xref: /linux/kernel/bpf/cpumap.c (revision 5a558f369ef89c6fd8170ee1137274fcc08517ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 #include <net/hotdata.h>
28 
29 #include <linux/sched.h>
30 #include <linux/workqueue.h>
31 #include <linux/kthread.h>
32 #include <linux/completion.h>
33 #include <trace/events/xdp.h>
34 #include <linux/btf_ids.h>
35 
36 #include <linux/netdevice.h>   /* netif_receive_skb_list */
37 #include <linux/etherdevice.h> /* eth_type_trans */
38 
39 /* General idea: XDP packets getting XDP redirected to another CPU,
40  * will maximum be stored/queued for one driver ->poll() call.  It is
41  * guaranteed that queueing the frame and the flush operation happen on
42  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
43  * which queue in bpf_cpu_map_entry contains packets.
44  */
45 
46 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
47 struct bpf_cpu_map_entry;
48 struct bpf_cpu_map;
49 
50 struct xdp_bulk_queue {
51 	void *q[CPU_MAP_BULK_SIZE];
52 	struct list_head flush_node;
53 	struct bpf_cpu_map_entry *obj;
54 	unsigned int count;
55 };
56 
57 /* Struct for every remote "destination" CPU in map */
58 struct bpf_cpu_map_entry {
59 	u32 cpu;    /* kthread CPU and map index */
60 	int map_id; /* Back reference to map */
61 
62 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
63 	struct xdp_bulk_queue __percpu *bulkq;
64 
65 	/* Queue with potential multi-producers, and single-consumer kthread */
66 	struct ptr_ring *queue;
67 	struct task_struct *kthread;
68 
69 	struct bpf_cpumap_val value;
70 	struct bpf_prog *prog;
71 
72 	struct completion kthread_running;
73 	struct rcu_work free_work;
74 };
75 
76 struct bpf_cpu_map {
77 	struct bpf_map map;
78 	/* Below members specific for map type */
79 	struct bpf_cpu_map_entry __rcu **cpu_map;
80 };
81 
82 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
83 
84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
85 {
86 	u32 value_size = attr->value_size;
87 	struct bpf_cpu_map *cmap;
88 
89 	/* check sanity of attributes */
90 	if (attr->max_entries == 0 || attr->key_size != 4 ||
91 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
92 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
93 	    attr->map_flags & ~BPF_F_NUMA_NODE)
94 		return ERR_PTR(-EINVAL);
95 
96 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
97 	if (attr->max_entries > NR_CPUS)
98 		return ERR_PTR(-E2BIG);
99 
100 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
101 	if (!cmap)
102 		return ERR_PTR(-ENOMEM);
103 
104 	bpf_map_init_from_attr(&cmap->map, attr);
105 
106 	/* Alloc array for possible remote "destination" CPUs */
107 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
108 					   sizeof(struct bpf_cpu_map_entry *),
109 					   cmap->map.numa_node);
110 	if (!cmap->cpu_map) {
111 		bpf_map_area_free(cmap);
112 		return ERR_PTR(-ENOMEM);
113 	}
114 
115 	return &cmap->map;
116 }
117 
118 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
119 {
120 	/* The tear-down procedure should have made sure that queue is
121 	 * empty.  See __cpu_map_entry_replace() and work-queue
122 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
123 	 * gracefully and warn once.
