xref: /linux/kernel/bpf/cpumap.c (revision 93a3545d812ae7cfe4426374e00a7d8f64ac02e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that queueing the frame and the flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43 
44 struct xdp_bulk_queue {
45 	void *q[CPU_MAP_BULK_SIZE];
46 	struct list_head flush_node;
47 	struct bpf_cpu_map_entry *obj;
48 	unsigned int count;
49 };
50 
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 	u32 cpu;    /* kthread CPU and map index */
54 	int map_id; /* Back reference to map */
55 
56 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
57 	struct xdp_bulk_queue __percpu *bulkq;
58 
59 	struct bpf_cpu_map *cmap;
60 
61 	/* Queue with potential multi-producers, and single-consumer kthread */
62 	struct ptr_ring *queue;
63 	struct task_struct *kthread;
64 
65 	struct bpf_cpumap_val value;
66 	struct bpf_prog *prog;
67 
68 	atomic_t refcnt; /* Control when this struct can be free'ed */
69 	struct rcu_head rcu;
70 
71 	struct work_struct kthread_stop_wq;
72 };
73 
74 struct bpf_cpu_map {
75 	struct bpf_map map;
76 	/* Below members specific for map type */
77 	struct bpf_cpu_map_entry **cpu_map;
78 };
79 
80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
81 
82 static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
83 
84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
85 {
86 	u32 value_size = attr->value_size;
87 	struct bpf_cpu_map *cmap;
88 	int err = -ENOMEM;
89 	u64 cost;
90 	int ret;
91 
92 	if (!bpf_capable())
93 		return ERR_PTR(-EPERM);
94 
95 	/* check sanity of attributes */
96 	if (attr->max_entries == 0 || attr->key_size != 4 ||
97 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
98 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
99 	    attr->map_flags & ~BPF_F_NUMA_NODE)
100 		return ERR_PTR(-EINVAL);
101 
102 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
103 	if (!cmap)
104 		return ERR_PTR(-ENOMEM);
105 
106 	bpf_map_init_from_attr(&cmap->map, attr);
107 
108 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
109 	if (cmap->map.max_entries > NR_CPUS) {
110 		err = -E2BIG;
111 		goto free_cmap;
112 	}
113 
114 	/* make sure page count doesn't overflow */
115 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
116 
117 	/* Notice returns -EPERM on if map size is larger than memlock limit */
118 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
119 	if (ret) {
120 		err = ret;
121 		goto free_cmap;
122 	}
123 
124 	/* Alloc array for possible remote "destination" CPUs */
125 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
126 					   sizeof(struct bpf_cpu_map_entry *),
127 					   cmap->map.numa_node);
128 	if (!cmap->cpu_map)
129 		goto free_charge;
130 
131 	return &cmap->map;
132 free_charge:
133 	bpf_map_charge_finish(&cmap->map.memory);
134 free_cmap:
135 	kfree(cmap);
136 	return ERR_PTR(err);
137 }
138 
139 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
140 {
141 	atomic_inc(&rcpu->refcnt);
142 }
143 
144 /* called from workqueue, to workaround syscall using preempt_disable */
145 static void cpu_map_kthread_stop(struct work_struct *work)
146 {
147 	struct bpf_cpu_map_entry *rcpu;
148 
149 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
150 
151 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
152 	 * as it waits until all in-flight call_rcu() callbacks complete.
153 	 */
154 	rcu_barrier();
155 
156 	/* kthread_stop will wake_up_process and wait for it to complete */
157 	kthread_stop(rcpu->kthread);
158 }
159 
160 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
161 					 struct xdp_frame *xdpf,
162 					 struct sk_buff *skb)
163 {
164 	unsigned int hard_start_headroom;
165 	unsigned int frame_size;
166 	void *pkt_data_start;
167 
168 	/* Part of headroom was reserved to xdpf */
169 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
170 
171 	/* Memory size backing xdp_frame data already have reserved
172 	 * room for build_skb to place skb_shared_info in tailroom.
