1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 u32 qsize; /* Queue size placeholder for map lookup */ 56 57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 58 struct xdp_bulk_queue __percpu *bulkq; 59 60 struct bpf_cpu_map *cmap; 61 62 /* Queue with potential multi-producers, and single-consumer kthread */ 63 struct ptr_ring *queue; 64 struct task_struct *kthread; 65 struct work_struct kthread_stop_wq; 66 67 atomic_t refcnt; /* Control when this struct can be free'ed */ 68 struct rcu_head rcu; 69 }; 70 71 struct bpf_cpu_map { 72 struct bpf_map map; 73 /* Below members specific for map type */ 74 struct bpf_cpu_map_entry **cpu_map; 75 struct list_head __percpu *flush_list; 76 }; 77 78 static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx); 79 80 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 81 { 82 struct bpf_cpu_map *cmap; 83 int err = -ENOMEM; 84 int ret, cpu; 85 u64 cost; 86 87 if (!capable(CAP_SYS_ADMIN)) 88 return ERR_PTR(-EPERM); 89 90 /* check sanity of attributes */ 91 if (attr->max_entries == 0 || attr->key_size != 4 || 92 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 93 return ERR_PTR(-EINVAL); 94 95 cmap = kzalloc(sizeof(*cmap), GFP_USER); 96 if (!cmap) 97 return ERR_PTR(-ENOMEM); 98 99 bpf_map_init_from_attr(&cmap->map, attr); 100 101 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 102 if (cmap->map.max_entries > NR_CPUS) { 103 err = -E2BIG; 104 goto free_cmap; 105 } 106 107 /* make sure page count doesn't overflow */ 108 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 109 cost += sizeof(struct list_head) * num_possible_cpus(); 110 111 /* Notice returns -EPERM on if map size is larger than memlock limit */ 112 ret = bpf_map_charge_init(&cmap->map.memory, cost); 113 if (ret) { 114 err = ret; 115 goto free_cmap; 116 } 117 118 cmap->flush_list = alloc_percpu(struct list_head); 119 if (!cmap->flush_list) 120 goto free_charge; 121 122 for_each_possible_cpu(cpu) 123 INIT_LIST_HEAD(per_cpu_ptr(cmap->flush_list, cpu)); 124 125 /* Alloc array for possible remote "destination" CPUs */ 126 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 127 sizeof(struct bpf_cpu_map_entry *), 128 cmap->map.numa_node); 129 if (!cmap->cpu_map) 130 goto free_percpu; 131 132 return &cmap->map; 133 free_percpu: 134 free_percpu(cmap->flush_list); 135 free_charge: 136 bpf_map_charge_finish(&cmap->map.memory); 137 free_cmap: 138 kfree(cmap); 139 return ERR_PTR(err); 140 } 141 142 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 143 { 144 atomic_inc(&rcpu->refcnt); 145 } 146 147 /* called from workqueue, to workaround syscall using preempt_disable */ 148 static void cpu_map_kthread_stop(struct work_struct *work) 149 { 150 struct bpf_cpu_map_entry *rcpu; 151 152 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 153 154 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 155 * as it waits until all in-flight call_rcu() callbacks complete. 156 */ 157 rcu_barrier(); 158 159 /* kthread_stop will wake_up_process and wait for it to complete */ 160 kthread_stop(rcpu->kthread); 161 } 162 163 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 164 struct xdp_frame *xdpf, 165 struct sk_buff *skb) 166 { 167 unsigned int hard_start_headroom; 168 unsigned int frame_size; 169 void *pkt_data_start; 170 171 /* Part of headroom was reserved to xdpf */ 172 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 173 174 /* build_skb need to place skb_shared_info after SKB end, and 175 * also want to know the memory "truesize". Thus, need to 176 * know the memory frame size backing xdp_buff. 177 * 178 * XDP was designed to have PAGE_SIZE frames, but this 179 * assumption is not longer true with ixgbe and i40e. It 180 * would be preferred to set frame_size to 2048 or 4096 181 * depending on the driver. 