xref: /linux/kernel/bpf/cpumap.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24 
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <trace/events/xdp.h>
30 
31 #include <linux/netdevice.h>   /* netif_receive_skb_list */
32 #include <linux/etherdevice.h> /* eth_type_trans */
33 
34 /* General idea: XDP packets getting XDP redirected to another CPU,
35  * will maximum be stored/queued for one driver ->poll() call.  It is
36  * guaranteed that queueing the frame and the flush operation happen on
37  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
38  * which queue in bpf_cpu_map_entry contains packets.
39  */
40 
41 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
42 struct bpf_cpu_map_entry;
43 struct bpf_cpu_map;
44 
45 struct xdp_bulk_queue {
46 	void *q[CPU_MAP_BULK_SIZE];
47 	struct list_head flush_node;
48 	struct bpf_cpu_map_entry *obj;
49 	unsigned int count;
50 };
51 
52 /* Struct for every remote "destination" CPU in map */
53 struct bpf_cpu_map_entry {
54 	u32 cpu;    /* kthread CPU and map index */
55 	int map_id; /* Back reference to map */
56 
57 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 	struct xdp_bulk_queue __percpu *bulkq;
59 
60 	struct bpf_cpu_map *cmap;
61 
62 	/* Queue with potential multi-producers, and single-consumer kthread */
63 	struct ptr_ring *queue;
64 	struct task_struct *kthread;
65 
66 	struct bpf_cpumap_val value;
67 	struct bpf_prog *prog;
68 
69 	atomic_t refcnt; /* Control when this struct can be free'ed */
70 	struct rcu_head rcu;
71 
72 	struct work_struct kthread_stop_wq;
73 };
74 
75 struct bpf_cpu_map {
76 	struct bpf_map map;
77 	/* Below members specific for map type */
78 	struct bpf_cpu_map_entry __rcu **cpu_map;
79 };
80 
81 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
82 
83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84 {
85 	u32 value_size = attr->value_size;
86 	struct bpf_cpu_map *cmap;
87 	int err = -ENOMEM;
88 
89 	if (!bpf_capable())
90 		return ERR_PTR(-EPERM);
91 
92 	/* check sanity of attributes */
93 	if (attr->max_entries == 0 || attr->key_size != 4 ||
94 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
95 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
96 	    attr->map_flags & ~BPF_F_NUMA_NODE)
97 		return ERR_PTR(-EINVAL);
98 
99 	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
100 	if (!cmap)
101 		return ERR_PTR(-ENOMEM);
102 
103 	bpf_map_init_from_attr(&cmap->map, attr);
104 
105 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
106 	if (cmap->map.max_entries > NR_CPUS) {
107 		err = -E2BIG;
108 		goto free_cmap;
109 	}
110 
111 	/* Alloc array for possible remote "destination" CPUs */
112 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
113 					   sizeof(struct bpf_cpu_map_entry *),
114 					   cmap->map.numa_node);
115 	if (!cmap->cpu_map)
116 		goto free_cmap;
117 
118 	return &cmap->map;
119 free_cmap:
120 	kfree(cmap);
121 	return ERR_PTR(err);
122 }
123 
124 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
125 {
126 	atomic_inc(&rcpu->refcnt);
127 }
128 
129 /* called from workqueue, to workaround syscall using preempt_disable */
130 static void cpu_map_kthread_stop(struct work_struct *work)
131 {
132 	struct bpf_cpu_map_entry *rcpu;
133 
134 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
135 
136 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
137 	 * as it waits until all in-flight call_rcu() callbacks complete.
138 	 */
139 	rcu_barrier();
140 
141 	/* kthread_stop will wake_up_process and wait for it to complete */
142 	kthread_stop(rcpu->kthread);
143 }
144 
145 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
146 {
147 	/* The tear-down procedure should have made sure that queue is
148 	 * empty.  See __cpu_map_entry_replace() and work-queue
149 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
150 	 * gracefully and warn once.