173 	 */
174 	frame_size = xdpf->frame_sz;
175 
176 	pkt_data_start = xdpf->data - hard_start_headroom;
177 	skb = build_skb_around(skb, pkt_data_start, frame_size);
178 	if (unlikely(!skb))
179 		return NULL;
180 
181 	skb_reserve(skb, hard_start_headroom);
182 	__skb_put(skb, xdpf->len);
183 	if (xdpf->metasize)
184 		skb_metadata_set(skb, xdpf->metasize);
185 
186 	/* Essential SKB info: protocol and skb->dev */
187 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
188 
189 	/* Optional SKB info, currently missing:
190 	 * - HW checksum info		(skb->ip_summed)
191 	 * - HW RX hash			(skb_set_hash)
192 	 * - RX ring dev queue index	(skb_record_rx_queue)
193 	 */
194 
195 	/* Until page_pool get SKB return path, release DMA here */
196 	xdp_release_frame(xdpf);
197 
198 	/* Allow SKB to reuse area used by xdp_frame */
199 	xdp_scrub_frame(xdpf);
200 
201 	return skb;
202 }
203 
204 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
205 {
206 	/* The tear-down procedure should have made sure that queue is
207 	 * empty.  See __cpu_map_entry_replace() and work-queue
208 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
209 	 * gracefully and warn once.
210 	 */
211 	struct xdp_frame *xdpf;
212 
213 	while ((xdpf = ptr_ring_consume(ring)))
214 		if (WARN_ON_ONCE(xdpf))
215 			xdp_return_frame(xdpf);
216 }
217 
218 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
219 {
220 	if (atomic_dec_and_test(&rcpu->refcnt)) {
221 		if (rcpu->prog)
222 			bpf_prog_put(rcpu->prog);
223 		/* The queue should be empty at this point */
224 		__cpu_map_ring_cleanup(rcpu->queue);
225 		ptr_ring_cleanup(rcpu->queue, NULL);
226 		kfree(rcpu->queue);
227 		kfree(rcpu);
228 	}
229 }
230 
231 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
232 				    void **frames, int n,
233 				    struct xdp_cpumap_stats *stats)
234 {
235 	struct xdp_rxq_info rxq;
236 	struct xdp_buff xdp;
237 	int i, nframes = 0;
238 
239 	if (!rcpu->prog)
240 		return n;
241 
242 	rcu_read_lock_bh();
243 
244 	xdp_set_return_frame_no_direct();
245 	xdp.rxq = &rxq;
246 
247 	for (i = 0; i < n; i++) {
248 		struct xdp_frame *xdpf = frames[i];
249 		u32 act;
250 		int err;
251 
252 		rxq.dev = xdpf->dev_rx;
253 		rxq.mem = xdpf->mem;
254 		/* TODO: report queue_index to xdp_rxq_info */
255 
256 		xdp_convert_frame_to_buff(xdpf, &xdp);
257 
258 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
259 		switch (act) {
260 		case XDP_PASS:
261 			err = xdp_update_frame_from_buff(&xdp, xdpf);
262 			if (err < 0) {
263 				xdp_return_frame(xdpf);
264 				stats->drop++;
265 			} else {
266 				frames[nframes++] = xdpf;
267 				stats->pass++;
268 			}
269 			break;
270 		case XDP_REDIRECT:
271 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
272 					      rcpu->prog);
273 			if (unlikely(err)) {
274 				xdp_return_frame(xdpf);
275 				stats->drop++;
276 			} else {
277 				stats->redirect++;
278 			}
279 			break;
280 		default:
281 			bpf_warn_invalid_xdp_action(act);
282 			/* fallthrough */
283 		case XDP_DROP:
284 			xdp_return_frame(xdpf);
285 			stats->drop++;
286 			break;
287 		}
288 	}
289 
290 	if (stats->redirect)
291 		xdp_do_flush_map();
292 
293 	xdp_clear_return_frame_no_direct();
294 
295 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
296 
297 	return nframes;
298 }
299 
300 #define CPUMAP_BATCH 8
301 
302 static int cpu_map_kthread_run(void *data)
303 {
304 	struct bpf_cpu_map_entry *rcpu = data;
305 
306 	set_current_state(TASK_INTERRUPTIBLE);
307 
308 	/* When kthread gives stop order, then rcpu have been disconnected
309 	 * from map, thus no new packets can enter. Remaining in-flight
310 	 * per CPU stored packets are flushed to this queue.  Wait honoring
311 	 * kthread_stop signal until queue is empty.
