1 /* bpf/cpumap.c 2 * 3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 4 * Released under terms in GPL version 2. See COPYING. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that setting flush bit and flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct xdp_bulk_queue { 42 void *q[CPU_MAP_BULK_SIZE]; 43 unsigned int count; 44 }; 45 46 /* Struct for every remote "destination" CPU in map */ 47 struct bpf_cpu_map_entry { 48 u32 cpu; /* kthread CPU and map index */ 49 int map_id; /* Back reference to map */ 50 u32 qsize; /* Queue size placeholder for map lookup */ 51 52 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 53 struct xdp_bulk_queue __percpu *bulkq; 54 55 /* Queue with potential multi-producers, and single-consumer kthread */ 56 struct ptr_ring *queue; 57 struct task_struct *kthread; 58 struct work_struct kthread_stop_wq; 59 60 atomic_t refcnt; /* Control when this struct can be free'ed */ 61 struct rcu_head rcu; 62 }; 63 64 struct bpf_cpu_map { 65 struct bpf_map map; 66 /* Below members specific for map type */ 67 struct bpf_cpu_map_entry **cpu_map; 68 unsigned long __percpu *flush_needed; 69 }; 70 71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 72 struct xdp_bulk_queue *bq, bool in_napi_ctx); 73 74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr) 75 { 76 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 77 } 78 79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 80 { 81 struct bpf_cpu_map *cmap; 82 int err = -ENOMEM; 83 u64 cost; 84 int ret; 85 86 if (!capable(CAP_SYS_ADMIN)) 87 return ERR_PTR(-EPERM); 88 89 /* check sanity of attributes */ 90 if (attr->max_entries == 0 || attr->key_size != 4 || 91 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 92 return ERR_PTR(-EINVAL); 93 94 cmap = kzalloc(sizeof(*cmap), GFP_USER); 95 if (!cmap) 96 return ERR_PTR(-ENOMEM); 97 98 bpf_map_init_from_attr(&cmap->map, attr); 99 100 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 101 if (cmap->map.max_entries > NR_CPUS) { 102 err = -E2BIG; 103 goto free_cmap; 104 } 105 106 /* make sure page count doesn't overflow */ 107 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 108 cost += cpu_map_bitmap_size(attr) * num_possible_cpus(); 109 if (cost >= U32_MAX - PAGE_SIZE) 110 goto free_cmap; 111 cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 112 113 /* Notice returns -EPERM on if map size is larger than memlock limit */ 114 ret = bpf_map_precharge_memlock(cmap->map.pages); 115 if (ret) { 116 err = ret; 117 goto free_cmap; 118 } 119 120 /* A per cpu bitfield with a bit per possible CPU in map */ 121 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr), 122 __alignof__(unsigned long)); 123 if (!cmap->flush_needed) 124 goto free_cmap; 125 126 /* Alloc array for possible remote "destination" CPUs */ 127 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 128 sizeof(struct bpf_cpu_map_entry *), 129 cmap->map.numa_node); 130 if (!cmap->cpu_map) 131 goto free_percpu; 132 133 return &cmap->map; 134 free_percpu: 135 free_percpu(cmap->flush_needed); 136 free_cmap: 137 kfree(cmap); 138 return ERR_PTR(err); 139 } 140 141 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 142 { 143 atomic_inc(&rcpu->refcnt); 144 } 145 146 /* called from workqueue, to workaround syscall using preempt_disable */ 147 static void cpu_map_kthread_stop(struct work_struct *work) 148 { 149 struct bpf_cpu_map_entry *rcpu; 150 151 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 152 153 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 154 * as it waits until all in-flight call_rcu() callbacks complete. 