124 	 */
125 	void *ptr;
126 
127 	while ((ptr = ptr_ring_consume(ring))) {
128 		WARN_ON_ONCE(1);
129 		if (unlikely(__ptr_test_bit(0, &ptr))) {
130 			__ptr_clear_bit(0, &ptr);
131 			kfree_skb(ptr);
132 			continue;
133 		}
134 		xdp_return_frame(ptr);
135 	}
136 }
137 
138 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
139 				     struct list_head *listp,
140 				     struct xdp_cpumap_stats *stats)
141 {
142 	struct sk_buff *skb, *tmp;
143 	struct xdp_buff xdp;
144 	u32 act;
145 	int err;
146 
147 	list_for_each_entry_safe(skb, tmp, listp, list) {
148 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
149 		switch (act) {
150 		case XDP_PASS:
151 			break;
152 		case XDP_REDIRECT:
153 			skb_list_del_init(skb);
154 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
155 						      rcpu->prog);
156 			if (unlikely(err)) {
157 				kfree_skb(skb);
158 				stats->drop++;
159 			} else {
160 				stats->redirect++;
161 			}
162 			return;
163 		default:
164 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
165 			fallthrough;
166 		case XDP_ABORTED:
167 			trace_xdp_exception(skb->dev, rcpu->prog, act);
168 			fallthrough;
169 		case XDP_DROP:
170 			skb_list_del_init(skb);
171 			kfree_skb(skb);
172 			stats->drop++;
173 			return;
174 		}
175 	}
176 }
177 
178 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
179 				    void **frames, int n,
180 				    struct xdp_cpumap_stats *stats)
181 {
182 	struct xdp_rxq_info rxq = {};
183 	struct xdp_buff xdp;
184 	int i, nframes = 0;
185 
186 	xdp_set_return_frame_no_direct();
187 	xdp.rxq = &rxq;
188 
189 	for (i = 0; i < n; i++) {
190 		struct xdp_frame *xdpf = frames[i];
191 		u32 act;
192 		int err;
193 
194 		rxq.dev = xdpf->dev_rx;
195 		rxq.mem = xdpf->mem;
196 		/* TODO: report queue_index to xdp_rxq_info */
197 
198 		xdp_convert_frame_to_buff(xdpf, &xdp);
199 
200 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
201 		switch (act) {
202 		case XDP_PASS:
203 			err = xdp_update_frame_from_buff(&xdp, xdpf);
204 			if (err < 0) {
205 				xdp_return_frame(xdpf);
206 				stats->drop++;
207 			} else {
208 				frames[nframes++] = xdpf;
209 				stats->pass++;
210 			}
211 			break;
212 		case XDP_REDIRECT:
213 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
214 					      rcpu->prog);
215 			if (unlikely(err)) {
216 				xdp_return_frame(xdpf);
217 				stats->drop++;
218 			} else {
219 				stats->redirect++;
220 			}
221 			break;
222 		default:
223 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
224 			fallthrough;
225 		case XDP_DROP:
226 			xdp_return_frame(xdpf);
227 			stats->drop++;
228 			break;
229 		}
230 	}
231 
232 	xdp_clear_return_frame_no_direct();
233 
234 	return nframes;
235 }
236 
237 #define CPUMAP_BATCH 8
238 
239 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
240 				int xdp_n, struct xdp_cpumap_stats *stats,
241 				struct list_head *list)
242 {
243 	int nframes;
244 
245 	if (!rcpu->prog)
246 		return xdp_n;
247 
248 	rcu_read_lock_bh();
249 
250 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
251 
252 	if (stats->redirect)
253 		xdp_do_flush();
254 
255 	if (unlikely(!list_empty(list)))
256 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
257 
258 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
259 
260 	return nframes;
261 }
262 
263 static int cpu_map_kthread_run(void *data)
264 {
265 	struct bpf_cpu_map_entry *rcpu = data;
266 	unsigned long last_qs = jiffies;
267 
268 	complete(&rcpu->kthread_running);
269 	set_current_state(TASK_INTERRUPTIBLE);
270 
271 	/* When kthread gives stop order, then rcpu have been disconnected
272 	 * from map, thus no new packets can enter. Remaining in-flight
273 	 * per CPU stored packets are flushed to this queue.  Wait honoring
274 	 * kthread_stop signal until queue is empty.
