1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 57 struct xdp_bulk_queue __percpu *bulkq; 58 59 struct bpf_cpu_map *cmap; 60 61 /* Queue with potential multi-producers, and single-consumer kthread */ 62 struct ptr_ring *queue; 63 struct task_struct *kthread; 64 65 struct bpf_cpumap_val value; 66 struct bpf_prog *prog; 67 68 atomic_t refcnt; /* Control when this struct can be free'ed */ 69 struct rcu_head rcu; 70 71 struct work_struct kthread_stop_wq; 72 }; 73 74 struct bpf_cpu_map { 75 struct bpf_map map; 76 /* Below members specific for map type */ 77 struct bpf_cpu_map_entry **cpu_map; 78 }; 79 80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 81 82 static int bq_flush_to_queue(struct xdp_bulk_queue *bq); 83 84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 85 { 86 u32 value_size = attr->value_size; 87 struct bpf_cpu_map *cmap; 88 int err = -ENOMEM; 89 u64 cost; 90 int ret; 91 92 if (!bpf_capable()) 93 return ERR_PTR(-EPERM); 94 95 /* check sanity of attributes */ 96 if (attr->max_entries == 0 || attr->key_size != 4 || 97 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 98 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 99 attr->map_flags & ~BPF_F_NUMA_NODE) 100 return ERR_PTR(-EINVAL); 101 102 cmap = kzalloc(sizeof(*cmap), GFP_USER); 103 if (!cmap) 104 return ERR_PTR(-ENOMEM); 105 106 bpf_map_init_from_attr(&cmap->map, attr); 107 108 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 109 if (cmap->map.max_entries > NR_CPUS) { 110 err = -E2BIG; 111 goto free_cmap; 112 } 113 114 /* make sure page count doesn't overflow */ 115 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 116 117 /* Notice returns -EPERM on if map size is larger than memlock limit */ 118 ret = bpf_map_charge_init(&cmap->map.memory, cost); 119 if (ret) { 120 err = ret; 121 goto free_cmap; 122 } 123 124 /* Alloc array for possible remote "destination" CPUs */ 125 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 126 sizeof(struct bpf_cpu_map_entry *), 127 cmap->map.numa_node); 128 if (!cmap->cpu_map) 129 goto free_charge; 130 131 return &cmap->map; 132 free_charge: 133 bpf_map_charge_finish(&cmap->map.memory); 134 free_cmap: 135 kfree(cmap); 136 return ERR_PTR(err); 137 } 138 139 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 140 { 141 atomic_inc(&rcpu->refcnt); 142 } 143 144 /* called from workqueue, to workaround syscall using preempt_disable */ 145 static void cpu_map_kthread_stop(struct work_struct *work) 146 { 147 struct bpf_cpu_map_entry *rcpu; 148 149 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 150 151 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 152 * as it waits until all in-flight call_rcu() callbacks complete. 153 */ 154 rcu_barrier(); 155 156 /* kthread_stop will wake_up_process and wait for it to complete */ 157 kthread_stop(rcpu->kthread); 158 } 159 160 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 161 struct xdp_frame *xdpf, 162 struct sk_buff *skb) 163 { 164 unsigned int hard_start_headroom; 165 unsigned int frame_size; 166 void *pkt_data_start; 167 168 /* Part of headroom was reserved to xdpf */ 169 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 170 171 /* Memory size backing xdp_frame data already have reserved 172 * room for build_skb to place skb_shared_info in tailroom. 173 */ 174 frame_size = xdpf->frame_sz; 175 176 pkt_data_start = xdpf->data - hard_start_headroom; 177 skb = build_skb_around(skb, pkt_data_start, frame_size); 178 if (unlikely(!skb)) 179 return NULL; 180 181 skb_reserve(skb, hard_start_headroom); 182 __skb_put(skb, xdpf->len); 183 if (xdpf->metasize) 184 skb_metadata_set(skb, xdpf->metasize); 185 186 /* Essential SKB info: protocol and skb->dev */ 187 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 188 189 /* Optional SKB info, currently missing: 190 * - HW checksum info (skb->ip_summed) 191 * - HW RX hash (skb_set_hash) 192 * - RX ring dev queue index (skb_record_rx_queue) 193 */ 194 195 /* Until page_pool get SKB return