
356 		goto free_queue;
357 
358 	rcpu->cpu    = cpu;
359 	rcpu->map_id = map_id;
360 	rcpu->qsize  = qsize;
361 
362 	/* Setup kthread */
363 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
364 					       "cpumap/%d/map:%d", cpu, map_id);
365 	if (IS_ERR(rcpu->kthread))
366 		goto free_ptr_ring;
367 
368 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
369 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
370 
371 	/* Make sure kthread runs on a single CPU */
372 	kthread_bind(rcpu->kthread, cpu);
373 	wake_up_process(rcpu->kthread);
374 
375 	return rcpu;
376 
377 free_ptr_ring:
378 	ptr_ring_cleanup(rcpu->queue, NULL);
379 free_queue:
380 	kfree(rcpu->queue);
381 free_bulkq:
382 	free_percpu(rcpu->bulkq);
383 free_rcu:
384 	kfree(rcpu);
385 	return NULL;
386 }
387 
388 static void __cpu_map_entry_free(struct rcu_head *rcu)
389 {
390 	struct bpf_cpu_map_entry *rcpu;
391 	int cpu;
392 
393 	/* This cpu_map_entry have been disconnected from map and one
394 	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
395 	 * new packets and cannot change/set flush_needed that can
396 	 * find this entry.
397 	 */
398 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
399 
400 	/* Flush remaining packets in percpu bulkq */
401 	for_each_online_cpu(cpu) {
402 		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
403 
404 		/* No concurrent bq_enqueue can run at this point */
405 		bq_flush_to_queue(rcpu, bq, false);
406 	}
407 	free_percpu(rcpu->bulkq);
408 	/* Cannot kthread_stop() here, last put free rcpu resources */
409 	put_cpu_map_entry(rcpu);
410 }
411 
412 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
413  * ensure any driver rcu critical sections have completed, but this
414  * does not guarantee a flush has happened yet. Because driver side
415  * rcu_read_lock/unlock only protects the running XDP program.  The
416  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
417  * pending flush op doesn't fail.
418  *
419  * The bpf_cpu_map_entry is still used by the kthread, and there can
420  * still be pending packets (in queue and percpu bulkq).  A refcnt
421  * makes sure to last user (kthread_stop vs. call_rcu) free memory
422  * resources.
423  *
424  * The rcu callback __cpu_map_entry_free flush remaining packets in
425  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
426  * preemption, cannot call kthread_stop() to make sure queue is empty.
427  * Instead a work_queue is started for stopping kthread,
428  * cpu_map_kthread_stop, which waits for an RCU graze period before
429  * stopping kthread, emptying the queue.
430  */
431 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
432 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
433 {
434 	struct bpf_cpu_map_entry *old_rcpu;
435 
436 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
437 	if (old_rcpu) {
438 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
439 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
440 		schedule_work(&old_rcpu->kthread_stop_wq);
441 	}
442 }
443 
444 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
445 {
446 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
447 	u32 key_cpu = *(u32 *)key;
448 
449 	if (key_cpu >= map->max_entries)
450 		return -EINVAL;
451 
452 	/* notice caller map_delete_elem() use preempt_disable() */
453 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
454 	return 0;
455 }
456 
457 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
458 			       u64 map_flags)
459 {
460 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
461 	struct bpf_cpu_map_entry *rcpu;
462 
463 	/* Array index key correspond to CPU number */
464 	u32 key_cpu = *(u32 *)key;
465 	/* Value is the queue size */
466 	u32 qsize = *(u32 *)value;
467 
468 	if (unlikely(map_flags > BPF_EXIST))
469 		return -EINVAL;
470 	if (unlikely(key_cpu >= cmap->map.max_entries))
471 		return -E2BIG;
472 	if (unlikely(map_flags == BPF_NOEXIST))
473 		return -EEXIST;
474 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
475 		return -EOVERFLOW;
476 
477 	/* Make sure CPU is a valid possible cpu */
478 	if (!cpu_possible(key_cpu))
479 		return -ENODEV;
480 
481 	if (qsize == 0) {
482 		rcpu = NULL; /* Same as deleting */
483 	} else {
484 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
485 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
486 		if (!rcpu)
487 			return -ENOMEM;
488 	}
489 	rcu_read_lock();
490 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
491 	rcu_read_unlock();
492 	return 0;
493 }
494 
495 static void cpu_map_free(struct bpf_map *map)
496 {
497 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
498 	int cpu;
499 	u32 i;
500 
501 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
502 	 * so the bpf programs (can be more than one that used this map) were
503 	 * disconnected from events. Wait for outstanding critical sections in
504 	 * these programs to complete. The rcu critical section only guarantees
505 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
506 	 * It does __not__ ensure pending flush operations (if any) are
507 	 * complete.
508 	 */
509 
510 	bpf_clear_redirect_map(map);
511 	synchronize_rcu();
512 
513 	/* To ensure all pending flush operations have completed wait for flush
514 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
515 	 * Because the above synchronize_rcu() ensures the map is disconnected
516 	 * from the program we can assume no new bits will be set.
517 	 */
518 	for_each_online_cpu(cpu) {
519 		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
520 
521 		while (!bitmap_empty(bitmap, cmap->map.max_entries))
522 			cond_resched();
523 	}
524 
525 	/* For cpu_map the remote CPUs can still be using the entries
526 	 * (struct bpf_cpu_map_entry).