275 	 */
276 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
277 		struct xdp_cpumap_stats stats = {}; /* zero stats */
278 		unsigned int kmem_alloc_drops = 0, sched = 0;
279 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
280 		int i, n, m, nframes, xdp_n;
281 		void *frames[CPUMAP_BATCH];
282 		void *skbs[CPUMAP_BATCH];
283 		LIST_HEAD(list);
284 
285 		/* Release CPU reschedule checks */
286 		if (__ptr_ring_empty(rcpu->queue)) {
287 			set_current_state(TASK_INTERRUPTIBLE);
288 			/* Recheck to avoid lost wake-up */
289 			if (__ptr_ring_empty(rcpu->queue)) {
290 				schedule();
291 				sched = 1;
292 				last_qs = jiffies;
293 			} else {
294 				__set_current_state(TASK_RUNNING);
295 			}
296 		} else {
297 			rcu_softirq_qs_periodic(last_qs);
298 			sched = cond_resched();
299 		}
300 
301 		/*
302 		 * The bpf_cpu_map_entry is single consumer, with this
303 		 * kthread CPU pinned. Lockless access to ptr_ring
304 		 * consume side valid as no-resize allowed of queue.
305 		 */
306 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
307 					       CPUMAP_BATCH);
308 		for (i = 0, xdp_n = 0; i < n; i++) {
309 			void *f = frames[i];
310 			struct page *page;
311 
312 			if (unlikely(__ptr_test_bit(0, &f))) {
313 				struct sk_buff *skb = f;
314 
315 				__ptr_clear_bit(0, &skb);
316 				list_add_tail(&skb->list, &list);
317 				continue;
318 			}
319 
320 			frames[xdp_n++] = f;
321 			page = virt_to_page(f);
322 
323 			/* Bring struct page memory area to curr CPU. Read by
324 			 * build_skb_around via page_is_pfmemalloc(), and when
325 			 * freed written by page_frag_free call.
326 			 */
327 			prefetchw(page);
328 		}
329 
330 		/* Support running another XDP prog on this CPU */
331 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
332 		if (nframes) {
333 			m = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
334 						  gfp, nframes, skbs);
335 			if (unlikely(m == 0)) {
336 				for (i = 0; i < nframes; i++)
337 					skbs[i] = NULL; /* effect: xdp_return_frame */
338 				kmem_alloc_drops += nframes;
339 			}
340 		}
341 
342 		local_bh_disable();
343 		for (i = 0; i < nframes; i++) {
344 			struct xdp_frame *xdpf = frames[i];
345 			struct sk_buff *skb = skbs[i];
346 
347 			skb = __xdp_build_skb_from_frame(xdpf, skb,
348 							 xdpf->dev_rx);
349 			if (!skb) {
350 				xdp_return_frame(xdpf);
351 				continue;
352 			}
353 
354 			list_add_tail(&skb->list, &list);
355 		}
356 		netif_receive_skb_list(&list);
357 
358 		/* Feedback loop via tracepoint */
359 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
360 					 sched, &stats);
361 
362 		local_bh_enable(); /* resched point, may call do_softirq() */
363 	}
364 	__set_current_state(TASK_RUNNING);
365 
366 	return 0;
367 }
368 
369 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
370 				      struct bpf_map *map, int fd)
371 {
372 	struct bpf_prog *prog;
373 
374 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
375 	if (IS_ERR(prog))
376 		return PTR_ERR(prog);
377 
378 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
379 	    !bpf_prog_map_compatible(map, prog)) {
380 		bpf_prog_put(prog);
381 		return -EINVAL;
382 	}
383 
384 	rcpu->value.bpf_prog.id = prog->aux->id;
385 	rcpu->prog = prog;
386 
387 	return 0;
388 }
389 
390 static struct bpf_cpu_map_entry *
391 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
392 		      u32 cpu)