151 	 */
152 	struct xdp_frame *xdpf;
153 
154 	while ((xdpf = ptr_ring_consume(ring)))
155 		if (WARN_ON_ONCE(xdpf))
156 			xdp_return_frame(xdpf);
157 }
158 
159 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
160 {
161 	if (atomic_dec_and_test(&rcpu->refcnt)) {
162 		if (rcpu->prog)
163 			bpf_prog_put(rcpu->prog);
164 		/* The queue should be empty at this point */
165 		__cpu_map_ring_cleanup(rcpu->queue);
166 		ptr_ring_cleanup(rcpu->queue, NULL);
167 		kfree(rcpu->queue);
168 		kfree(rcpu);
169 	}
170 }
171 
172 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
173 				     struct list_head *listp,
174 				     struct xdp_cpumap_stats *stats)
175 {
176 	struct sk_buff *skb, *tmp;
177 	struct xdp_buff xdp;
178 	u32 act;
179 	int err;
180 
181 	list_for_each_entry_safe(skb, tmp, listp, list) {
182 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
183 		switch (act) {
184 		case XDP_PASS:
185 			break;
186 		case XDP_REDIRECT:
187 			skb_list_del_init(skb);
188 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
189 						      rcpu->prog);
190 			if (unlikely(err)) {
191 				kfree_skb(skb);
192 				stats->drop++;
193 			} else {
194 				stats->redirect++;
195 			}
196 			return;
197 		default:
198 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
199 			fallthrough;
200 		case XDP_ABORTED:
201 			trace_xdp_exception(skb->dev, rcpu->prog, act);
202 			fallthrough;
203 		case XDP_DROP:
204 			skb_list_del_init(skb);
205 			kfree_skb(skb);
206 			stats->drop++;
207 			return;
208 		}
209 	}
210 }
211 
212 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
213 				    void **frames, int n,
214 				    struct xdp_cpumap_stats *stats)
215 {
216 	struct xdp_rxq_info rxq;
217 	struct xdp_buff xdp;
218 	int i, nframes = 0;
219 
220 	xdp_set_return_frame_no_direct();
221 	xdp.rxq = &rxq;
222 
223 	for (i = 0; i < n; i++) {
224 		struct xdp_frame *xdpf = frames[i];
225 		u32 act;
226 		int err;
227 
228 		rxq.dev = xdpf->dev_rx;
229 		rxq.mem = xdpf->mem;
230 		/* TODO: report queue_index to xdp_rxq_info */
231 
232 		xdp_convert_frame_to_buff(xdpf, &xdp);
233 
234 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
235 		switch (act) {
236 		case XDP_PASS:
237 			err = xdp_update_frame_from_buff(&xdp, xdpf);
238 			if (err < 0) {
239 				xdp_return_frame(xdpf);
240 				stats->drop++;
241 			} else {
242 				frames[nframes++] = xdpf;
243 				stats->pass++;
244 			}
245 			break;
246 		case XDP_REDIRECT:
247 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
248 					      rcpu->prog);
249 			if (unlikely(err)) {
250 				xdp_return_frame(xdpf);
251 				stats->drop++;
252 			} else {
253 				stats->redirect++;
254 			}
255 			break;
256 		default:
257 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
258 			fallthrough;
259 		case XDP_DROP:
260 			xdp_return_frame(xdpf);
261 			stats->drop++;
262 			break;
263 		}
264 	}
265 
266 	xdp_clear_return_frame_no_direct();
267 
268 	return nframes;
269 }
270 
271 #define CPUMAP_BATCH 8
272 
273 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
274 				int xdp_n, struct xdp_cpumap_stats *stats,
275 				struct list_head *list)
276 {
277 	int nframes;
278 
279 	if (!rcpu->prog)
280 		return xdp_n;
281 
282 	rcu_read_lock_bh();
283 
284 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
285 
286 	if (stats->redirect)
287 		xdp_do_flush();
288 
289 	if (unlikely(!list_empty(list)))
290 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
291 
292 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
293 
294 	return nframes;
295 }
296 
297 
298 static int cpu_map_kthread_run(void *data)
299 {
300 	struct bpf_cpu_map_entry *rcpu = data;
301 
302 	set_current_state(TASK_INTERRUPTIBLE);
303 
304 	/* When kthread gives stop order, then rcpu have been disconnected
305 	 * from map, thus no new packets can enter. Remaining in-flight
306 	 * per CPU stored packets are flushed to this queue.  Wait honoring
307 	 * kthread_stop signal until queue is empty.