182 * frame_size = 2048; 183 * frame_len = frame_size - sizeof(*xdp_frame); 184 * 185 * Instead, with info avail, skb_shared_info in placed after 186 * packet len. This, unfortunately fakes the truesize. 187 * Another disadvantage of this approach, the skb_shared_info 188 * is not at a fixed memory location, with mixed length 189 * packets, which is bad for cache-line hotness. 190 */ 191 frame_size = SKB_DATA_ALIGN(xdpf->len + hard_start_headroom) + 192 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 193 194 pkt_data_start = xdpf->data - hard_start_headroom; 195 skb = build_skb_around(skb, pkt_data_start, frame_size); 196 if (unlikely(!skb)) 197 return NULL; 198 199 skb_reserve(skb, hard_start_headroom); 200 __skb_put(skb, xdpf->len); 201 if (xdpf->metasize) 202 skb_metadata_set(skb, xdpf->metasize); 203 204 /* Essential SKB info: protocol and skb->dev */ 205 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 206 207 /* Optional SKB info, currently missing: 208 * - HW checksum info (skb->ip_summed) 209 * - HW RX hash (skb_set_hash) 210 * - RX ring dev queue index (skb_record_rx_queue) 211 */ 212 213 /* Until page_pool get SKB return path, release DMA here */ 214 xdp_release_frame(xdpf); 215 216 /* Allow SKB to reuse area used by xdp_frame */ 217 xdp_scrub_frame(xdpf); 218 219 return skb; 220 } 221 222 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 223 { 224 /* The tear-down procedure should have made sure that queue is 225 * empty. See __cpu_map_entry_replace() and work-queue 226 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 227 * gracefully and warn once. 228 */ 229 struct xdp_frame *xdpf; 230 231 while ((xdpf = ptr_ring_consume(ring))) 232 if (WARN_ON_ONCE(xdpf)) 233 xdp_return_frame(xdpf); 234 } 235 236 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 237 { 238 if (atomic_dec_and_test(&rcpu->refcnt)) { 239 /* The queue should be empty at this point */ 240 __cpu_map_ring_cleanup(rcpu->queue); 241 ptr_ring_cleanup(rcpu->queue, NULL); 242 kfree(rcpu->queue); 243 kfree(rcpu); 244 } 245 } 246 247 #define CPUMAP_BATCH 8 248 249 static int cpu_map_kthread_run(void *data) 250 { 251 struct bpf_cpu_map_entry *rcpu = data; 252 253 set_current_state(TASK_INTERRUPTIBLE); 254 255 /* When kthread gives stop order, then rcpu have been disconnected 256 * from map, thus no new packets can enter. Remaining in-flight 257 * per CPU stored packets are flushed to this queue. Wait honoring 258 * kthread_stop signal until queue is empty. 259 */ 260 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 261 unsigned int drops = 0, sched = 0; 262 void *frames[CPUMAP_BATCH]; 263 void *skbs[CPUMAP_BATCH]; 264 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 265 int i, n, m; 266 267 /* Release CPU reschedule checks */ 268 if (__ptr_ring_empty(rcpu->queue)) { 269 set_current_state(TASK_INTERRUPTIBLE); 270 /* Recheck to avoid lost wake-up */ 271 if (__ptr_ring_empty(rcpu->queue)) { 272 schedule(); 273 sched = 1; 274 } else { 275 __set_current_state(TASK_RUNNING); 276 } 277 } else { 278 sched = cond_resched(); 279 } 280 281 /* 282 * The bpf_cpu_map_entry is single consumer, with this 283 * kthread CPU pinned. Lockless access to ptr_ring 284 * consume side valid as no-resize allowed of queue. 