393 {
394 	int numa, err, i, fd = value->bpf_prog.fd;
395 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
396 	struct bpf_cpu_map_entry *rcpu;
397 	struct xdp_bulk_queue *bq;
398 
399 	/* Have map->numa_node, but choose node of redirect target CPU */
400 	numa = cpu_to_node(cpu);
401 
402 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
403 	if (!rcpu)
404 		return NULL;
405 
406 	/* Alloc percpu bulkq */
407 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
408 					   sizeof(void *), gfp);
409 	if (!rcpu->bulkq)
410 		goto free_rcu;
411 
412 	for_each_possible_cpu(i) {
413 		bq = per_cpu_ptr(rcpu->bulkq, i);
414 		bq->obj = rcpu;
415 	}
416 
417 	/* Alloc queue */
418 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
419 					   numa);
420 	if (!rcpu->queue)
421 		goto free_bulkq;
422 
423 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
424 	if (err)
425 		goto free_queue;
426 
427 	rcpu->cpu    = cpu;
428 	rcpu->map_id = map->id;
429 	rcpu->value.qsize  = value->qsize;
430 
431 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
432 		goto free_ptr_ring;
433 
434 	/* Setup kthread */
435 	init_completion(&rcpu->kthread_running);
436 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
437 					       "cpumap/%d/map:%d", cpu,
438 					       map->id);
439 	if (IS_ERR(rcpu->kthread))
440 		goto free_prog;
441 
442 	/* Make sure kthread runs on a single CPU */
443 	kthread_bind(rcpu->kthread, cpu);
444 	wake_up_process(rcpu->kthread);
445 
446 	/* Make sure kthread has been running, so kthread_stop() will not
447 	 * stop the kthread prematurely and all pending frames or skbs
448 	 * will be handled by the kthread before kthread_stop() returns.
449 	 */
450 	wait_for_completion(&rcpu->kthread_running);
451 
452 	return rcpu;
453 
454 free_prog:
455 	if (rcpu->prog)
456 		bpf_prog_put(rcpu->prog);
457 free_ptr_ring:
458 	ptr_ring_cleanup(rcpu->queue, NULL);
459 free_queue:
460 	kfree(rcpu->queue);
461 free_bulkq:
462 	free_percpu(rcpu->bulkq);
463 free_rcu:
464 	kfree(rcpu);
465 	return NULL;
466 }
467 
468 static void __cpu_map_entry_free(struct work_struct *work)
469 {
470 	struct bpf_cpu_map_entry *rcpu;
471 
472 	/* This cpu_map_entry have been disconnected from map and one
473 	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
474 	 * new packets and cannot change/set flush_needed that can
475 	 * find this entry.
476 	 */
477 	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
478 
479 	/* kthread_stop will wake_up_process and wait for it to complete.
480 	 * cpu_map_kthread_run() makes sure the pointer ring is empty
481 	 * before exiting.
482 	 */
483 	kthread_stop(rcpu->kthread);
484 
485 	if (rcpu->prog)
486 		bpf_prog_put(rcpu->prog);
487 	/* The queue should be empty at this point */
488 	__cpu_map_ring_cleanup(rcpu->queue);
489 	ptr_ring_cleanup(rcpu->queue, NULL);
490 	kfree(rcpu->queue);
491 	free_percpu(rcpu->bulkq);
492 	kfree(rcpu);
493 }
494 
495 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
496  * entry is no longer in use before freeing. We use queue_rcu_work() to call
497  * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
498  * period. This means that (a) all pending enqueue and flush operations have
499  * completed (because of the RCU callback), and (b) we are in a workqueue
500  * context where we can stop the kthread and wait for it to exit before freeing
501  * everything.
