1 /* bpf/cpumap.c 2 * 3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 4 * Released under terms in GPL version 2. See COPYING. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that setting flush bit and flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct xdp_bulk_queue { 42 void *q[CPU_MAP_BULK_SIZE]; 43 unsigned int count; 44 }; 45 46 /* Struct for every remote "destination" CPU in map */ 47 struct bpf_cpu_map_entry { 48 u32 cpu; /* kthread CPU and map index */ 49 int map_id; /* Back reference to map */ 50 u32 qsize; /* Queue size placeholder for map lookup */ 51 52 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 53 struct xdp_bulk_queue __percpu *bulkq; 54 55 /* Queue with potential multi-producers, and single-consumer kthread */ 56 struct ptr_ring *queue; 57 struct task_struct *kthread; 58 struct work_struct kthread_stop_wq; 59 60 atomic_t refcnt; /* Control when this struct can be free'ed */ 61 struct rcu_head rcu; 62 }; 63 64 struct bpf_cpu_map { 65 struct bpf_map map; 66 /* Below members specific for map type */ 67 struct bpf_cpu_map_entry **cpu_map; 68 unsigned long __percpu *flush_needed; 69 }; 70 71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 72 struct xdp_bulk_queue *bq, bool in_napi_ctx); 73 74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr) 75 { 76 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 77 } 78 79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 80 { 81 struct bpf_cpu_map *cmap; 82 int err = -ENOMEM; 83 u64 cost; 84 int ret; 85 86 if (!capable(CAP_SYS_ADMIN)) 87 return ERR_PTR(-EPERM); 88 89 /* check sanity of attributes */ 90 if (attr->max_entries == 0 || attr->key_size != 4 || 91 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 92 return ERR_PTR(-EINVAL); 93 94 cmap = kzalloc(sizeof(*cmap), GFP_USER); 95 if (!cmap) 96 return ERR_PTR(-ENOMEM); 97 98 bpf_map_init_from_attr(&cmap->map, attr); 99 100 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 101 if (cmap->map.max_entries > NR_CPUS) { 102 err = -E2BIG; 103 goto free_cmap; 104 } 105 106 /* make sure page count doesn't overflow */ 107 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 108 cost += cpu_map_bitmap_size(attr) * num_possible_cpus(); 109 110 /* Notice returns -EPERM on if map size is larger than memlock limit */ 111 ret = bpf_map_charge_init(&cmap->map.memory, cost); 112 if (ret) { 113 err = ret; 114 goto free_cmap; 115 } 116 117 /* A per cpu bitfield with a bit per possible CPU in map */ 118 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr), 119 __alignof__(unsigned long)); 120 if (!cmap->flush_needed) 121 goto free_charge; 122 123 /* Alloc array for possible remote "destination" CPUs */ 124 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 125 sizeof(struct bpf_cpu_map_entry *), 126 cmap->map.numa_node); 127 if (!cmap->cpu_map) 128 goto free_percpu; 129 130 return &cmap->map; 131 free_percpu: 132 free_percpu(cmap->flush_needed); 133 free_charge: 134 bpf_map_charge_finish(&cmap->map.memory); 135 free_cmap: 136 kfree(cmap); 137 return ERR_PTR(err); 138 } 139 140 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 141 { 142 atomic_inc(&rcpu->refcnt); 143 } 144 145 /* called from workqueue, to workaround syscall using preempt_disable */ 146 static void cpu_map_kthread_stop(struct work_struct *work) 147 { 148 struct bpf_cpu_map_entry *rcpu; 149 150 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 151 152 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 153 * as it waits until all in-flight call_rcu() callbacks complete. 154 */ 155 rcu_barrier(); 156 157 /* kthread_stop will wake_up_process and wait for it to complete */ 158 kthread_stop(rcpu->kthread); 159 } 160 161 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 162 struct xdp_frame *xdpf, 163 struct sk_buff *skb) 164 { 165 unsigned int hard_start_headroom; 166 unsigned int frame_size; 167 void *pkt_data_start; 168 169 /* Part of headroom was reserved to xdpf */ 170 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 171 172 /* build_skb need to place skb_shared_info after SKB end, and 173 * also want to know the memory "truesize". Thus, need to 174 * know the memory frame size backing xdp_buff. 175 * 176 * XDP was designed to have PAGE_SIZE frames, but this 177 * assumption is not longer true with ixgbe and i40e. It 178 * would be preferred to set frame_size to 2048 or 4096 179 * depending on the driver. 