155 */ 156 rcu_barrier(); 157 158 /* kthread_stop will wake_up_process and wait for it to complete */ 159 kthread_stop(rcpu->kthread); 160 } 161 162 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 163 struct xdp_frame *xdpf) 164 { 165 unsigned int hard_start_headroom; 166 unsigned int frame_size; 167 void *pkt_data_start; 168 struct sk_buff *skb; 169 170 /* Part of headroom was reserved to xdpf */ 171 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 172 173 /* build_skb need to place skb_shared_info after SKB end, and 174 * also want to know the memory "truesize". Thus, need to 175 * know the memory frame size backing xdp_buff. 176 * 177 * XDP was designed to have PAGE_SIZE frames, but this 178 * assumption is not longer true with ixgbe and i40e. It 179 * would be preferred to set frame_size to 2048 or 4096 180 * depending on the driver. 181 * frame_size = 2048; 182 * frame_len = frame_size - sizeof(*xdp_frame); 183 * 184 * Instead, with info avail, skb_shared_info in placed after 185 * packet len. This, unfortunately fakes the truesize. 186 * Another disadvantage of this approach, the skb_shared_info 187 * is not at a fixed memory location, with mixed length 188 * packets, which is bad for cache-line hotness. 189 */ 190 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) + 191 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 192 193 pkt_data_start = xdpf->data - hard_start_headroom; 194 skb = build_skb(pkt_data_start, frame_size); 195 if (!skb) 196 return NULL; 197 198 skb_reserve(skb, hard_start_headroom); 199 __skb_put(skb, xdpf->len); 200 if (xdpf->metasize) 201 skb_metadata_set(skb, xdpf->metasize); 202 203 /* Essential SKB info: protocol and skb->dev */ 204 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 205 206 /* Optional SKB info, currently missing: 207 * - HW checksum info (skb->ip_summed) 208 * - HW RX hash (skb_set_hash) 209 * - RX ring dev queue index (skb_record_rx_queue) 210 */ 211 212 /* Allow SKB to reuse area used by xdp_frame */ 213 xdp_scrub_frame(xdpf); 214 215 return skb; 216 } 217 218 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 219 { 220 /* The tear-down procedure should have made sure that queue is 221 * empty. See __cpu_map_entry_replace() and work-queue 222 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 223 * gracefully and warn once. 224 */ 225 struct xdp_frame *xdpf; 226 227 while ((xdpf = ptr_ring_consume(ring))) 228 if (WARN_ON_ONCE(xdpf)) 229 xdp_return_frame(xdpf); 230 } 231 232 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 233 { 234 if (atomic_dec_and_test(&rcpu->refcnt)) { 235 /* The queue should be empty at this point */ 236 __cpu_map_ring_cleanup(rcpu->queue); 237 ptr_ring_cleanup(rcpu->queue, NULL); 238 kfree(rcpu->queue); 239 kfree(rcpu); 240 } 241 } 242 243 static int cpu_map_kthread_run(void *data) 244 { 245 struct bpf_cpu_map_entry *rcpu = data; 246 247 set_current_state(TASK_INTERRUPTIBLE); 248 249 /* When kthread gives stop order, then rcpu have been disconnected 250 * from map, thus no new packets can enter. Remaining in-flight 251 * per CPU stored packets are flushed to this queue. Wait honoring 252 * kthread_stop signal until queue is empty. 253 */ 254 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 255 unsigned int processed = 0, drops = 0, sched = 0; 256 struct xdp_frame *xdpf; 257 258 /* Release CPU reschedule checks */ 259 if (__ptr_ring_empty(rcpu->queue)) { 260 set_current_state(TASK_INTERRUPTIBLE); 261 /* Recheck to avoid lost wake-up */ 262 if (__ptr_ring_empty(rcpu->queue)) { 263 schedule(); 264 sched = 1; 265 } else { 266 __set_current_state(TASK_RUNNING); 267 } 268 } else { 269 sched = cond_resched(); 270 } 271 272 /* Process packets in rcpu->queue */ 273 local_bh_disable(); 274 /* 275 * The bpf_cpu_map_entry is single consumer, with this 276 * kthread CPU pinned. Lockless access to ptr_ring 277 * consume side valid as no-resize allowed of queue. 