527 	 */
528 	for (i = 0; i < cmap->map.max_entries; i++) {
529 		struct bpf_cpu_map_entry *rcpu;
530 
531 		rcpu = READ_ONCE(cmap->cpu_map[i]);
532 		if (!rcpu)
533 			continue;
534 
535 		/* bq flush and cleanup happens after RCU graze-period */
536 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
537 	}
538 	free_percpu(cmap->flush_needed);
539 	bpf_map_area_free(cmap->cpu_map);
540 	kfree(cmap);
541 }
542 
543 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
544 {
545 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
546 	struct bpf_cpu_map_entry *rcpu;
547 
548 	if (key >= map->max_entries)
549 		return NULL;
550 
551 	rcpu = READ_ONCE(cmap->cpu_map[key]);
552 	return rcpu;
553 }
554 
555 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
556 {
557 	struct bpf_cpu_map_entry *rcpu =
558 		__cpu_map_lookup_elem(map, *(u32 *)key);
559 
560 	return rcpu ? &rcpu->qsize : NULL;
561 }
562 
563 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
564 {
565 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
566 	u32 index = key ? *(u32 *)key : U32_MAX;
567 	u32 *next = next_key;
568 
569 	if (index >= cmap->map.max_entries) {
570 		*next = 0;
571 		return 0;
572 	}
573 
574 	if (index == cmap->map.max_entries - 1)
575 		return -ENOENT;
576 	*next = index + 1;
577 	return 0;
578 }
579 
580 const struct bpf_map_ops cpu_map_ops = {
581 	.map_alloc		= cpu_map_alloc,
582 	.map_free		= cpu_map_free,
583 	.map_delete_elem	= cpu_map_delete_elem,
584 	.map_update_elem	= cpu_map_update_elem,
585 	.map_lookup_elem	= cpu_map_lookup_elem,
586 	.map_get_next_key	= cpu_map_get_next_key,
587 	.map_check_btf		= map_check_no_btf,
588 };
589 
590 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
591 			     struct xdp_bulk_queue *bq, bool in_napi_ctx)
592 {
593 	unsigned int processed = 0, drops = 0;
594 	const int to_cpu = rcpu->cpu;
595 	struct ptr_ring *q;
596 	int i;
597 
598 	if (unlikely(!bq->count))
599 		return 0;
600 
601 	q = rcpu->queue;
602 	spin_lock(&q->producer_lock);
603 
604 	for (i = 0; i < bq->count; i++) {
605 		struct xdp_frame *xdpf = bq->q[i];
606 		int err;
607 
608 		err = __ptr_ring_produce(q, xdpf);
609 		if (err) {
610 			drops++;
611 			if (likely(in_napi_ctx))
612 				xdp_return_frame_rx_napi(xdpf);
613 			else
614 				xdp_return_frame(xdpf);
615 		}
616 		processed++;
617 	}
618 	bq->count = 0;
619 	spin_unlock(&q->producer_lock);
620 
621 	/* Feedback loop via tracepoints */
622 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
623 	return 0;
624 }
625 
626 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
627  * Thus, safe percpu variable access.
628  */
629 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
630 {
631 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
632 
633 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
634 		bq_flush_to_queue(rcpu, bq, true);
635 
636 	/* Notice, xdp_buff/page MUST be queued here, long enough for
637 	 * driver to code invoking us to finished, due to driver
638 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
639 	 *
640 	 * Thus, incoming xdp_frame is always queued here (else we race
641 	 * with another CPU on page-refcnt and remaining driver code).
642 	 * Queue time is very short, as driver will invoke flush
643 	 * operation, when completing napi->poll call.
644 	 */
645 	bq->q[bq->count++] = xdpf;
646 	return 0;
647 }
648 
649 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
650 		    struct net_device *dev_rx)
651 {
652 	struct xdp_frame *xdpf;
653 
654 	xdpf = convert_to_xdp_frame(xdp);
655 	if (unlikely(!xdpf))
656 		return -EOVERFLOW;
657 
658 	/* Info needed when constructing SKB on remote CPU */
659 	xdpf->dev_rx = dev_rx;
660 
661 	bq_enqueue(rcpu, xdpf);
662 	return 0;
663 }
664 
665 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
666 {
667 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
668 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
669 
670 	__set_bit(bit, bitmap);
671 }
672 
673 void __cpu_map_flush(struct bpf_map *map)
674 {
675 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
676 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
677 	u32 bit;
678 
679 	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
680 	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
681 	 * bitmap indicate which percpu bulkq have packets.
682 	 */
683 	for_each_set_bit(bit, bitmap, map->max_entries) {
684 		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
685 		struct xdp_bulk_queue *bq;
686 
687 		/* This is possible if entry is removed by user space
688 		 * between xdp redirect and flush op.
689 		 */
690 		if (unlikely(!rcpu))
691 			continue;
692 
693 		__clear_bit(bit, bitmap);
694 
695 		/* Flush all frames in bulkq to real queue */
696 		bq = this_cpu_ptr(rcpu->bulkq);
697 		bq_flush_to_queue(rcpu, bq, true);
698 
699 		/* If already running, costs spin_lock_irqsave + smb_mb */
700 		wake_up_process(rcpu->kthread);
701 	}
702 }
703