180 * frame_size = 2048; 181 * frame_len = frame_size - sizeof(*xdp_frame); 182 * 183 * Instead, with info avail, skb_shared_info in placed after 184 * packet len. This, unfortunately fakes the truesize. 185 * Another disadvantage of this approach, the skb_shared_info 186 * is not at a fixed memory location, with mixed length 187 * packets, which is bad for cache-line hotness. 188 */ 189 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) + 190 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 191 192 pkt_data_start = xdpf->data - hard_start_headroom; 193 skb = build_skb_around(skb, pkt_data_start, frame_size); 194 if (unlikely(!skb)) 195 return NULL; 196 197 skb_reserve(skb, hard_start_headroom); 198 __skb_put(skb, xdpf->len); 199 if (xdpf->metasize) 200 skb_metadata_set(skb, xdpf->metasize); 201 202 /* Essential SKB info: protocol and skb->dev */ 203 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 204 205 /* Optional SKB info, currently missing: 206 * - HW checksum info (skb->ip_summed) 207 * - HW RX hash (skb_set_hash) 208 * - RX ring dev queue index (skb_record_rx_queue) 209 */ 210 211 /* Allow SKB to reuse area used by xdp_frame */ 212 xdp_scrub_frame(xdpf); 213 214 return skb; 215 } 216 217 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 218 { 219 /* The tear-down procedure should have made sure that queue is 220 * empty. See __cpu_map_entry_replace() and work-queue 221 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 222 * gracefully and warn once. 223 */ 224 struct xdp_frame *xdpf; 225 226 while ((xdpf = ptr_ring_consume(ring))) 227 if (WARN_ON_ONCE(xdpf)) 228 xdp_return_frame(xdpf); 229 } 230 231 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 232 { 233 if (atomic_dec_and_test(&rcpu->refcnt)) { 234 /* The queue should be empty at this point */ 235 __cpu_map_ring_cleanup(rcpu->queue); 236 ptr_ring_cleanup(rcpu->queue, NULL); 237 kfree(rcpu->queue); 238 kfree(rcpu); 239 } 240 } 241 242 #define CPUMAP_BATCH 8 243 244 static int cpu_map_kthread_run(void *data) 245 { 246 struct bpf_cpu_map_entry *rcpu = data; 247 248 set_current_state(TASK_INTERRUPTIBLE); 249 250 /* When kthread gives stop order, then rcpu have been disconnected 251 * from map, thus no new packets can enter. Remaining in-flight 252 * per CPU stored packets are flushed to this queue. Wait honoring 253 * kthread_stop signal until queue is empty. 254 */ 255 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 256 unsigned int drops = 0, sched = 0; 257 void *frames[CPUMAP_BATCH]; 258 void *skbs[CPUMAP_BATCH]; 259 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 260 int i, n, m; 261 262 /* Release CPU reschedule checks */ 263 if (__ptr_ring_empty(rcpu->queue)) { 264 set_current_state(TASK_INTERRUPTIBLE); 265 /* Recheck to avoid lost wake-up */ 266 if (__ptr_ring_empty(rcpu->queue)) { 267 schedule(); 268 sched = 1; 269 } else { 270 __set_current_state(TASK_RUNNING); 271 } 272 } else { 273 sched = cond_resched(); 274 } 275 276 /* 277 * The bpf_cpu_map_entry is single consumer, with this 278 * kthread CPU pinned. Lockless access to ptr_ring 279 * consume side valid as no-resize allowed of queue. 