path, release DMA here */ 196 xdp_release_frame(xdpf); 197 198 /* Allow SKB to reuse area used by xdp_frame */ 199 xdp_scrub_frame(xdpf); 200 201 return skb; 202 } 203 204 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 205 { 206 /* The tear-down procedure should have made sure that queue is 207 * empty. See __cpu_map_entry_replace() and work-queue 208 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 209 * gracefully and warn once. 210 */ 211 struct xdp_frame *xdpf; 212 213 while ((xdpf = ptr_ring_consume(ring))) 214 if (WARN_ON_ONCE(xdpf)) 215 xdp_return_frame(xdpf); 216 } 217 218 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 219 { 220 if (atomic_dec_and_test(&rcpu->refcnt)) { 221 if (rcpu->prog) 222 bpf_prog_put(rcpu->prog); 223 /* The queue should be empty at this point */ 224 __cpu_map_ring_cleanup(rcpu->queue); 225 ptr_ring_cleanup(rcpu->queue, NULL); 226 kfree(rcpu->queue); 227 kfree(rcpu); 228 } 229 } 230 231 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 232 void **frames, int n, 233 struct xdp_cpumap_stats *stats) 234 { 235 struct xdp_rxq_info rxq; 236 struct xdp_buff xdp; 237 int i, nframes = 0; 238 239 if (!rcpu->prog) 240 return n; 241 242 rcu_read_lock_bh(); 243 244 xdp_set_return_frame_no_direct(); 245 xdp.rxq = &rxq; 246 247 for (i = 0; i < n; i++) { 248 struct xdp_frame *xdpf = frames[i]; 249 u32 act; 250 int err; 251 252 rxq.dev = xdpf->dev_rx; 253 rxq.mem = xdpf->mem; 254 /* TODO: report queue_index to xdp_rxq_info */ 255 256 xdp_convert_frame_to_buff(xdpf, &xdp); 257 258 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 259 switch (act) { 260 case XDP_PASS: 261 err = xdp_update_frame_from_buff(&xdp, xdpf); 262 if (err < 0) { 263 xdp_return_frame(xdpf); 264 stats->drop++; 265 } else { 266 frames[nframes++] = xdpf; 267 stats->pass++; 268 } 269 break; 270 case XDP_REDIRECT: 271 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 272 rcpu->prog); 273 if (unlikely(err)) { 274 xdp_return_frame(xdpf); 275 stats->drop++; 276 } else { 277 stats->redirect++; 278 } 279 break; 280 default: 281 bpf_warn_invalid_xdp_action(act); 282 /* fallthrough */ 283 case XDP_DROP: 284 xdp_return_frame(xdpf); 285 stats->drop++; 286 break; 287 } 288 } 289 290 if (stats->redirect) 291 xdp_do_flush_map(); 292 293 xdp_clear_return_frame_no_direct(); 294 295 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 296 297 return nframes; 298 } 299 300 #define CPUMAP_BATCH 8 301 302 static int cpu_map_kthread_run(void *data) 303 { 304 struct bpf_cpu_map_entry *rcpu = data; 305 306 set_current_state(TASK_INTERRUPTIBLE); 307 308 /* When kthread gives stop order, then rcpu have been disconnected 309 * from map, thus no new packets can enter. Remaining in-flight 310 * per CPU stored packets are flushed to this queue. Wait honoring 311 * kthread_stop signal until queue is empty. 312 */ 313 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 314 struct xdp_cpumap_stats stats = {}; /* zero stats */ 315 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 316 unsigned int drops = 0, sched = 0; 317 void *frames[CPUMAP_BATCH]; 318 void *skbs[CPUMAP_BATCH]; 319 int i, n, m, nframes; 320 321 /* Release CPU reschedule checks */ 322 if (__ptr_ring_empty(rcpu->queue)) { 323 set_current_state(TASK_INTERRUPTIBLE); 324 /* Recheck to avoid lost wake-up */ 325 if (__ptr_ring_empty(rcpu->queue)) { 326 schedule(); 327 sched = 1; 328 } else { 329 __set_current_state(TASK_RUNNING); 330 } 331 } else { 332 sched = cond_resched(); 333 } 334 335 /* 336 * The bpf_cpu_map_entry is single consumer, with this 337 * kthread CPU pinned. Lockless access to ptr_ring 338 * consume side valid as no-resize allowed of queue. 