1 /* bpf/cpumap.c 2 * 3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 4 * Released under terms in GPL version 2. See COPYING. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that setting flush bit and flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct xdp_bulk_queue { 42 void *q[CPU_MAP_BULK_SIZE]; 43 unsigned int count; 44 }; 45 46 /* Struct for every remote "destination" CPU in map */ 47 struct bpf_cpu_map_entry { 48 u32 cpu; /* kthread CPU and map index */ 49 int map_id; /* Back reference to map */ 50 u32 qsize; /* Queue size placeholder for map lookup */ 51 52 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 53 struct xdp_bulk_queue __percpu *bulkq; 54 55 /* Queue with potential multi-producers, and single-consumer kthread */ 56 struct ptr_ring *queue; 57 struct task_struct *kthread; 58 struct work_struct kthread_stop_wq; 59 60 atomic_t refcnt; /* Control when this struct can be free'ed */ 61 struct rcu_head rcu; 62 }; 63 64 struct bpf_cpu_map { 65 struct bpf_map map; 66 /* Below members specific for map type */ 67 struct bpf_cpu_map_entry **cpu_map; 68 unsigned long __percpu *flush_needed; 69 }; 70 71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 72 struct xdp_bulk_queue *bq, bool in_napi_ctx); 73 74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr) 75 { 76 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 77 } 78 79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 80 { 81 struct bpf_cpu_map *cmap; 82 int err = -ENOMEM; 83 u64 cost; 84 int ret; 85 86 if (!capable(CAP_SYS_ADMIN)) 87 return ERR_PTR(-EPERM); 88 89 /* check sanity of attributes */ 90 if (attr->max_entries == 0 || attr->key_size != 4 || 91 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 92 return ERR_PTR(-EINVAL); 93 94 cmap = kzalloc(sizeof(*cmap), GFP_USER); 95 if (!cmap) 96 return ERR_PTR(-ENOMEM); 97 98 bpf_map_init_from_attr(&cmap->map, attr); 99 100 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 101 if (cmap->map.max_entries > NR_CPUS) { 102 err = -E2BIG; 103 goto free_cmap; 104 } 105 106 /* make sure page count doesn't overflow */ 107 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 108 cost += cpu_map_bitmap_size(attr) * num_possible_cpus(); 109 if (cost >= U32_MAX - PAGE_SIZE) 110 goto free_cmap; 111 cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 112 113 /* Notice returns -EPERM on if map size is larger than memlock limit */ 114 ret = bpf_map_precharge_memlock(cmap->map.pages); 115 if (ret) { 116 err = ret; 117 goto free_cmap; 118 } 119 120 /* A per cpu bitfield with a bit per possible CPU in map */ 121 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr), 122 __alignof__(unsigned long)); 123 if (!cmap->flush_needed) 124 goto free_cmap; 125 126 /* Alloc array for possible remote "destination" CPUs */ 127 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 128 sizeof(struct bpf_cpu_map_entry *), 129 cmap->map.numa_node); 130 if (!cmap->cpu_map) 131 goto free_percpu; 132 133 return &cmap->map; 134 free_percpu: 135 free_percpu(cmap->flush_needed); 136 free_cmap: 137 kfree(cmap); 138 return ERR_PTR(err); 139 } 140 141 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 142 { 143 atomic_inc(&rcpu->refcnt); 144 } 145 146 /* called from workqueue, to workaround syscall using preempt_disable */ 147 static void cpu_map_kthread_stop(struct work_struct *work) 148 { 149 struct bpf_cpu_map_entry *rcpu; 150 151 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 152 153 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 154 * as it waits until all in-flight call_rcu() callbacks complete. 