278 */ 279 while ((xdpf = __ptr_ring_consume(rcpu->queue))) { 280 struct sk_buff *skb; 281 int ret; 282 283 skb = cpu_map_build_skb(rcpu, xdpf); 284 if (!skb) { 285 xdp_return_frame(xdpf); 286 continue; 287 } 288 289 /* Inject into network stack */ 290 ret = netif_receive_skb_core(skb); 291 if (ret == NET_RX_DROP) 292 drops++; 293 294 /* Limit BH-disable period */ 295 if (++processed == 8) 296 break; 297 } 298 /* Feedback loop via tracepoint */ 299 trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched); 300 301 local_bh_enable(); /* resched point, may call do_softirq() */ 302 } 303 __set_current_state(TASK_RUNNING); 304 305 put_cpu_map_entry(rcpu); 306 return 0; 307 } 308 309 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 310 int map_id) 311 { 312 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 313 struct bpf_cpu_map_entry *rcpu; 314 int numa, err; 315 316 /* Have map->numa_node, but choose node of redirect target CPU */ 317 numa = cpu_to_node(cpu); 318 319 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 320 if (!rcpu) 321 return NULL; 322 323 /* Alloc percpu bulkq */ 324 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 325 sizeof(void *), gfp); 326 if (!rcpu->bulkq) 327 goto free_rcu; 328 329 /* Alloc queue */ 330 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 331 if (!rcpu->queue) 332 goto free_bulkq; 333 334 err = ptr_ring_init(rcpu->queue, qsize, gfp); 335 if (err) 336 goto free_queue; 337 338 rcpu->cpu = cpu; 339 rcpu->map_id = map_id; 340 rcpu->qsize = qsize; 341 342 /* Setup kthread */ 343 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 344 "cpumap/%d/map:%d", cpu, map_id); 345 if (IS_ERR(rcpu->kthread)) 346 goto free_ptr_ring; 347 348 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 349 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 350 351 /* Make sure kthread runs on a single CPU */ 352 kthread_bind(rcpu->kthread, cpu); 353 wake_up_process(rcpu->kthread); 354 355 return rcpu; 356 357 free_ptr_ring: 358 ptr_ring_cleanup(rcpu->queue, NULL); 359 free_queue: 360 kfree(rcpu->queue); 361 free_bulkq: 362 free_percpu(rcpu->bulkq); 363 free_rcu: 364 kfree(rcpu); 365 return NULL; 366 } 367 368 static void __cpu_map_entry_free(struct rcu_head *rcu) 369 { 370 struct bpf_cpu_map_entry *rcpu; 371 int cpu; 372 373 /* This cpu_map_entry have been disconnected from map and one 374 * RCU graze-period have elapsed. Thus, XDP cannot queue any 375 * new packets and cannot change/set flush_needed that can 376 * find this entry. 377 */ 378 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 379 380 /* Flush remaining packets in percpu bulkq */ 381 for_each_online_cpu(cpu) { 382 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu); 383 384 /* No concurrent bq_enqueue can run at this point */ 385 bq_flush_to_queue(rcpu, bq, false); 386 } 387 free_percpu(rcpu->bulkq); 388 /* Cannot kthread_stop() here, last put free rcpu resources */ 389 put_cpu_map_entry(rcpu); 390 } 391 392 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 393 * ensure any driver rcu critical sections have completed, but this 394 * does not guarantee a flush has happened yet. Because driver side 395 * rcu_read_lock/unlock only protects the running XDP program. The 396 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 397 * pending flush op doesn't fail. 398 * 399 * The bpf_cpu_map_entry is still used by the kthread, and there can 400 * still be pending packets (in queue and percpu bulkq). A refcnt 401 * makes sure to last user (kthread_stop vs. call_rcu) free memory 402 * resources. 403 * 404 * The rcu callback __cpu_map_entry_free flush remaining packets in 405 * percpu bulkq to queue. Due to caller map_delete_elem() disable 406 * preemption, cannot call kthread_stop() to make sure queue is empty. 407 * Instead a work_queue is started for stopping kthread, 408 * cpu_map_kthread_stop, which waits for an RCU graze period before 409 * stopping kthread, emptying the queue. 