312 	 */
313 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
314 		struct xdp_cpumap_stats stats = {}; /* zero stats */
315 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
316 		unsigned int drops = 0, sched = 0;
317 		void *frames[CPUMAP_BATCH];
318 		void *skbs[CPUMAP_BATCH];
319 		int i, n, m, nframes;
320 
321 		/* Release CPU reschedule checks */
322 		if (__ptr_ring_empty(rcpu->queue)) {
323 			set_current_state(TASK_INTERRUPTIBLE);
324 			/* Recheck to avoid lost wake-up */
325 			if (__ptr_ring_empty(rcpu->queue)) {
326 				schedule();
327 				sched = 1;
328 			} else {
329 				__set_current_state(TASK_RUNNING);
330 			}
331 		} else {
332 			sched = cond_resched();
333 		}
334 
335 		/*
336 		 * The bpf_cpu_map_entry is single consumer, with this
337 		 * kthread CPU pinned. Lockless access to ptr_ring
338 		 * consume side valid as no-resize allowed of queue.
339 		 */
340 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
341 					       CPUMAP_BATCH);
342 		for (i = 0; i < n; i++) {
343 			void *f = frames[i];
344 			struct page *page = virt_to_page(f);
345 
346 			/* Bring struct page memory area to curr CPU. Read by
347 			 * build_skb_around via page_is_pfmemalloc(), and when
348 			 * freed written by page_frag_free call.
349 			 */
350 			prefetchw(page);
351 		}
352 
353 		/* Support running another XDP prog on this CPU */
354 		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
355 		if (nframes) {
356 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
357 			if (unlikely(m == 0)) {
358 				for (i = 0; i < nframes; i++)
359 					skbs[i] = NULL; /* effect: xdp_return_frame */
360 				drops += nframes;
361 			}
362 		}
363 
364 		local_bh_disable();
365 		for (i = 0; i < nframes; i++) {
366 			struct xdp_frame *xdpf = frames[i];
367 			struct sk_buff *skb = skbs[i];
368 			int ret;
369 
370 			skb = cpu_map_build_skb(rcpu, xdpf, skb);
371 			if (!skb) {
372 				xdp_return_frame(xdpf);
373 				continue;
374 			}
375 
376 			/* Inject into network stack */
377 			ret = netif_receive_skb_core(skb);
378 			if (ret == NET_RX_DROP)
379 				drops++;
380 		}
381 		/* Feedback loop via tracepoint */
382 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
383 
384 		local_bh_enable(); /* resched point, may call do_softirq() */
385 	}
386 	__set_current_state(TASK_RUNNING);
387 
388 	put_cpu_map_entry(rcpu);
389 	return 0;
390 }
391 
392 bool cpu_map_prog_allowed(struct bpf_map *map)
393 {
394 	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
395 	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
396 }
397 
398 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
399 {
400 	struct bpf_prog *prog;
401 
402 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
403 	if (IS_ERR(prog))
404 		return PTR_ERR(prog);
405 
406 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
407 		bpf_prog_put(prog);
408 		return -EINVAL;
409 	}
410 
411 	rcpu->value.bpf_prog.id = prog->aux->id;
412 	rcpu->prog = prog;
413 
414 	return 0;
415 }
416 
417 static struct bpf_cpu_map_entry *
418 __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id)
419 {
420 	int numa, err, i, fd = value->bpf_prog.fd;
421 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
422 	struct bpf_cpu_map_entry *rcpu;
423 	struct xdp_bulk_queue *bq;
424 
425 	/* Have map->numa_node, but choose node of redirect target CPU */
426 	numa = cpu_to_node(cpu);
427 
428 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
429 	if (!rcpu)
430 		return NULL;
431 
432 	/* Alloc percpu bulkq */
433 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
434 					 sizeof(void *), gfp);
435 	if (!rcpu->bulkq)
436 		goto free_rcu;
437 
438 	for_each_possible_cpu(i) {
439 		bq = per_cpu_ptr(rcpu->bulkq, i);
440 		bq->obj = rcpu;
441 	}
442 
443 	/* Alloc queue */
444 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
445 	if (!rcpu->queue)
446 		goto free_bulkq;
447 
448 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
449 	if (err)
450 		goto free_queue;
451 
452 	rcpu->cpu    = cpu;
453 	rcpu->map_id = map_id;
454 	rcpu->value.qsize  = value->qsize;
455 
456 	/* Setup kthread */
457 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
458 					       "cpumap/%d/map:%d", cpu, map_id);
459 	if (IS_ERR(rcpu->kthread))
460 		goto free_ptr_ring;
461 
462 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
463 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
464 
465 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
466 		goto free_ptr_ring;
467 
468 	/* Make sure kthread runs on a single CPU */
469 	kthread_bind(rcpu->kthread, cpu);
470 	wake_up_process(rcpu->kthread);
471 
472 	return rcpu;
473 
474 free_ptr_ring:
475 	ptr_ring_cleanup(rcpu->queue, NULL);
476 free_queue:
477 	kfree(rcpu->queue);
478 free_bulkq:
479 	free_percpu(rcpu->bulkq);
480 free_rcu:
481 	kfree(rcpu);
482 	return NULL;
483 }
484 
485 static void __cpu_map_entry_free(struct rcu_head *rcu)
486 {
487 	struct bpf_cpu_map_entry *rcpu;
488 
489 	/* This cpu_map_entry have been disconnected from map and one
490 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
491 	 * new packets and cannot change/set flush_needed that can
492 	 * find this entry.