339 */ 340 n = __ptr_ring_consume_batched(rcpu->queue, frames, 341 CPUMAP_BATCH); 342 for (i = 0; i < n; i++) { 343 void *f = frames[i]; 344 struct page *page = virt_to_page(f); 345 346 /* Bring struct page memory area to curr CPU. Read by 347 * build_skb_around via page_is_pfmemalloc(), and when 348 * freed written by page_frag_free call. 349 */ 350 prefetchw(page); 351 } 352 353 /* Support running another XDP prog on this CPU */ 354 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats); 355 if (nframes) { 356 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 357 if (unlikely(m == 0)) { 358 for (i = 0; i < nframes; i++) 359 skbs[i] = NULL; /* effect: xdp_return_frame */ 360 drops += nframes; 361 } 362 } 363 364 local_bh_disable(); 365 for (i = 0; i < nframes; i++) { 366 struct xdp_frame *xdpf = frames[i]; 367 struct sk_buff *skb = skbs[i]; 368 int ret; 369 370 skb = cpu_map_build_skb(rcpu, xdpf, skb); 371 if (!skb) { 372 xdp_return_frame(xdpf); 373 continue; 374 } 375 376 /* Inject into network stack */ 377 ret = netif_receive_skb_core(skb); 378 if (ret == NET_RX_DROP) 379 drops++; 380 } 381 /* Feedback loop via tracepoint */ 382 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats); 383 384 local_bh_enable(); /* resched point, may call do_softirq() */ 385 } 386 __set_current_state(TASK_RUNNING); 387 388 put_cpu_map_entry(rcpu); 389 return 0; 390 } 391 392 bool cpu_map_prog_allowed(struct bpf_map *map) 393 { 394 return map->map_type == BPF_MAP_TYPE_CPUMAP && 395 map->value_size != offsetofend(struct bpf_cpumap_val, qsize); 396 } 397 398 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 399 { 400 struct bpf_prog *prog; 401 402 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 403 if (IS_ERR(prog)) 404 return PTR_ERR(prog); 405 406 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 407 bpf_prog_put(prog); 408 return -EINVAL; 409 } 410 411 rcpu->value.bpf_prog.id = prog->aux->id; 412 rcpu->prog = prog; 413 414 return 0; 415 } 416 417 static struct bpf_cpu_map_entry * 418 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id) 419 { 420 int numa, err, i, fd = value->bpf_prog.fd; 421 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 422 struct bpf_cpu_map_entry *rcpu; 423 struct xdp_bulk_queue *bq; 424 425 /* Have map->numa_node, but choose node of redirect target CPU */ 426 numa = cpu_to_node(cpu); 427 428 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 429 if (!rcpu) 430 return NULL; 431 432 /* Alloc percpu bulkq */ 433 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 434 sizeof(void *), gfp); 435 if (!rcpu->bulkq) 436 goto free_rcu; 437 438 for_each_possible_cpu(i) { 439 bq = per_cpu_ptr(rcpu->bulkq, i); 440 bq->obj = rcpu; 441 } 442 443 /* Alloc queue */ 444 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 445 if (!rcpu->queue) 446 goto free_bulkq; 447 448 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 449 if (err) 450 goto free_queue; 451 452 rcpu->cpu = cpu; 453 rcpu->map_id = map_id; 454 rcpu->value.qsize = value->qsize; 455 456 /* Setup kthread */ 457 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 458 "cpumap/%d/map:%d", cpu, map_id); 459 if (IS_ERR(rcpu->kthread)) 460 goto free_ptr_ring; 461 462 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 463 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 464 465 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 466 goto free_ptr_ring; 467 468 /* Make sure kthread runs on a single CPU */ 469 kthread_bind(rcpu->kthread, cpu); 470 wake_up_process(rcpu->kthread); 471 472 return rcpu; 473 474 free_ptr_ring: 475 ptr_ring_cleanup(rcpu->queue, NULL); 476 free_queue: 477 kfree(rcpu->queue); 478 free_bulkq: 479 free_percpu(rcpu->bulkq); 480 free_rcu: 481 kfree(rcpu); 482 return NULL; 483 } 484 485 static void __cpu_map_entry_free(struct rcu_head *rcu) 486 { 487 struct bpf_cpu_map_entry *rcpu; 488 489 /* This cpu_map_entry have been disconnected from map and one 490 * RCU grace-period have elapsed. Thus, XDP cannot queue any 491 * new packets and cannot change/set flush_needed that can 492 * find this entry. 