502  */
503 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
504 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
505 {
506 	struct bpf_cpu_map_entry *old_rcpu;
507 
508 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
509 	if (old_rcpu) {
510 		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
511 		queue_rcu_work(system_wq, &old_rcpu->free_work);
512 	}
513 }
514 
515 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
516 {
517 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
518 	u32 key_cpu = *(u32 *)key;
519 
520 	if (key_cpu >= map->max_entries)
521 		return -EINVAL;
522 
523 	/* notice caller map_delete_elem() uses rcu_read_lock() */
524 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
525 	return 0;
526 }
527 
528 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
529 				u64 map_flags)
530 {
531 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
532 	struct bpf_cpumap_val cpumap_value = {};
533 	struct bpf_cpu_map_entry *rcpu;
534 	/* Array index key correspond to CPU number */
535 	u32 key_cpu = *(u32 *)key;
536 
537 	memcpy(&cpumap_value, value, map->value_size);
538 
539 	if (unlikely(map_flags > BPF_EXIST))
540 		return -EINVAL;
541 	if (unlikely(key_cpu >= cmap->map.max_entries))
542 		return -E2BIG;
543 	if (unlikely(map_flags == BPF_NOEXIST))
544 		return -EEXIST;
545 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
546 		return -EOVERFLOW;
547 
548 	/* Make sure CPU is a valid possible cpu */
549 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
550 		return -ENODEV;
551 
552 	if (cpumap_value.qsize == 0) {
553 		rcpu = NULL; /* Same as deleting */
554 	} else {
555 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
556 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
557 		if (!rcpu)
558 			return -ENOMEM;
559 	}
560 	rcu_read_lock();
561 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
562 	rcu_read_unlock();
563 	return 0;
564 }
565 
566 static void cpu_map_free(struct bpf_map *map)
567 {
568 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569 	u32 i;
570 
571 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
572 	 * so the bpf programs (can be more than one that used this map) were
573 	 * disconnected from events. Wait for outstanding critical sections in
574 	 * these programs to complete. synchronize_rcu() below not only
575 	 * guarantees no further "XDP/bpf-side" reads against
576 	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
577 	 * (if any) are completed.
578 	 */
579 	synchronize_rcu();
580 
581 	/* The only possible user of bpf_cpu_map_entry is
582 	 * cpu_map_kthread_run().
583 	 */
584 	for (i = 0; i < cmap->map.max_entries; i++) {
585 		struct bpf_cpu_map_entry *rcpu;
586 
587 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
588 		if (!rcpu)
589 			continue;
590 
591 		/* Stop kthread and cleanup entry directly */
592 		__cpu_map_entry_free(&rcpu->free_work.work);
593 	}
594 	bpf_map_area_free(cmap->cpu_map);
595 	bpf_map_area_free(cmap);
596 }
597 
598 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
599  * by local_bh_disable() (from XDP calls inside NAPI). The
600  * rcu_read_lock_bh_held() below makes lockdep accept both.
601  */
602 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
603 {
604 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
605 	struct bpf_cpu_map_entry *rcpu;
606 
607 	if (key >= map->max_entries)
608 		return NULL;
609 
610 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
611 				     rcu_read_lock_bh_held());
612 	return rcpu;
613 }
614 
615 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
616 {
617 	struct bpf_cpu_map_entry *rcpu =
618 		__cpu_map_lookup_elem(map, *(u32 *)key);
619 
620 	return rcpu ? &rcpu->value : NULL;
621 }
622 
623 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
624 {
625 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
626 	u32 index = key ? *(u32 *)key : U32_MAX;
627 	u32 *next = next_key;
628 
629 	if (index >= cmap->map.max_entries) {
630 		*next = 0;
631 		return 0;
632 	}
633 
634 	if (index == cmap->map.max_entries - 1)
635 		return -ENOENT;
636 	*next = index + 1;
637 	return 0;
638 }
639 
640 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