285 */ 286 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH); 287 288 for (i = 0; i < n; i++) { 289 void *f = frames[i]; 290 struct page *page = virt_to_page(f); 291 292 /* Bring struct page memory area to curr CPU. Read by 293 * build_skb_around via page_is_pfmemalloc(), and when 294 * freed written by page_frag_free call. 295 */ 296 prefetchw(page); 297 } 298 299 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs); 300 if (unlikely(m == 0)) { 301 for (i = 0; i < n; i++) 302 skbs[i] = NULL; /* effect: xdp_return_frame */ 303 drops = n; 304 } 305 306 local_bh_disable(); 307 for (i = 0; i < n; i++) { 308 struct xdp_frame *xdpf = frames[i]; 309 struct sk_buff *skb = skbs[i]; 310 int ret; 311 312 skb = cpu_map_build_skb(rcpu, xdpf, skb); 313 if (!skb) { 314 xdp_return_frame(xdpf); 315 continue; 316 } 317 318 /* Inject into network stack */ 319 ret = netif_receive_skb_core(skb); 320 if (ret == NET_RX_DROP) 321 drops++; 322 } 323 /* Feedback loop via tracepoint */ 324 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched); 325 326 local_bh_enable(); /* resched point, may call do_softirq() */ 327 } 328 __set_current_state(TASK_RUNNING); 329 330 put_cpu_map_entry(rcpu); 331 return 0; 332 } 333 334 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 335 int map_id) 336 { 337 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 338 struct bpf_cpu_map_entry *rcpu; 339 struct xdp_bulk_queue *bq; 340 int numa, err, i; 341 342 /* Have map->numa_node, but choose node of redirect target CPU */ 343 numa = cpu_to_node(cpu); 344 345 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 346 if (!rcpu) 347 return NULL; 348 349 /* Alloc percpu bulkq */ 350 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 351 sizeof(void *), gfp); 352 if (!rcpu->bulkq) 353 goto free_rcu; 354 355 for_each_possible_cpu(i) { 356 bq = per_cpu_ptr(rcpu->bulkq, i); 357 bq->obj = rcpu; 358 } 359 360 /* Alloc queue */ 361 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 362 if (!rcpu->queue) 363 goto free_bulkq; 364 365 err = ptr_ring_init(rcpu->queue, qsize, gfp); 366 if (err) 367 goto free_queue; 368 369 rcpu->cpu = cpu; 370 rcpu->map_id = map_id; 371 rcpu->qsize = qsize; 372 373 /* Setup kthread */ 374 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 375 "cpumap/%d/map:%d", cpu, map_id); 376 if (IS_ERR(rcpu->kthread)) 377 goto free_ptr_ring; 378 379 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 380 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 381 382 /* Make sure kthread runs on a single CPU */ 383 kthread_bind(rcpu->kthread, cpu); 384 wake_up_process(rcpu->kthread); 385 386 return rcpu; 387 388 free_ptr_ring: 389 ptr_ring_cleanup(rcpu->queue, NULL); 390 free_queue: 391 kfree(rcpu->queue); 392 free_bulkq: 393 free_percpu(rcpu->bulkq); 394 free_rcu: 395 kfree(rcpu); 396 return NULL; 397 } 398 399 static void __cpu_map_entry_free(struct rcu_head *rcu) 400 { 401 struct bpf_cpu_map_entry *rcpu; 402 int cpu; 403 404 /* This cpu_map_entry have been disconnected from map and one 405 * RCU graze-period have elapsed. Thus, XDP cannot queue any 406 * new packets and cannot change/set flush_needed that can 407 * find this entry. 408 */ 409 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 410 411 /* Flush remaining packets in percpu bulkq */ 412 for_each_online_cpu(cpu) { 413 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu); 414 415 /* No concurrent bq_enqueue can run at this point */ 416 bq_flush_to_queue(bq, false); 417 } 418 free_percpu(rcpu->bulkq); 419 /* Cannot kthread_stop() here, last put free rcpu resources */ 420 put_cpu_map_entry(rcpu); 421 } 422 423 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 424 * ensure any driver rcu critical sections have completed, but this 425 * does not guarantee a flush has happened yet. Because driver side 426 * rcu_read_lock/unlock only protects the running XDP program. The 427 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 428 * pending flush op doesn't fail. 429 * 430 * The bpf_cpu_map_entry is still used by the kthread, and there can 431 * still be pending packets (in queue and percpu bulkq). A refcnt 432 * makes sure to last user (kthread_stop vs. call_rcu) free memory 433 * resources. 