410 */ 411 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 412 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 413 { 414 struct bpf_cpu_map_entry *old_rcpu; 415 416 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 417 if (old_rcpu) { 418 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 419 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 420 schedule_work(&old_rcpu->kthread_stop_wq); 421 } 422 } 423 424 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 425 { 426 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 427 u32 key_cpu = *(u32 *)key; 428 429 if (key_cpu >= map->max_entries) 430 return -EINVAL; 431 432 /* notice caller map_delete_elem() use preempt_disable() */ 433 __cpu_map_entry_replace(cmap, key_cpu, NULL); 434 return 0; 435 } 436 437 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 438 u64 map_flags) 439 { 440 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 441 struct bpf_cpu_map_entry *rcpu; 442 443 /* Array index key correspond to CPU number */ 444 u32 key_cpu = *(u32 *)key; 445 /* Value is the queue size */ 446 u32 qsize = *(u32 *)value; 447 448 if (unlikely(map_flags > BPF_EXIST)) 449 return -EINVAL; 450 if (unlikely(key_cpu >= cmap->map.max_entries)) 451 return -E2BIG; 452 if (unlikely(map_flags == BPF_NOEXIST)) 453 return -EEXIST; 454 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 455 return -EOVERFLOW; 456 457 /* Make sure CPU is a valid possible cpu */ 458 if (!cpu_possible(key_cpu)) 459 return -ENODEV; 460 461 if (qsize == 0) { 462 rcpu = NULL; /* Same as deleting */ 463 } else { 464 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 465 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 466 if (!rcpu) 467 return -ENOMEM; 468 } 469 rcu_read_lock(); 470 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 471 rcu_read_unlock(); 472 return 0; 473 } 474 475 static void cpu_map_free(struct bpf_map *map) 476 { 477 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 478 int cpu; 479 u32 i; 480 481 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 482 * so the bpf programs (can be more than one that used this map) were 483 * disconnected from events. Wait for outstanding critical sections in 484 * these programs to complete. The rcu critical section only guarantees 485 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 486 * It does __not__ ensure pending flush operations (if any) are 487 * complete. 488 */ 489 490 bpf_clear_redirect_map(map); 491 synchronize_rcu(); 492 493 /* To ensure all pending flush operations have completed wait for flush 494 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 495 * Because the above synchronize_rcu() ensures the map is disconnected 496 * from the program we can assume no new bits will be set. 497 */ 498 for_each_online_cpu(cpu) { 499 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu); 500 501 while (!bitmap_empty(bitmap, cmap->map.max_entries)) 502 cond_resched(); 503 } 504 505 /* For cpu_map the remote CPUs can still be using the entries 506 * (struct bpf_cpu_map_entry). 507 */ 508 for (i = 0; i < cmap->map.max_entries; i++) { 509 struct bpf_cpu_map_entry *rcpu; 510 511 rcpu = READ_ONCE(cmap->cpu_map[i]); 512 if (!rcpu) 513 continue; 514 515 /* bq flush and cleanup happens after RCU graze-period */ 516 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 517 } 518 free_percpu(cmap->flush_needed); 519 bpf_map_area_free(cmap->cpu_map); 520 kfree(cmap); 521 } 522 523 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 524 { 525 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 526 struct bpf_cpu_map_entry *rcpu; 527 528 if (key >= map->max_entries) 529 return NULL; 530 531 rcpu = READ_ONCE(cmap->cpu_map[key]); 532 return rcpu; 533 } 534 535 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 536 { 537 struct bpf_cpu_map_entry *rcpu = 538 __cpu_map_lookup_elem(map, *(u32 *)key); 539 540 return rcpu ? &rcpu->qsize : NULL; 541 } 542 543 