493 	 */
494 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
495 
496 	free_percpu(rcpu->bulkq);
497 	/* Cannot kthread_stop() here, last put free rcpu resources */
498 	put_cpu_map_entry(rcpu);
499 }
500 
501 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
502  * ensure any driver rcu critical sections have completed, but this
503  * does not guarantee a flush has happened yet. Because driver side
504  * rcu_read_lock/unlock only protects the running XDP program.  The
505  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
506  * pending flush op doesn't fail.
507  *
508  * The bpf_cpu_map_entry is still used by the kthread, and there can
509  * still be pending packets (in queue and percpu bulkq).  A refcnt
510  * makes sure to last user (kthread_stop vs. call_rcu) free memory
511  * resources.
512  *
513  * The rcu callback __cpu_map_entry_free flush remaining packets in
514  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
515  * preemption, cannot call kthread_stop() to make sure queue is empty.
516  * Instead a work_queue is started for stopping kthread,
517  * cpu_map_kthread_stop, which waits for an RCU grace period before
518  * stopping kthread, emptying the queue.
519  */
520 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
521 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
522 {
523 	struct bpf_cpu_map_entry *old_rcpu;
524 
525 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
526 	if (old_rcpu) {
527 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
528 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
529 		schedule_work(&old_rcpu->kthread_stop_wq);
530 	}
531 }
532 
533 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
534 {
535 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
536 	u32 key_cpu = *(u32 *)key;
537 
538 	if (key_cpu >= map->max_entries)
539 		return -EINVAL;
540 
541 	/* notice caller map_delete_elem() use preempt_disable() */
542 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
543 	return 0;
544 }
545 
546 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
547 			       u64 map_flags)
548 {
549 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
550 	struct bpf_cpumap_val cpumap_value = {};
551 	struct bpf_cpu_map_entry *rcpu;
552 	/* Array index key correspond to CPU number */
553 	u32 key_cpu = *(u32 *)key;
554 
555 	memcpy(&cpumap_value, value, map->value_size);
556 
557 	if (unlikely(map_flags > BPF_EXIST))
558 		return -EINVAL;
559 	if (unlikely(key_cpu >= cmap->map.max_entries))
560 		return -E2BIG;
561 	if (unlikely(map_flags == BPF_NOEXIST))
562 		return -EEXIST;
563 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
564 		return -EOVERFLOW;
565 
566 	/* Make sure CPU is a valid possible cpu */
567 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
568 		return -ENODEV;
569 
570 	if (cpumap_value.qsize == 0) {
571 		rcpu = NULL; /* Same as deleting */
572 	} else {
573 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
574 		rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id);
575 		if (!rcpu)
576 			return -ENOMEM;
577 		rcpu->cmap = cmap;
578 	}
579 	rcu_read_lock();
580 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
581 	rcu_read_unlock();
582 	return 0;
583 }
584 
585 static void cpu_map_free(struct bpf_map *map)
586 {
587 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
588 	u32 i;
589 
590 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
591 	 * so the bpf programs (can be more than one that used this map) were
592 	 * disconnected from events. Wait for outstanding critical sections in
593 	 * these programs to complete. The rcu critical section only guarantees
594 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
595 	 * It does __not__ ensure pending flush operations (if any) are
596 	 * complete.
597 	 */
598 
599 	bpf_clear_redirect_map(map);
600 	synchronize_rcu();
601 
602 	/* For cpu_map the remote CPUs can still be using the entries
603 	 * (struct bpf_cpu_map_entry).