308 	 */
309 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
310 		struct xdp_cpumap_stats stats = {}; /* zero stats */
311 		unsigned int kmem_alloc_drops = 0, sched = 0;
312 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
313 		int i, n, m, nframes, xdp_n;
314 		void *frames[CPUMAP_BATCH];
315 		void *skbs[CPUMAP_BATCH];
316 		LIST_HEAD(list);
317 
318 		/* Release CPU reschedule checks */
319 		if (__ptr_ring_empty(rcpu->queue)) {
320 			set_current_state(TASK_INTERRUPTIBLE);
321 			/* Recheck to avoid lost wake-up */
322 			if (__ptr_ring_empty(rcpu->queue)) {
323 				schedule();
324 				sched = 1;
325 			} else {
326 				__set_current_state(TASK_RUNNING);
327 			}
328 		} else {
329 			sched = cond_resched();
330 		}
331 
332 		/*
333 		 * The bpf_cpu_map_entry is single consumer, with this
334 		 * kthread CPU pinned. Lockless access to ptr_ring
335 		 * consume side valid as no-resize allowed of queue.
336 		 */
337 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
338 					       CPUMAP_BATCH);
339 		for (i = 0, xdp_n = 0; i < n; i++) {
340 			void *f = frames[i];
341 			struct page *page;
342 
343 			if (unlikely(__ptr_test_bit(0, &f))) {
344 				struct sk_buff *skb = f;
345 
346 				__ptr_clear_bit(0, &skb);
347 				list_add_tail(&skb->list, &list);
348 				continue;
349 			}
350 
351 			frames[xdp_n++] = f;
352 			page = virt_to_page(f);
353 
354 			/* Bring struct page memory area to curr CPU. Read by
355 			 * build_skb_around via page_is_pfmemalloc(), and when
356 			 * freed written by page_frag_free call.
357 			 */
358 			prefetchw(page);
359 		}
360 
361 		/* Support running another XDP prog on this CPU */
362 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
363 		if (nframes) {
364 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
365 			if (unlikely(m == 0)) {
366 				for (i = 0; i < nframes; i++)
367 					skbs[i] = NULL; /* effect: xdp_return_frame */
368 				kmem_alloc_drops += nframes;
369 			}
370 		}
371 
372 		local_bh_disable();
373 		for (i = 0; i < nframes; i++) {
374 			struct xdp_frame *xdpf = frames[i];
375 			struct sk_buff *skb = skbs[i];
376 
377 			skb = __xdp_build_skb_from_frame(xdpf, skb,
378 							 xdpf->dev_rx);
379 			if (!skb) {
380 				xdp_return_frame(xdpf);
381 				continue;
382 			}
383 
384 			list_add_tail(&skb->list, &list);
385 		}
386 		netif_receive_skb_list(&list);
387 
388 		/* Feedback loop via tracepoint */
389 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
390 					 sched, &stats);
391 
392 		local_bh_enable(); /* resched point, may call do_softirq() */
393 	}
394 	__set_current_state(TASK_RUNNING);
395 
396 	put_cpu_map_entry(rcpu);
397 	return 0;
398 }
399 
400 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
401 {
402 	struct bpf_prog *prog;
403 
404 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
405 	if (IS_ERR(prog))
406 		return PTR_ERR(prog);
407 
408 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
409 		bpf_prog_put(prog);
410 		return -EINVAL;
411 	}
412 
413 	rcpu->value.bpf_prog.id = prog->aux->id;
414 	rcpu->prog = prog;
415 
416 	return 0;
417 }
418 
419 static struct bpf_cpu_map_entry *
420 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
421 		      u32 cpu)
422 {
423 	int numa, err, i, fd = value->bpf_prog.fd;