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 544 { 545 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 546 u32 index = key ? *(u32 *)key : U32_MAX; 547 u32 *next = next_key; 548 549 if (index >= cmap->map.max_entries) { 550 *next = 0; 551 return 0; 552 } 553 554 if (index == cmap->map.max_entries - 1) 555 return -ENOENT; 556 *next = index + 1; 557 return 0; 558 } 559 560 const struct bpf_map_ops cpu_map_ops = { 561 .map_alloc = cpu_map_alloc, 562 .map_free = cpu_map_free, 563 .map_delete_elem = cpu_map_delete_elem, 564 .map_update_elem = cpu_map_update_elem, 565 .map_lookup_elem = cpu_map_lookup_elem, 566 .map_get_next_key = cpu_map_get_next_key, 567 .map_check_btf = map_check_no_btf, 568 }; 569 570 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 571 struct xdp_bulk_queue *bq, bool in_napi_ctx) 572 { 573 unsigned int processed = 0, drops = 0; 574 const int to_cpu = rcpu->cpu; 575 struct ptr_ring *q; 576 int i; 577 578 if (unlikely(!bq->count)) 579 return 0; 580 581 q = rcpu->queue; 582 spin_lock(&q->producer_lock); 583 584 for (i = 0; i < bq->count; i++) { 585 struct xdp_frame *xdpf = bq->q[i]; 586 int err; 587 588 err = __ptr_ring_produce(q, xdpf); 589 if (err) { 590 drops++; 591 if (likely(in_napi_ctx)) 592 xdp_return_frame_rx_napi(xdpf); 593 else 594 xdp_return_frame(xdpf); 595 } 596 processed++; 597 } 598 bq->count = 0; 599 spin_unlock(&q->producer_lock); 600 601 /* Feedback loop via tracepoints */ 602 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 603 return 0; 604 } 605 606 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 607 * Thus, safe percpu variable access. 608 */ 609 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 610 { 611 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 612 613 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 614 bq_flush_to_queue(rcpu, bq, true); 615 616 /* Notice, xdp_buff/page MUST be queued here, long enough for 617 * driver to code invoking us to finished, due to driver 618 * (e.g. ixgbe) recycle tricks based on page-refcnt. 619 * 620 * Thus, incoming xdp_frame is always queued here (else we race 621 * with another CPU on page-refcnt and remaining driver code). 622 * Queue time is very short, as driver will invoke flush 623 * operation, when completing napi->poll call. 624 */ 625 bq->q[bq->count++] = xdpf; 626 return 0; 627 } 628 629 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 630 struct net_device *dev_rx) 631 { 632 struct xdp_frame *xdpf; 633 634 xdpf = convert_to_xdp_frame(xdp); 635 if (unlikely(!xdpf)) 636 return -EOVERFLOW; 637 638 /* Info needed when constructing SKB on remote CPU */ 639 xdpf->dev_rx = dev_rx; 640 641 bq_enqueue(rcpu, xdpf); 642 return 0; 643 } 644 645 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit) 646 { 647 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 648 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 649 650 __set_bit(bit, bitmap); 651 } 652 653 void __cpu_map_flush(struct bpf_map *map) 654 { 655 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 656 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 657 u32 bit; 658 659 /* The napi->poll softirq makes sure __cpu_map_insert_ctx() 660 * and __cpu_map_flush() happen on same CPU. Thus, the percpu 661 * bitmap indicate which percpu bulkq have packets. 662 */ 663 for_each_set_bit(bit, bitmap, map->max_entries) { 664 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]); 665 struct xdp_bulk_queue *bq; 666 667 /* This is possible if entry is removed by user space 668 * between xdp redirect and flush op. 669 */ 670 if (unlikely(!rcpu)) 671 continue; 672 673 __clear_bit(bit, bitmap); 674 675 /* Flush all frames in bulkq to real queue */ 676 bq = this_cpu_ptr(rcpu->bulkq); 677 bq_flush_to_queue(rcpu, bq, true); 678 679 /* If already running, costs spin_lock_irqsave + smb_mb */ 680 wake_up_process(rcpu->kthread); 681 } 682 } 683