155 */ 156 rcu_barrier(); 157 158 /* kthread_stop will wake_up_process and wait for it to complete */ 159 kthread_stop(rcpu->kthread); 160 } 161 162 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 163 struct xdp_frame *xdpf, 164 struct sk_buff *skb) 165 { 166 unsigned int hard_start_headroom; 167 unsigned int frame_size; 168 void *pkt_data_start; 169 170 /* Part of headroom was reserved to xdpf */ 171 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 172 173 /* build_skb need to place skb_shared_info after SKB end, and 174 * also want to know the memory "truesize". Thus, need to 175 * know the memory frame size backing xdp_buff. 176 * 177 * XDP was designed to have PAGE_SIZE frames, but this 178 * assumption is not longer true with ixgbe and i40e. It 179 * would be preferred to set frame_size to 2048 or 4096 180 * depending on the driver. 181 * frame_size = 2048; 182 * frame_len = frame_size - sizeof(*xdp_frame); 183 * 184 * Instead, with info avail, skb_shared_info in placed after 185 * packet len. This, unfortunately fakes the truesize. 186 * Another disadvantage of this approach, the skb_shared_info 187 * is not at a fixed memory location, with mixed length 188 * packets, which is bad for cache-line hotness. 189 */ 190 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) + 191 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 192 193 pkt_data_start = xdpf->data - hard_start_headroom; 194 skb = build_skb_around(skb, pkt_data_start, frame_size); 195 if (unlikely(!skb)) 196 return NULL; 197 198 skb_reserve(skb, hard_start_headroom); 199 __skb_put(skb, xdpf->len); 200 if (xdpf->metasize) 201 skb_metadata_set(skb, xdpf->metasize); 202 203 /* Essential SKB info: protocol and skb->dev */ 204 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 205 206 /* Optional SKB info, currently missing: 207 * - HW checksum info (skb->ip_summed) 208 * - HW RX hash (skb_set_hash) 209 * - RX ring dev queue index (skb_record_rx_queue) 210 */ 211 212 /* Allow SKB to reuse area used by xdp_frame */ 213 xdp_scrub_frame(xdpf); 214 215 return skb; 216 } 217 218 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 219 { 220 /* The tear-down procedure should have made sure that queue is 221 * empty. See __cpu_map_entry_replace() and work-queue 222 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 223 * gracefully and warn once. 224 */ 225 struct xdp_frame *xdpf; 226 227 while ((xdpf = ptr_ring_consume(ring))) 228 if (WARN_ON_ONCE(xdpf)) 229 xdp_return_frame(xdpf); 230 } 231 232 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 233 { 234 if (atomic_dec_and_test(&rcpu->refcnt)) { 235 /* The queue should be empty at this point */ 236 __cpu_map_ring_cleanup(rcpu->queue); 237 ptr_ring_cleanup(rcpu->queue, NULL); 238 kfree(rcpu->queue); 239 kfree(rcpu); 240 } 241 } 242 243 #define CPUMAP_BATCH 8 244 245 static int cpu_map_kthread_run(void *data) 246 { 247 struct bpf_cpu_map_entry *rcpu = data; 248 249 set_current_state(TASK_INTERRUPTIBLE); 250 251 /* When kthread gives stop order, then rcpu have been disconnected 252 * from map, thus no new packets can enter. Remaining in-flight 253 * per CPU stored packets are flushed to this queue. Wait honoring 254 * kthread_stop signal until queue is empty. 255 */ 256 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 257 unsigned int drops = 0, sched = 0; 258 void *frames[CPUMAP_BATCH]; 259 void *skbs[CPUMAP_BATCH]; 260 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 261 int i, n, m; 262 263 /* Release CPU reschedule checks */ 264 if (__ptr_ring_empty(rcpu->queue)) { 265 set_current_state(TASK_INTERRUPTIBLE); 266 /* Recheck to avoid lost wake-up */ 267 if (__ptr_ring_empty(rcpu->queue)) { 268 schedule(); 269 sched = 1; 270 } else { 271 __set_current_state(TASK_RUNNING); 272 } 273 } else { 274 sched = cond_resched(); 275 } 276 277 /* 278 * The bpf_cpu_map_entry is single consumer, with this 279 * kthread CPU pinned. Lockless access to ptr_ring 280 * consume side valid as no-resize allowed of queue. 