424 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
425 	struct bpf_cpu_map_entry *rcpu;
426 	struct xdp_bulk_queue *bq;
427 
428 	/* Have map->numa_node, but choose node of redirect target CPU */
429 	numa = cpu_to_node(cpu);
430 
431 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
432 	if (!rcpu)
433 		return NULL;
434 
435 	/* Alloc percpu bulkq */
436 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
437 					   sizeof(void *), gfp);
438 	if (!rcpu->bulkq)
439 		goto free_rcu;
440 
441 	for_each_possible_cpu(i) {
442 		bq = per_cpu_ptr(rcpu->bulkq, i);
443 		bq->obj = rcpu;
444 	}
445 
446 	/* Alloc queue */
447 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
448 					   numa);
449 	if (!rcpu->queue)
450 		goto free_bulkq;
451 
452 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
453 	if (err)
454 		goto free_queue;
455 
456 	rcpu->cpu    = cpu;
457 	rcpu->map_id = map->id;
458 	rcpu->value.qsize  = value->qsize;
459 
460 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
461 		goto free_ptr_ring;
462 
463 	/* Setup kthread */
464 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
465 					       "cpumap/%d/map:%d", cpu,
466 					       map->id);
467 	if (IS_ERR(rcpu->kthread))
468 		goto free_prog;
469 
470 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
471 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
472 
473 	/* Make sure kthread runs on a single CPU */
474 	kthread_bind(rcpu->kthread, cpu);
475 	wake_up_process(rcpu->kthread);
476 
477 	return rcpu;
478 
479 free_prog:
480 	if (rcpu->prog)
481 		bpf_prog_put(rcpu->prog);
482 free_ptr_ring:
483 	ptr_ring_cleanup(rcpu->queue, NULL);
484 free_queue:
485 	kfree(rcpu->queue);
486 free_bulkq:
487 	free_percpu(rcpu->bulkq);
488 free_rcu:
489 	kfree(rcpu);
490 	return NULL;
491 }
492 
493 static void __cpu_map_entry_free(struct rcu_head *rcu)
494 {
495 	struct bpf_cpu_map_entry *rcpu;
496 
497 	/* This cpu_map_entry have been disconnected from map and one
498 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
499 	 * new packets and cannot change/set flush_needed that can
500 	 * find this entry.
501 	 */
502 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
503 
504 	free_percpu(rcpu->bulkq);
505 	/* Cannot kthread_stop() here, last put free rcpu resources */
506 	put_cpu_map_entry(rcpu);
507 }
508 
509 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
510  * ensure any driver rcu critical sections have completed, but this
511  * does not guarantee a flush has happened yet. Because driver side
512  * rcu_read_lock/unlock only protects the running XDP program.  The
513  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
514  * pending flush op doesn't fail.
515  *
516  * The bpf_cpu_map_entry is still used by the kthread, and there can
517  * still be pending packets (in queue and percpu bulkq).  A refcnt
518  * makes sure to last user (kthread_stop vs. call_rcu) free memory
519  * resources.
520  *
521  * The rcu callback __cpu_map_entry_free flush remaining packets in
522  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
523  * preemption, cannot call kthread_stop() to make sure queue is empty.
524  * Instead a work_queue is started for stopping kthread,
525  * cpu_map_kthread_stop, which waits for an RCU grace period before
526  * stopping kthread, emptying the queue.