434 * 435 * The rcu callback __cpu_map_entry_free flush remaining packets in 436 * percpu bulkq to queue. Due to caller map_delete_elem() disable 437 * preemption, cannot call kthread_stop() to make sure queue is empty. 438 * Instead a work_queue is started for stopping kthread, 439 * cpu_map_kthread_stop, which waits for an RCU graze period before 440 * stopping kthread, emptying the queue. 441 */ 442 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 443 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 444 { 445 struct bpf_cpu_map_entry *old_rcpu; 446 447 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 448 if (old_rcpu) { 449 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 450 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 451 schedule_work(&old_rcpu->kthread_stop_wq); 452 } 453 } 454 455 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 456 { 457 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 458 u32 key_cpu = *(u32 *)key; 459 460 if (key_cpu >= map->max_entries) 461 return -EINVAL; 462 463 /* notice caller map_delete_elem() use preempt_disable() */ 464 __cpu_map_entry_replace(cmap, key_cpu, NULL); 465 return 0; 466 } 467 468 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 469 u64 map_flags) 470 { 471 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 472 struct bpf_cpu_map_entry *rcpu; 473 474 /* Array index key correspond to CPU number */ 475 u32 key_cpu = *(u32 *)key; 476 /* Value is the queue size */ 477 u32 qsize = *(u32 *)value; 478 479 if (unlikely(map_flags > BPF_EXIST)) 480 return -EINVAL; 481 if (unlikely(key_cpu >= cmap->map.max_entries)) 482 return -E2BIG; 483 if (unlikely(map_flags == BPF_NOEXIST)) 484 return -EEXIST; 485 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 486 return -EOVERFLOW; 487 488 /* Make sure CPU is a valid possible cpu */ 489 if (!cpu_possible(key_cpu)) 490 return -ENODEV; 491 492 if (qsize == 0) { 493 rcpu = NULL; /* Same as deleting */ 494 } else { 495 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 496 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 497 if (!rcpu) 498 return -ENOMEM; 499 rcpu->cmap = cmap; 500 } 501 rcu_read_lock(); 502 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 503 rcu_read_unlock(); 504 return 0; 505 } 506 507 static void cpu_map_free(struct bpf_map *map) 508 { 509 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 510 int cpu; 511 u32 i; 512 513 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 514 * so the bpf programs (can be more than one that used this map) were 515 * disconnected from events. Wait for outstanding critical sections in 516 * these programs to complete. The rcu critical section only guarantees 517 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 518 * It does __not__ ensure pending flush operations (if any) are 519 * complete. 520 */ 521 522 bpf_clear_redirect_map(map); 523 synchronize_rcu(); 524 525 /* To ensure all pending flush operations have completed wait for flush 526 * list be empty on _all_ cpus. Because the above synchronize_rcu() 527 * ensures the map is disconnected from the program we can assume no new 528 * items will be added to the list. 529 */ 530 for_each_online_cpu(cpu) { 531 struct list_head *flush_list = per_cpu_ptr(cmap->flush_list, cpu); 532 533 while (!list_empty(flush_list)) 534 cond_resched(); 535 } 536 537 /* For cpu_map the remote CPUs can still be using the entries 538 * (struct bpf_cpu_map_entry). 