280 */ 281 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH); 282 283 for (i = 0; i < n; i++) { 284 void *f = frames[i]; 285 struct page *page = virt_to_page(f); 286 287 /* Bring struct page memory area to curr CPU. Read by 288 * build_skb_around via page_is_pfmemalloc(), and when 289 * freed written by page_frag_free call. 290 */ 291 prefetchw(page); 292 } 293 294 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs); 295 if (unlikely(m == 0)) { 296 for (i = 0; i < n; i++) 297 skbs[i] = NULL; /* effect: xdp_return_frame */ 298 drops = n; 299 } 300 301 local_bh_disable(); 302 for (i = 0; i < n; i++) { 303 struct xdp_frame *xdpf = frames[i]; 304 struct sk_buff *skb = skbs[i]; 305 int ret; 306 307 skb = cpu_map_build_skb(rcpu, xdpf, skb); 308 if (!skb) { 309 xdp_return_frame(xdpf); 310 continue; 311 } 312 313 /* Inject into network stack */ 314 ret = netif_receive_skb_core(skb); 315 if (ret == NET_RX_DROP) 316 drops++; 317 } 318 /* Feedback loop via tracepoint */ 319 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched); 320 321 local_bh_enable(); /* resched point, may call do_softirq() */ 322 } 323 __set_current_state(TASK_RUNNING); 324 325 put_cpu_map_entry(rcpu); 326 return 0; 327 } 328 329 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 330 int map_id) 331 { 332 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 333 struct bpf_cpu_map_entry *rcpu; 334 int numa, err; 335 336 /* Have map->numa_node, but choose node of redirect target CPU */ 337 numa = cpu_to_node(cpu); 338 339 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 340 if (!rcpu) 341 return NULL; 342 343 /* Alloc percpu bulkq */ 344 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 345 sizeof(void *), gfp); 346 if (!rcpu->bulkq) 347 goto free_rcu; 348 349 /* Alloc queue */ 350 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 351 if (!rcpu->queue) 352 goto free_bulkq; 353 354 err = ptr_ring_init(rcpu->queue, qsize, gfp); 355 if (err) 356 goto free_queue; 357 358 rcpu->cpu = cpu; 359 rcpu->map_id = map_id; 360 rcpu->qsize = qsize; 361 362 /* Setup kthread */ 363 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 364 "cpumap/%d/map:%d", cpu, map_id); 365 if (IS_ERR(rcpu->kthread)) 366 goto free_ptr_ring; 367 368 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 369 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 370 371 /* Make sure kthread runs on a single CPU */ 372 kthread_bind(rcpu->kthread, cpu); 373 wake_up_process(rcpu->kthread); 374 375 return rcpu; 376 377 free_ptr_ring: 378 ptr_ring_cleanup(rcpu->queue, NULL); 379 free_queue: 380 kfree(rcpu->queue); 381 free_bulkq: 382 free_percpu(rcpu->bulkq); 383 free_rcu: 384 kfree(rcpu); 385 return NULL; 386 } 387 388 static void __cpu_map_entry_free(struct rcu_head *rcu) 389 { 390 struct bpf_cpu_map_entry *rcpu; 391 int cpu; 392 393 /* This cpu_map_entry have been disconnected from map and one 394 * RCU graze-period have elapsed. Thus, XDP cannot queue any 395 * new packets and cannot change/set flush_needed that can 396 * find this entry. 397 */ 398 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 399 400 /* Flush remaining packets in percpu bulkq */ 401 for_each_online_cpu(cpu) { 402 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu); 403 404 /* No concurrent bq_enqueue can run at this point */ 405 bq_flush_to_queue(rcpu, bq, false); 406 } 407 free_percpu(rcpu->bulkq); 408 /* Cannot kthread_stop() here, last put free rcpu resources */ 409 put_cpu_map_entry(rcpu); 410 } 411 412 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 413 * ensure any driver rcu critical sections have completed, but this 414 * does not guarantee a flush has happened yet. Because driver side 415 * rcu_read_lock/unlock only protects the running XDP program. The 416 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 417 * pending flush op doesn't fail. 418 * 419 * The bpf_cpu_map_entry is still used by the kthread, and there can 420 * still be pending packets (in queue and percpu bulkq). A refcnt 421 * makes sure to last user (kthread_stop vs. call_rcu) free memory 422 * resources. 423 * 424 * The rcu callback __cpu_map_entry_free flush remaining packets in 425 * percpu bulkq to queue. Due to caller map_delete_elem() disable 426 * preemption, cannot call kthread_stop() to make sure queue is empty. 