527  */
528 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
529 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
530 {
531 	struct bpf_cpu_map_entry *old_rcpu;
532 
533 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
534 	if (old_rcpu) {
535 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
536 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
537 		schedule_work(&old_rcpu->kthread_stop_wq);
538 	}
539 }
540 
541 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
542 {
543 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
544 	u32 key_cpu = *(u32 *)key;
545 
546 	if (key_cpu >= map->max_entries)
547 		return -EINVAL;
548 
549 	/* notice caller map_delete_elem() use preempt_disable() */
550 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
551 	return 0;
552 }
553 
554 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
555 			       u64 map_flags)
556 {
557 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
558 	struct bpf_cpumap_val cpumap_value = {};
559 	struct bpf_cpu_map_entry *rcpu;
560 	/* Array index key correspond to CPU number */
561 	u32 key_cpu = *(u32 *)key;
562 
563 	memcpy(&cpumap_value, value, map->value_size);
564 
565 	if (unlikely(map_flags > BPF_EXIST))
566 		return -EINVAL;
567 	if (unlikely(key_cpu >= cmap->map.max_entries))
568 		return -E2BIG;
569 	if (unlikely(map_flags == BPF_NOEXIST))
570 		return -EEXIST;
571 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
572 		return -EOVERFLOW;
573 
574 	/* Make sure CPU is a valid possible cpu */
575 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
576 		return -ENODEV;
577 
578 	if (cpumap_value.qsize == 0) {
579 		rcpu = NULL; /* Same as deleting */
580 	} else {
581 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
582 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
583 		if (!rcpu)
584 			return -ENOMEM;
585 		rcpu->cmap = cmap;
586 	}
587 	rcu_read_lock();
588 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
589 	rcu_read_unlock();
590 	return 0;
591 }
592 
593 static void cpu_map_free(struct bpf_map *map)
594 {
595 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
596 	u32 i;
597 
598 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
599 	 * so the bpf programs (can be more than one that used this map) were
600 	 * disconnected from events. Wait for outstanding critical sections in
601 	 * these programs to complete. The rcu critical section only guarantees
602 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
603 	 * It does __not__ ensure pending flush operations (if any) are
604 	 * complete.
605 	 */
606 
607 	synchronize_rcu();
608 
609 	/* For cpu_map the remote CPUs can still be using the entries
610 	 * (struct bpf_cpu_map_entry).
611 	 */
612 	for (i = 0; i < cmap->map.max_entries; i++) {
613 		struct bpf_cpu_map_entry *rcpu;
614 
615 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
616 		if (!rcpu)
617 			continue;
618 
619 		/* bq flush and cleanup happens after RCU grace-period */
620 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
621 	}
622 	bpf_map_area_free(cmap->cpu_map);
623 	kfree(cmap);
624 }
625 
626 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
627  * by local_bh_disable() (from XDP calls inside NAPI). The
628  * rcu_read_lock_bh_held() below makes lockdep accept both.