539 */ 540 for (i = 0; i < cmap->map.max_entries; i++) { 541 struct bpf_cpu_map_entry *rcpu; 542 543 rcpu = READ_ONCE(cmap->cpu_map[i]); 544 if (!rcpu) 545 continue; 546 547 /* bq flush and cleanup happens after RCU graze-period */ 548 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 549 } 550 free_percpu(cmap->flush_list); 551 bpf_map_area_free(cmap->cpu_map); 552 kfree(cmap); 553 } 554 555 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 556 { 557 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 558 struct bpf_cpu_map_entry *rcpu; 559 560 if (key >= map->max_entries) 561 return NULL; 562 563 rcpu = READ_ONCE(cmap->cpu_map[key]); 564 return rcpu; 565 } 566 567 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 568 { 569 struct bpf_cpu_map_entry *rcpu = 570 __cpu_map_lookup_elem(map, *(u32 *)key); 571 572 return rcpu ? &rcpu->qsize : NULL; 573 } 574 575 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 576 { 577 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 578 u32 index = key ? *(u32 *)key : U32_MAX; 579 u32 *next = next_key; 580 581 if (index >= cmap->map.max_entries) { 582 *next = 0; 583 return 0; 584 } 585 586 if (index == cmap->map.max_entries - 1) 587 return -ENOENT; 588 *next = index + 1; 589 return 0; 590 } 591 592 const struct bpf_map_ops cpu_map_ops = { 593 .map_alloc = cpu_map_alloc, 594 .map_free = cpu_map_free, 595 .map_delete_elem = cpu_map_delete_elem, 596 .map_update_elem = cpu_map_update_elem, 597 .map_lookup_elem = cpu_map_lookup_elem, 598 .map_get_next_key = cpu_map_get_next_key, 599 .map_check_btf = map_check_no_btf, 600 }; 601 602 static int bq_flush_to_queue(struct xdp_bulk_queue *bq, bool in_napi_ctx) 603 { 604 struct bpf_cpu_map_entry *rcpu = bq->obj; 605 unsigned int processed = 0, drops = 0; 606 const int to_cpu = rcpu->cpu; 607 struct ptr_ring *q; 608 int i; 609 610 if (unlikely(!bq->count)) 611 return 0; 612 613 q = rcpu->queue; 614 spin_lock(&q->producer_lock); 615 616 for (i = 0; i < bq->count; i++) { 617 struct xdp_frame *xdpf = bq->q[i]; 618 int err; 619 620 err = __ptr_ring_produce(q, xdpf); 621 if (err) { 622 drops++; 623 if (likely(in_napi_ctx)) 624 xdp_return_frame_rx_napi(xdpf); 625 else 626 xdp_return_frame(xdpf); 627 } 628 processed++; 629 } 630 bq->count = 0; 631 spin_unlock(&q->producer_lock); 632 633 __list_del_clearprev(&bq->flush_node); 634 635 /* Feedback loop via tracepoints */ 636 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 637 return 0; 638 } 639 640 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 641 * Thus, safe percpu variable access. 642 */ 643 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 644 { 645 struct list_head *flush_list = this_cpu_ptr(rcpu->cmap->flush_list); 646 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 647 648 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 649 bq_flush_to_queue(bq, true); 650 651 /* Notice, xdp_buff/page MUST be queued here, long enough for 652 * driver to code invoking us to finished, due to driver 653 * (e.g. ixgbe) recycle tricks based on page-refcnt. 654 * 655 * Thus, incoming xdp_frame is always queued here (else we race 656 * with another CPU on page-refcnt and remaining driver code). 657 * Queue time is very short, as driver will invoke flush 658 * operation, when completing napi->poll call. 659 */ 660 bq->q[bq->count++] = xdpf; 661 662 if (!bq->flush_node.prev) 663 list_add(&bq->flush_node, flush_list); 664 665 return 0; 666 } 667 668 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 669 struct net_device *dev_rx) 670 { 671 struct xdp_frame *xdpf; 672 673 xdpf = convert_to_xdp_frame(xdp); 674 if (unlikely(!xdpf)) 675 return -EOVERFLOW; 676 677 /* Info needed when constructing SKB on remote CPU */ 678 xdpf->dev_rx = dev_rx; 679 680 bq_enqueue(rcpu, xdpf); 681 return 0; 682 } 683 684 void __cpu_map_flush(struct bpf_map *map) 685 { 686 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 687 struct list_head *flush_list = this_cpu_ptr(cmap->flush_list); 688 struct xdp_bulk_queue *bq, *tmp; 689 690 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 691 bq_flush_to_queue(bq, true); 692 693 /* If already running, costs spin_lock_irqsave + smb_mb */ 694 wake_up_process(bq->obj->kthread); 695 } 696 } 697