493 */ 494 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 495 496 free_percpu(rcpu->bulkq); 497 /* Cannot kthread_stop() here, last put free rcpu resources */ 498 put_cpu_map_entry(rcpu); 499 } 500 501 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 502 * ensure any driver rcu critical sections have completed, but this 503 * does not guarantee a flush has happened yet. Because driver side 504 * rcu_read_lock/unlock only protects the running XDP program. The 505 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 506 * pending flush op doesn't fail. 507 * 508 * The bpf_cpu_map_entry is still used by the kthread, and there can 509 * still be pending packets (in queue and percpu bulkq). A refcnt 510 * makes sure to last user (kthread_stop vs. call_rcu) free memory 511 * resources. 512 * 513 * The rcu callback __cpu_map_entry_free flush remaining packets in 514 * percpu bulkq to queue. Due to caller map_delete_elem() disable 515 * preemption, cannot call kthread_stop() to make sure queue is empty. 516 * Instead a work_queue is started for stopping kthread, 517 * cpu_map_kthread_stop, which waits for an RCU grace period before 518 * stopping kthread, emptying the queue. 519 */ 520 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 521 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 522 { 523 struct bpf_cpu_map_entry *old_rcpu; 524 525 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 526 if (old_rcpu) { 527 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 528 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 529 schedule_work(&old_rcpu->kthread_stop_wq); 530 } 531 } 532 533 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 534 { 535 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 536 u32 key_cpu = *(u32 *)key; 537 538 if (key_cpu >= map->max_entries) 539 return -EINVAL; 540 541 /* notice caller map_delete_elem() use preempt_disable() */ 542 __cpu_map_entry_replace(cmap, key_cpu, NULL); 543 return 0; 544 } 545 546 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 547 u64 map_flags) 548 { 549 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 550 struct bpf_cpumap_val cpumap_value = {}; 551 struct bpf_cpu_map_entry *rcpu; 552 /* Array index key correspond to CPU number */ 553 u32 key_cpu = *(u32 *)key; 554 555 memcpy(&cpumap_value, value, map->value_size); 556 557 if (unlikely(map_flags > BPF_EXIST)) 558 return -EINVAL; 559 if (unlikely(key_cpu >= cmap->map.max_entries)) 560 return -E2BIG; 561 if (unlikely(map_flags == BPF_NOEXIST)) 562 return -EEXIST; 563 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 564 return -EOVERFLOW; 565 566 /* Make sure CPU is a valid possible cpu */ 567 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 568 return -ENODEV; 569 570 if (cpumap_value.qsize == 0) { 571 rcpu = NULL; /* Same as deleting */ 572 } else { 573 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 574 rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id); 575 if (!rcpu) 576 return -ENOMEM; 577 rcpu->cmap = cmap; 578 } 579 rcu_read_lock(); 580 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 581 rcu_read_unlock(); 582 return 0; 583 } 584 585 static void cpu_map_free(struct bpf_map *map) 586 { 587 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 588 u32 i; 589 590 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 591 * so the bpf programs (can be more than one that used this map) were 592 * disconnected from events. Wait for outstanding critical sections in 593 * these programs to complete. The rcu critical section only guarantees 594 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 595 * It does __not__ ensure pending flush operations (if any) are 596 * complete. 597 */ 598 599 bpf_clear_redirect_map(map); 600 synchronize_rcu(); 601 602 /* For cpu_map the remote CPUs can still be using the entries 603 * (struct bpf_cpu_map_entry). 