629  */
630 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
631 {
632 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
633 	struct bpf_cpu_map_entry *rcpu;
634 
635 	if (key >= map->max_entries)
636 		return NULL;
637 
638 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
639 				     rcu_read_lock_bh_held());
640 	return rcpu;
641 }
642 
643 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
644 {
645 	struct bpf_cpu_map_entry *rcpu =
646 		__cpu_map_lookup_elem(map, *(u32 *)key);
647 
648 	return rcpu ? &rcpu->value : NULL;
649 }
650 
651 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
652 {
653 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
654 	u32 index = key ? *(u32 *)key : U32_MAX;
655 	u32 *next = next_key;
656 
657 	if (index >= cmap->map.max_entries) {
658 		*next = 0;
659 		return 0;
660 	}
661 
662 	if (index == cmap->map.max_entries - 1)
663 		return -ENOENT;
664 	*next = index + 1;
665 	return 0;
666 }
667 
668 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
669 {
670 	return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
671 				      __cpu_map_lookup_elem);
672 }
673 
674 static int cpu_map_btf_id;
675 const struct bpf_map_ops cpu_map_ops = {
676 	.map_meta_equal		= bpf_map_meta_equal,
677 	.map_alloc		= cpu_map_alloc,
678 	.map_free		= cpu_map_free,
679 	.map_delete_elem	= cpu_map_delete_elem,
680 	.map_update_elem	= cpu_map_update_elem,
681 	.map_lookup_elem	= cpu_map_lookup_elem,
682 	.map_get_next_key	= cpu_map_get_next_key,
683 	.map_check_btf		= map_check_no_btf,
684 	.map_btf_name		= "bpf_cpu_map",
685 	.map_btf_id		= &cpu_map_btf_id,
686 	.map_redirect		= cpu_map_redirect,
687 };
688 
689 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
690 {
691 	struct bpf_cpu_map_entry *rcpu = bq->obj;
692 	unsigned int processed = 0, drops = 0;
693 	const int to_cpu = rcpu->cpu;
694 	struct ptr_ring *q;
695 	int i;
696 
697 	if (unlikely(!bq->count))
698 		return;
699 
700 	q = rcpu->queue;
701 	spin_lock(&q->producer_lock);
702 
703 	for (i = 0; i < bq->count; i++) {
704 		struct xdp_frame *xdpf = bq->q[i];
705 		int err;
706 
707 		err = __ptr_ring_produce(q, xdpf);
708 		if (err) {
709 			drops++;
710 			xdp_return_frame_rx_napi(xdpf);
711 		}
712 		processed++;
713 	}
714 	bq->count = 0;
715 	spin_unlock(&q->producer_lock);
716 
717 	__list_del_clearprev(&bq->flush_node);
718 
719 	/* Feedback loop via tracepoints */
720 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
721 }
722 
723 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
724  * Thus, safe percpu variable access.
725  */
726 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
727 {
728 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
729 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
730 
731 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
732 		bq_flush_to_queue(bq);
733 
734 	/* Notice, xdp_buff/page MUST be queued here, long enough for
735 	 * driver to code invoking us to finished, due to driver
736 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
737 	 *
738 	 * Thus, incoming xdp_frame is always queued here (else we race
739 	 * with another CPU on page-refcnt and remaining driver code).
740 	 * Queue time is very short, as driver will invoke flush
741 	 * operation, when completing napi->poll call.
742 	 */
743 	bq->q[bq->count++] = xdpf;
744 
745 	if (!bq->flush_node.prev)
746 		list_add(&bq->flush_node, flush_list);
747 }
748 
749 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
750 		    struct net_device *dev_rx)
751 {
752 	/* Info needed when constructing SKB on remote CPU */
753 	xdpf->dev_rx = dev_rx;
754 
755 	bq_enqueue(rcpu, xdpf);
756 	return 0;
757 }
758 
759 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
760 			     struct sk_buff *skb)
761 {
762 	int ret;
763 
764 	__skb_pull(skb, skb->mac_len);
765 	skb_set_redirected(skb, false);
766 	__ptr_set_bit(0, &skb);
767 
768 	ret = ptr_ring_produce(rcpu->queue, skb);
769 	if (ret < 0)
770 		goto trace;
771 
772 	wake_up_process(rcpu->kthread);
773 trace:
774 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
775 	return ret;
776 }
777 
778 void __cpu_map_flush(void)
779 {
780 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
781 	struct xdp_bulk_queue *bq, *tmp;
782 
783 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
784 		bq_flush_to_queue(bq);
785 
786 		/* If already running, costs spin_lock_irqsave + smb_mb */
787 		wake_up_process(bq->obj->kthread);
788 	}
789 }
790 
791 static int __init cpu_map_init(void)
792 {
793 	int cpu;
794 
795 	for_each_possible_cpu(cpu)
796 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
797 	return 0;
798 }
799 
800 subsys_initcall(cpu_map_init);
801