641 {
642 	return __bpf_xdp_redirect_map(map, index, flags, 0,
643 				      __cpu_map_lookup_elem);
644 }
645 
646 static u64 cpu_map_mem_usage(const struct bpf_map *map)
647 {
648 	u64 usage = sizeof(struct bpf_cpu_map);
649 
650 	/* Currently the dynamically allocated elements are not counted */
651 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
652 	return usage;
653 }
654 
655 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
656 const struct bpf_map_ops cpu_map_ops = {
657 	.map_meta_equal		= bpf_map_meta_equal,
658 	.map_alloc		= cpu_map_alloc,
659 	.map_free		= cpu_map_free,
660 	.map_delete_elem	= cpu_map_delete_elem,
661 	.map_update_elem	= cpu_map_update_elem,
662 	.map_lookup_elem	= cpu_map_lookup_elem,
663 	.map_get_next_key	= cpu_map_get_next_key,
664 	.map_check_btf		= map_check_no_btf,
665 	.map_mem_usage		= cpu_map_mem_usage,
666 	.map_btf_id		= &cpu_map_btf_ids[0],
667 	.map_redirect		= cpu_map_redirect,
668 };
669 
670 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
671 {
672 	struct bpf_cpu_map_entry *rcpu = bq->obj;
673 	unsigned int processed = 0, drops = 0;
674 	const int to_cpu = rcpu->cpu;
675 	struct ptr_ring *q;
676 	int i;
677 
678 	if (unlikely(!bq->count))
679 		return;
680 
681 	q = rcpu->queue;
682 	spin_lock(&q->producer_lock);
683 
684 	for (i = 0; i < bq->count; i++) {
685 		struct xdp_frame *xdpf = bq->q[i];
686 		int err;
687 
688 		err = __ptr_ring_produce(q, xdpf);
689 		if (err) {
690 			drops++;
691 			xdp_return_frame_rx_napi(xdpf);
692 		}
693 		processed++;
694 	}
695 	bq->count = 0;
696 	spin_unlock(&q->producer_lock);
697 
698 	__list_del_clearprev(&bq->flush_node);
699 
700 	/* Feedback loop via tracepoints */
701 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
702 }
703 
704 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
705  * Thus, safe percpu variable access.
706  */
707 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
708 {
709 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
710 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
711 
712 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
713 		bq_flush_to_queue(bq);
714 
715 	/* Notice, xdp_buff/page MUST be queued here, long enough for
716 	 * driver to code invoking us to finished, due to driver
717 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
718 	 *
719 	 * Thus, incoming xdp_frame is always queued here (else we race
720 	 * with another CPU on page-refcnt and remaining driver code).
721 	 * Queue time is very short, as driver will invoke flush
722 	 * operation, when completing napi->poll call.
723 	 */
724 	bq->q[bq->count++] = xdpf;
725 
726 	if (!bq->flush_node.prev)
727 		list_add(&bq->flush_node, flush_list);
728 }
729 
730 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
731 		    struct net_device *dev_rx)
732 {
733 	/* Info needed when constructing SKB on remote CPU */
734 	xdpf->dev_rx = dev_rx;
735 
736 	bq_enqueue(rcpu, xdpf);
737 	return 0;
738 }
739 
740 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
741 			     struct sk_buff *skb)
742 {
743 	int ret;
744 
745 	__skb_pull(skb, skb->mac_len);
746 	skb_set_redirected(skb, false);
747 	__ptr_set_bit(0, &skb);
748 
749 	ret = ptr_ring_produce(rcpu->queue, skb);
750 	if (ret < 0)
751 		goto trace;
752 
753 	wake_up_process(rcpu->kthread);
754 trace:
755 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
756 	return ret;
757 }
758 
759 void __cpu_map_flush(void)
760 {
761 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
762 	struct xdp_bulk_queue *bq, *tmp;
763 
764 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
765 		bq_flush_to_queue(bq);
766 
767 		/* If already running, costs spin_lock_irqsave + smb_mb */
768 		wake_up_process(bq->obj->kthread);
769 	}
770 }
771 
772 #ifdef CONFIG_DEBUG_NET
773 bool cpu_map_check_flush(void)
774 {
775 	if (list_empty(this_cpu_ptr(&cpu_map_flush_list)))
776 		return false;
777 	__cpu_map_flush();
778 	return true;
779 }
780 #endif
781 
782 static int __init cpu_map_init(void)
783 {
784 	int cpu;
785 
786 	for_each_possible_cpu(cpu)
787 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
788 	return 0;
789 }
790 
791 subsys_initcall(cpu_map_init);
792