604 */ 605 for (i = 0; i < cmap->map.max_entries; i++) { 606 struct bpf_cpu_map_entry *rcpu; 607 608 rcpu = READ_ONCE(cmap->cpu_map[i]); 609 if (!rcpu) 610 continue; 611 612 /* bq flush and cleanup happens after RCU grace-period */ 613 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 614 } 615 bpf_map_area_free(cmap->cpu_map); 616 kfree(cmap); 617 } 618 619 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 620 { 621 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 622 struct bpf_cpu_map_entry *rcpu; 623 624 if (key >= map->max_entries) 625 return NULL; 626 627 rcpu = READ_ONCE(cmap->cpu_map[key]); 628 return rcpu; 629 } 630 631 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 632 { 633 struct bpf_cpu_map_entry *rcpu = 634 __cpu_map_lookup_elem(map, *(u32 *)key); 635 636 return rcpu ? &rcpu->value : NULL; 637 } 638 639 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 640 { 641 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 642 u32 index = key ? *(u32 *)key : U32_MAX; 643 u32 *next = next_key; 644 645 if (index >= cmap->map.max_entries) { 646 *next = 0; 647 return 0; 648 } 649 650 if (index == cmap->map.max_entries - 1) 651 return -ENOENT; 652 *next = index + 1; 653 return 0; 654 } 655 656 static int cpu_map_btf_id; 657 const struct bpf_map_ops cpu_map_ops = { 658 .map_alloc = cpu_map_alloc, 659 .map_free = cpu_map_free, 660 .map_delete_elem = cpu_map_delete_elem, 661 .map_update_elem = cpu_map_update_elem, 662 .map_lookup_elem = cpu_map_lookup_elem, 663 .map_get_next_key = cpu_map_get_next_key, 664 .map_check_btf = map_check_no_btf, 665 .map_btf_name = "bpf_cpu_map", 666 .map_btf_id = &cpu_map_btf_id, 667 }; 668 669 static int bq_flush_to_queue(struct xdp_bulk_queue *bq) 670 { 671 struct bpf_cpu_map_entry *rcpu = bq->obj; 672 unsigned int processed = 0, drops = 0; 673 const int to_cpu = rcpu->cpu; 674 struct ptr_ring *q; 675 int i; 676 677 if (unlikely(!bq->count)) 678 return 0; 679 680 q = rcpu->queue; 681 spin_lock(&q->producer_lock); 682 683 for (i = 0; i < bq->count; i++) { 684 struct xdp_frame *xdpf = bq->q[i]; 685 int err; 686 687 err = __ptr_ring_produce(q, xdpf); 688 if (err) { 689 drops++; 690 xdp_return_frame_rx_napi(xdpf); 691 } 692 processed++; 693 } 694 bq->count = 0; 695 spin_unlock(&q->producer_lock); 696 697 __list_del_clearprev(&bq->flush_node); 698 699 /* Feedback loop via tracepoints */ 700 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 701 return 0; 702 } 703 704 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 705 * Thus, safe percpu variable access. 706 */ 707 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 708 { 709 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 710 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 711 712 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 713 bq_flush_to_queue(bq); 714 715 /* Notice, xdp_buff/page MUST be queued here, long enough for 716 * driver to code invoking us to finished, due to driver 717 * (e.g. ixgbe) recycle tricks based on page-refcnt. 718 * 719 * Thus, incoming xdp_frame is always queued here (else we race 720 * with another CPU on page-refcnt and remaining driver code). 721 * Queue time is very short, as driver will invoke flush 722 * operation, when completing napi->poll call. 723 */ 724 bq->q[bq->count++] = xdpf; 725 726 if (!bq->flush_node.prev) 727 list_add(&bq->flush_node, flush_list); 728 729 return 0; 730 } 731 732 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 733 struct net_device *dev_rx) 734 { 735 struct xdp_frame *xdpf; 736 737 xdpf = xdp_convert_buff_to_frame(xdp); 738 if (unlikely(!xdpf)) 739 return -EOVERFLOW; 740 741 /* Info needed when constructing SKB on remote CPU */ 742 xdpf->dev_rx = dev_rx; 743 744 bq_enqueue(rcpu, xdpf); 745 return 0; 746 } 747 748 void __cpu_map_flush(void) 749 { 750 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 751 struct xdp_bulk_queue *bq, *tmp; 752 753 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 754 bq_flush_to_queue(bq); 755 756 /* If already running, costs spin_lock_irqsave + smb_mb */ 757 wake_up_process(bq->obj->kthread); 758 } 759 } 760 761 static int __init cpu_map_init(void) 762 { 763 int cpu; 764 765 for_each_possible_cpu(cpu) 766 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 767 return 0; 768 } 769 770 subsys_initcall(cpu_map_init); 771