281 */ 282 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH); 283 284 for (i = 0; i < n; i++) { 285 void *f = frames[i]; 286 struct page *page = virt_to_page(f); 287 288 /* Bring struct page memory area to curr CPU. Read by 289 * build_skb_around via page_is_pfmemalloc(), and when 290 * freed written by page_frag_free call. 291 */ 292 prefetchw(page); 293 } 294 295 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs); 296 if (unlikely(m == 0)) { 297 for (i = 0; i < n; i++) 298 skbs[i] = NULL; /* effect: xdp_return_frame */ 299 drops = n; 300 } 301 302 local_bh_disable(); 303 for (i = 0; i < n; i++) { 304 struct xdp_frame *xdpf = frames[i]; 305 struct sk_buff *skb = skbs[i]; 306 int ret; 307 308 skb = cpu_map_build_skb(rcpu, xdpf, skb); 309 if (!skb) { 310 xdp_return_frame(xdpf); 311 continue; 312 } 313 314 /* Inject into network stack */ 315 ret = netif_receive_skb_core(skb); 316 if (ret == NET_RX_DROP) 317 drops++; 318 } 319 /* Feedback loop via tracepoint */ 320 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched); 321 322 local_bh_enable(); /* resched point, may call do_softirq() */ 323 } 324 __set_current_state(TASK_RUNNING); 325 326 put_cpu_map_entry(rcpu); 327 return 0; 328 } 329 330 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 331 int map_id) 332 { 333 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 334 struct bpf_cpu_map_entry *rcpu; 335 int numa, err; 336 337 /* Have map->numa_node, but choose node of redirect target CPU */ 338 numa = cpu_to_node(cpu); 339 340 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 341 if (!rcpu) 342 return NULL; 343 344 /* Alloc percpu bulkq */ 345 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 346 sizeof(void *), gfp); 347 if (!rcpu->bulkq) 348 goto free_rcu; 349 350 /* Alloc queue */ 351 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 352 if (!rcpu->queue) 353 goto free_bulkq; 354 355 err = ptr_ring_init(rcpu->queue, qsize, gfp); 356 if (err) 357 goto free_queue; 358 359 rcpu->cpu = cpu; 360 rcpu->map_id = map_id; 361 rcpu->qsize = qsize; 362 363 /* Setup kthread */ 364 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 365 "cpumap/%d/map:%d", cpu, map_id); 366 if (IS_ERR(rcpu->kthread)) 367 goto free_ptr_ring; 368 369 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 370 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 371 372 /* Make sure kthread runs on a single CPU */ 373 kthread_bind(rcpu->kthread, cpu); 374 wake_up_process(rcpu->kthread); 375 376 return rcpu; 377 378 free_ptr_ring: 379 ptr_ring_cleanup(rcpu->queue, NULL); 380 free_queue: 381 kfree(rcpu->queue); 382 free_bulkq: 383 free_percpu(rcpu->bulkq); 384 free_rcu: 385 kfree(rcpu); 386 return NULL; 387 } 388 389 static void __cpu_map_entry_free(struct rcu_head *rcu) 390 { 391 struct bpf_cpu_map_entry *rcpu; 392 int cpu; 393 394 /* This cpu_map_entry have been disconnected from map and one 395 * RCU graze-period have elapsed. Thus, XDP cannot queue any 396 * new packets and cannot change/set flush_needed that can 397 * find this entry. 398 */ 399 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 400 401 /* Flush remaining packets in percpu bulkq */ 402 for_each_online_cpu(cpu) { 403 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu); 404 405 /* No concurrent bq_enqueue can run at this point */ 406 bq_flush_to_queue(rcpu, bq, false); 407 } 408 free_percpu(rcpu->bulkq); 409 /* Cannot kthread_stop() here, last put free rcpu resources */ 410 put_cpu_map_entry(rcpu); 411 } 412 413 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 414 * ensure any driver rcu critical sections have completed, but this 415 * does not guarantee a flush has happened yet. Because driver side 416 * rcu_read_lock/unlock only protects the running XDP program. The 417 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 418 * pending flush op doesn't fail. 419 * 420 * The bpf_cpu_map_entry is still used by the kthread, and there can 421 * still be pending packets (in queue and percpu bulkq). A refcnt 422 * makes sure to last user (kthread_stop vs. call_rcu) free memory 423 * resources. 424 * 425 * The rcu callback __cpu_map_entry_free flush remaining packets in 426 * percpu bulkq to queue. Due to caller map_delete_elem() disable 427 * preemption, cannot call kthread_stop() to make sure queue is empty. 