427 * Instead a work_queue is started for stopping kthread, 428 * cpu_map_kthread_stop, which waits for an RCU graze period before 429 * stopping kthread, emptying the queue. 430 */ 431 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 432 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 433 { 434 struct bpf_cpu_map_entry *old_rcpu; 435 436 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 437 if (old_rcpu) { 438 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 439 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 440 schedule_work(&old_rcpu->kthread_stop_wq); 441 } 442 } 443 444 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 445 { 446 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 447 u32 key_cpu = *(u32 *)key; 448 449 if (key_cpu >= map->max_entries) 450 return -EINVAL; 451 452 /* notice caller map_delete_elem() use preempt_disable() */ 453 __cpu_map_entry_replace(cmap, key_cpu, NULL); 454 return 0; 455 } 456 457 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 458 u64 map_flags) 459 { 460 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 461 struct bpf_cpu_map_entry *rcpu; 462 463 /* Array index key correspond to CPU number */ 464 u32 key_cpu = *(u32 *)key; 465 /* Value is the queue size */ 466 u32 qsize = *(u32 *)value; 467 468 if (unlikely(map_flags > BPF_EXIST)) 469 return -EINVAL; 470 if (unlikely(key_cpu >= cmap->map.max_entries)) 471 return -E2BIG; 472 if (unlikely(map_flags == BPF_NOEXIST)) 473 return -EEXIST; 474 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 475 return -EOVERFLOW; 476 477 /* Make sure CPU is a valid possible cpu */ 478 if (!cpu_possible(key_cpu)) 479 return -ENODEV; 480 481 if (qsize == 0) { 482 rcpu = NULL; /* Same as deleting */ 483 } else { 484 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 485 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 486 if (!rcpu) 487 return -ENOMEM; 488 } 489 rcu_read_lock(); 490 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 491 rcu_read_unlock(); 492 return 0; 493 } 494 495 static void cpu_map_free(struct bpf_map *map) 496 { 497 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 498 int cpu; 499 u32 i; 500 501 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 502 * so the bpf programs (can be more than one that used this map) were 503 * disconnected from events. Wait for outstanding critical sections in 504 * these programs to complete. The rcu critical section only guarantees 505 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 506 * It does __not__ ensure pending flush operations (if any) are 507 * complete. 508 */ 509 510 bpf_clear_redirect_map(map); 511 synchronize_rcu(); 512 513 /* To ensure all pending flush operations have completed wait for flush 514 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 515 * Because the above synchronize_rcu() ensures the map is disconnected 516 * from the program we can assume no new bits will be set. 517 */ 518 for_each_online_cpu(cpu) { 519 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu); 520 521 while (!bitmap_empty(bitmap, cmap->map.max_entries)) 522 cond_resched(); 523 } 524 525 /* For cpu_map the remote CPUs can still be using the entries 526 * (struct bpf_cpu_map_entry). 527 */ 528 for (i = 0; i < cmap->map.max_entries; i++) { 529 struct bpf_cpu_map_entry *rcpu; 530 531 rcpu = READ_ONCE(cmap->cpu_map[i]); 532 if (!rcpu) 533 continue; 534 535 /* bq flush and cleanup happens after RCU graze-period */ 536 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 537 } 538 free_percpu(cmap->flush_needed); 539 bpf_map_area_free(cmap->cpu_map); 540 kfree(cmap); 541 } 542 543 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 544 { 545 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 546 struct bpf_cpu_map_entry *rcpu; 547 548 if (key >= map->max_entries) 549 return NULL; 550 551 rcpu = READ_ONCE(cmap->cpu_map[key]); 552 return rcpu; 553 } 554 555 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 556 { 557 struct bpf_cpu_map_entry *rcpu = 558 __cpu_map_lookup_elem(map, *(u32 *)key); 559 560 return rcpu ? &rcpu->qsize : NULL; 561 } 562 563 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 564 { 565 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 566 u32 index = key ? *(u32 *)key : U32_MAX; 567 u32 *next = next_key; 568 569 if (index >= cmap->map.max_entries) { 570 *next = 0; 571 return 0; 572 } 573 574 if (index == cmap->map.max_entries - 1) 575 return -ENOENT; 576 *next = index + 1; 577 return 0; 578 } 579 580 const struct bpf_map_ops cpu_map_ops = { 581 .map_alloc = cpu_map_alloc, 582 .map_free = cpu_map_free, 583 .map_delete_elem = cpu_map_delete_elem, 584 .map_update_elem = cpu_map_update_elem, 585 .map_lookup_elem = cpu_map_lookup_elem, 586 .map_get_next_key = cpu_map_get_next_key, 587 .map_check_btf = map_check_no_btf, 588 }; 589 590 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 591 struct xdp_bulk_queue *bq, bool in_napi_ctx) 592 { 593 unsigned int processed = 0, drops = 0; 594 const int to_cpu = rcpu->cpu; 595 struct ptr_ring *q; 596 int i; 597 598 if (unlikely(!bq->count)) 599 return 0; 600 601 q = rcpu->queue; 602 spin_lock(&q->producer_lock); 603 604 for (i = 0; i < bq->count; i++) { 605 struct xdp_frame *xdpf = bq->q[i]; 606 int err; 607 608 err = __ptr_ring_produce(q, xdpf); 609 if (err) { 610 drops++; 611 if (likely(in_napi_ctx)) 612 xdp_return_frame_rx_napi(xdpf); 613 else 614 xdp_return_frame(xdpf); 615 } 616 processed++; 617 } 618 bq->count = 0; 619 spin_unlock(&q->producer_lock); 620 621 /* Feedback loop via tracepoints */ 622 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 623 return 0; 624 } 625 626 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 627 * Thus, safe percpu variable access. 628 */ 629 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 630 { 631 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 632 633 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 634 bq_flush_to_queue(rcpu, bq, true); 635 636 /* Notice, xdp_buff/page MUST be queued here, long enough for 637 * driver to code invoking us to finished, due to driver 638 * (e.g. ixgbe) recycle tricks based on page-refcnt. 639 * 640 * Thus, incoming xdp_frame is always queued here (else we race 641 * with another CPU on page-refcnt and remaining driver code). 642 * Queue time is very short, as driver will invoke flush 643 * operation, when completing napi->poll call. 644 */ 645 bq->q[bq->count++] = xdpf; 646 return 0; 647 } 648 649 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 650 struct net_device *dev_rx) 651 { 652 struct xdp_frame *xdpf; 653 654 xdpf = convert_to_xdp_frame(xdp); 655 if (unlikely(!xdpf)) 656 return -EOVERFLOW; 657 658 /* Info needed when constructing SKB on remote CPU */ 659 xdpf->dev_rx = dev_rx; 660 661 bq_enqueue(rcpu, xdpf); 662 return 0; 663 } 664 665 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit) 666 { 667 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 668 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 669 670 __set_bit(bit, bitmap); 671 } 672 673 void __cpu_map_flush(struct bpf_map *map) 674 { 675 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 676 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 677 u32 bit; 678 679 /* The napi->poll softirq makes sure __cpu_map_insert_ctx() 680 * and __cpu_map_flush() happen on same CPU. Thus, the percpu 681 * bitmap indicate which percpu bulkq have packets. 682 */ 683 for_each_set_bit(bit, bitmap, map->max_entries) { 684 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]); 685 struct xdp_bulk_queue *bq; 686 687 /* This is possible if entry is removed by user space 688 * between xdp redirect and flush op. 689 */ 690 if (unlikely(!rcpu)) 691 continue; 692 693 __clear_bit(bit, bitmap); 694 695 /* Flush all frames in bulkq to real queue */ 696 bq = this_cpu_ptr(rcpu->bulkq); 697 bq_flush_to_queue(rcpu, bq, true); 698 699 /* If already running, costs spin_lock_irqsave + smb_mb */ 700 wake_up_process(rcpu->kthread); 701 } 702 } 703