604 	 */
605 	for (i = 0; i < cmap->map.max_entries; i++) {
606 		struct bpf_cpu_map_entry *rcpu;
607 
608 		rcpu = READ_ONCE(cmap->cpu_map[i]);
609 		if (!rcpu)
610 			continue;
611 
612 		/* bq flush and cleanup happens after RCU grace-period */
613 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
614 	}
615 	bpf_map_area_free(cmap->cpu_map);
616 	kfree(cmap);
617 }
618 
619 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
620 {
621 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
622 	struct bpf_cpu_map_entry *rcpu;
623 
624 	if (key >= map->max_entries)
625 		return NULL;
626 
627 	rcpu = READ_ONCE(cmap->cpu_map[key]);
628 	return rcpu;
629 }
630 
631 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
632 {
633 	struct bpf_cpu_map_entry *rcpu =
634 		__cpu_map_lookup_elem(map, *(u32 *)key);
635 
636 	return rcpu ? &rcpu->value : NULL;
637 }
638 
639 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
640 {
641 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
642 	u32 index = key ? *(u32 *)key : U32_MAX;
643 	u32 *next = next_key;
644 
645 	if (index >= cmap->map.max_entries) {
646 		*next = 0;
647 		return 0;
648 	}
649 
650 	if (index == cmap->map.max_entries - 1)
651 		return -ENOENT;
652 	*next = index + 1;
653 	return 0;
654 }
655 
656 static int cpu_map_btf_id;
657 const struct bpf_map_ops cpu_map_ops = {
658 	.map_alloc		= cpu_map_alloc,
659 	.map_free		= cpu_map_free,
660 	.map_delete_elem	= cpu_map_delete_elem,
661 	.map_update_elem	= cpu_map_update_elem,
662 	.map_lookup_elem	= cpu_map_lookup_elem,
663 	.map_get_next_key	= cpu_map_get_next_key,
664 	.map_check_btf		= map_check_no_btf,
665 	.map_btf_name		= "bpf_cpu_map",
666 	.map_btf_id		= &cpu_map_btf_id,
667 };
668 
669 static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
670 {
671 	struct bpf_cpu_map_entry *rcpu = bq->obj;
672 	unsigned int processed = 0, drops = 0;
673 	const int to_cpu = rcpu->cpu;
674 	struct ptr_ring *q;
675 	int i;
676 
677 	if (unlikely(!bq->count))
678 		return 0;
679 
680 	q = rcpu->queue;
681 	spin_lock(&q->producer_lock);
682 
683 	for (i = 0; i < bq->count; i++) {
684 		struct xdp_frame *xdpf = bq->q[i];
685 		int err;
686 
687 		err = __ptr_ring_produce(q, xdpf);
688 		if (err) {
689 			drops++;
690 			xdp_return_frame_rx_napi(xdpf);
691 		}
692 		processed++;
693 	}
694 	bq->count = 0;
695 	spin_unlock(&q->producer_lock);
696 
697 	__list_del_clearprev(&bq->flush_node);
698 
699 	/* Feedback loop via tracepoints */
700 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
701 	return 0;
702 }
703 
704 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
705  * Thus, safe percpu variable access.
706  */
707 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
708 {
709 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
710 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
711 
712 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
713 		bq_flush_to_queue(bq);
714 
715 	/* Notice, xdp_buff/page MUST be queued here, long enough for
716 	 * driver to code invoking us to finished, due to driver
717 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
718 	 *
719 	 * Thus, incoming xdp_frame is always queued here (else we race
720 	 * with another CPU on page-refcnt and remaining driver code).
721 	 * Queue time is very short, as driver will invoke flush
722 	 * operation, when completing napi->poll call.
723 	 */
724 	bq->q[bq->count++] = xdpf;
725 
726 	if (!bq->flush_node.prev)
727 		list_add(&bq->flush_node, flush_list);
728 
729 	return 0;
730 }
731 
732 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
733 		    struct net_device *dev_rx)
734 {
735 	struct xdp_frame *xdpf;
736 
737 	xdpf = xdp_convert_buff_to_frame(xdp);
738 	if (unlikely(!xdpf))
739 		return -EOVERFLOW;
740 
741 	/* Info needed when constructing SKB on remote CPU */
742 	xdpf->dev_rx = dev_rx;
743 
744 	bq_enqueue(rcpu, xdpf);
745 	return 0;
746 }
747 
748 void __cpu_map_flush(void)
749 {
750 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
751 	struct xdp_bulk_queue *bq, *tmp;
752 
753 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
754 		bq_flush_to_queue(bq);
755 
756 		/* If already running, costs spin_lock_irqsave + smb_mb */
757 		wake_up_process(bq->obj->kthread);
758 	}
759 }
760 
761 static int __init cpu_map_init(void)
762 {
763 	int cpu;
764 
765 	for_each_possible_cpu(cpu)
766 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
767 	return 0;
768 }
769 
770 subsys_initcall(cpu_map_init);
771