428 * Instead a work_queue is started for stopping kthread, 429 * cpu_map_kthread_stop, which waits for an RCU graze period before 430 * stopping kthread, emptying the queue. 431 */ 432 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 433 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 434 { 435 struct bpf_cpu_map_entry *old_rcpu; 436 437 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 438 if (old_rcpu) { 439 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 440 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 441 schedule_work(&old_rcpu->kthread_stop_wq); 442 } 443 } 444 445 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 446 { 447 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 448 u32 key_cpu = *(u32 *)key; 449 450 if (key_cpu >= map->max_entries) 451 return -EINVAL; 452 453 /* notice caller map_delete_elem() use preempt_disable() */ 454 __cpu_map_entry_replace(cmap, key_cpu, NULL); 455 return 0; 456 } 457 458 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 459 u64 map_flags) 460 { 461 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 462 struct bpf_cpu_map_entry *rcpu; 463 464 /* Array index key correspond to CPU number */ 465 u32 key_cpu = *(u32 *)key; 466 /* Value is the queue size */ 467 u32 qsize = *(u32 *)value; 468 469 if (unlikely(map_flags > BPF_EXIST)) 470 return -EINVAL; 471 if (unlikely(key_cpu >= cmap->map.max_entries)) 472 return -E2BIG; 473 if (unlikely(map_flags == BPF_NOEXIST)) 474 return -EEXIST; 475 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 476 return -EOVERFLOW; 477 478 /* Make sure CPU is a valid possible cpu */ 479 if (!cpu_possible(key_cpu)) 480 return -ENODEV; 481 482 if (qsize == 0) { 483 rcpu = NULL; /* Same as deleting */ 484 } else { 485 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 486 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 487 if (!rcpu) 488 return -ENOMEM; 489 } 490 rcu_read_lock(); 491 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 492 rcu_read_unlock(); 493 return 0; 494 } 495 496 static void cpu_map_free(struct bpf_map *map) 497 { 498 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 499 int cpu; 500 u32 i; 501 502 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 503 * so the bpf programs (can be more than one that used this map) were 504 * disconnected from events. Wait for outstanding critical sections in 505 * these programs to complete. The rcu critical section only guarantees 506 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 507 * It does __not__ ensure pending flush operations (if any) are 508 * complete. 509 */ 510 511 bpf_clear_redirect_map(map); 512 synchronize_rcu(); 513 514 /* To ensure all pending flush operations have completed wait for flush 515 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 516 * Because the above synchronize_rcu() ensures the map is disconnected 517 * from the program we can assume no new bits will be set. 518 */ 519 for_each_online_cpu(cpu) { 520 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu); 521 522 while (!bitmap_empty(bitmap, cmap->map.max_entries)) 523 cond_resched(); 524 } 525 526 /* For cpu_map the remote CPUs can still be using the entries 527 * (struct bpf_cpu_map_entry). 528 */ 529 for (i = 0; i < cmap->map.max_entries; i++) { 530 struct bpf_cpu_map_entry *rcpu; 531 532 rcpu = READ_ONCE(cmap->cpu_map[i]); 533 if (!rcpu) 534 continue; 535 536 /* bq flush and cleanup happens after RCU graze-period */ 537 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 538 } 539 free_percpu(cmap->flush_needed); 540 bpf_map_area_free(cmap->cpu_map); 541 kfree(cmap); 542 } 543 544 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 545 { 546 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 547 struct bpf_cpu_map_entry *rcpu; 548 549 if (key >= map->max_entries) 550 return NULL; 551 552 rcpu = READ_ONCE(cmap->cpu_map[key]); 553 return rcpu; 554 } 555 556 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 557 { 558 struct bpf_cpu_map_entry *rcpu = 559 __cpu_map_lookup_elem(map, *(u32 *)key); 560 561 return rcpu ? &rcpu->qsize : NULL; 562 } 563 564 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 565 { 566 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 567 u32 index = key ? *(u32 *)key : U32_MAX; 568 u32 *next = next_key; 569 570 if (index >= cmap->map.max_entries) { 571 *next = 0; 572 return 0; 573 } 574 575 if (index == cmap->map.max_entries - 1) 576 return -ENOENT; 577 *next = index + 1; 578 return 0; 579 } 580 581 const struct bpf_map_ops cpu_map_ops = { 582 .map_alloc = cpu_map_alloc, 583 .map_free = cpu_map_free, 584 .map_delete_elem = cpu_map_delete_elem, 585 .map_update_elem = cpu_map_update_elem, 586 .map_lookup_elem = cpu_map_lookup_elem, 587 .map_get_next_key = cpu_map_get_next_key, 588 .map_check_btf = map_check_no_btf, 589 }; 590 591 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 592 struct xdp_bulk_queue *bq, bool in_napi_ctx) 593 { 594 unsigned int processed = 0, drops = 0; 595 const int to_cpu = rcpu->cpu; 596 struct ptr_ring *q; 597 int i; 598 599 if (unlikely(!bq->count)) 600 return 0; 601 602 q = rcpu->queue; 603 spin_lock(&q->producer_lock); 604 605 for (i = 0; i < bq->count; i++) { 606 struct xdp_frame *xdpf = bq->q[i]; 607 int err; 608 609 err = __ptr_ring_produce(q, xdpf); 610 if (err) { 611 drops++; 612 if (likely(in_napi_ctx)) 613 xdp_return_frame_rx_napi(xdpf); 614 else 615 xdp_return_frame(xdpf); 616 } 617 processed++; 618 } 619 bq->count = 0; 620 spin_unlock(&q->producer_lock); 621 622 /* Feedback loop via tracepoints */ 623 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 624 return 0; 625 } 626 627 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 628 * Thus, safe percpu variable access. 629 */ 630 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 631 { 632 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 633 634 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 635 bq_flush_to_queue(rcpu, bq, true); 636 637 /* Notice, xdp_buff/page MUST be queued here, long enough for 638 * driver to code invoking us to finished, due to driver 639 * (e.g. ixgbe) recycle tricks based on page-refcnt. 640 * 641 * Thus, incoming xdp_frame is always queued here (else we race 642 * with another CPU on page-refcnt and remaining driver code). 643 * Queue time is very short, as driver will invoke flush 644 * operation, when completing napi->poll call. 645 */ 646 bq->q[bq->count++] = xdpf; 647 return 0; 648 } 649 650 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 651 struct net_device *dev_rx) 652 { 653 struct xdp_frame *xdpf; 654 655 xdpf = convert_to_xdp_frame(xdp); 656 if (unlikely(!xdpf)) 657 return -EOVERFLOW; 658 659 /* Info needed when constructing SKB on remote CPU */ 660 xdpf->dev_rx = dev_rx; 661 662 bq_enqueue(rcpu, xdpf); 663 return 0; 664 } 665 666 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit) 667 { 668 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 669 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 670 671 __set_bit(bit, bitmap); 672 } 673 674 void __cpu_map_flush(struct bpf_map *map) 675 { 676 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 677 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 678 u32 bit; 679 680 /* The napi->poll softirq makes sure __cpu_map_insert_ctx() 681 * and __cpu_map_flush() happen on same CPU. Thus, the percpu 682 * bitmap indicate which percpu bulkq have packets. 683 */ 684 for_each_set_bit(bit, bitmap, map->max_entries) { 685 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]); 686 struct xdp_bulk_queue *bq; 687 688 /* This is possible if entry is removed by user space 689 * between xdp redirect and flush op. 690 */ 691 if (unlikely(!rcpu)) 692 continue; 693 694 __clear_bit(bit, bitmap); 695 696 /* Flush all frames in bulkq to real queue */ 697 bq = this_cpu_ptr(rcpu->bulkq); 698 bq_flush_to_queue(rcpu, bq, true); 699 700 /* If already running, costs spin_lock_irqsave + smb_mb */ 701 wake_up_process(rcpu->kthread); 702 } 703 } 704