xref: /linux/kernel/bpf/core.c (revision eb63cfcd2ee8ec3805f6881f43341f589c3d2278)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define AX	regs[BPF_REG_AX]
58 #define ARG1	regs[BPF_REG_ARG1]
59 #define CTX	regs[BPF_REG_CTX]
60 #define IMM	insn->imm
61 
62 /* No hurry in this branch
63  *
64  * Exported for the bpf jit load helper.
65  */
66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 	u8 *ptr = NULL;
69 
70 	if (k >= SKF_NET_OFF)
71 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 	else if (k >= SKF_LL_OFF)
73 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 
75 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 		return ptr;
77 
78 	return NULL;
79 }
80 
81 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
82 {
83 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
84 	struct bpf_prog_aux *aux;
85 	struct bpf_prog *fp;
86 
87 	size = round_up(size, PAGE_SIZE);
88 	fp = __vmalloc(size, gfp_flags);
89 	if (fp == NULL)
90 		return NULL;
91 
92 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
93 	if (aux == NULL) {
94 		vfree(fp);
95 		return NULL;
96 	}
97 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
98 	if (!fp->active) {
99 		vfree(fp);
100 		kfree(aux);
101 		return NULL;
102 	}
103 
104 	fp->pages = size / PAGE_SIZE;
105 	fp->aux = aux;
106 	fp->aux->prog = fp;
107 	fp->jit_requested = ebpf_jit_enabled();
108 
109 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
110 	mutex_init(&fp->aux->used_maps_mutex);
111 	mutex_init(&fp->aux->dst_mutex);
112 
113 	return fp;
114 }
115 
116 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
117 {
118 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
119 	struct bpf_prog *prog;
120 	int cpu;
121 
122 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
123 	if (!prog)
124 		return NULL;
125 
126 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
127 	if (!prog->stats) {
128 		free_percpu(prog->active);
129 		kfree(prog->aux);
130 		vfree(prog);
131 		return NULL;
132 	}
133 
134 	for_each_possible_cpu(cpu) {
135 		struct bpf_prog_stats *pstats;
136 
137 		pstats = per_cpu_ptr(prog->stats, cpu);
138 		u64_stats_init(&pstats->syncp);
139 	}
140 	return prog;
141 }
142 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
143 
144 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
145 {
146 	if (!prog->aux->nr_linfo || !prog->jit_requested)
147 		return 0;
148 
149 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
150 					  sizeof(*prog->aux->jited_linfo),
151 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
152 	if (!prog->aux->jited_linfo)
153 		return -ENOMEM;
154 
155 	return 0;
156 }
157 
158 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
159 {
160 	if (prog->aux->jited_linfo &&
161 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
162 		kvfree(prog->aux->jited_linfo);
163 		prog->aux->jited_linfo = NULL;
164 	}
165 
166 	kfree(prog->aux->kfunc_tab);
167 	prog->aux->kfunc_tab = NULL;
168 }
169 
170 /* The jit engine is responsible to provide an array
171  * for insn_off to the jited_off mapping (insn_to_jit_off).
172  *
173  * The idx to this array is the insn_off.  Hence, the insn_off
174  * here is relative to the prog itself instead of the main prog.
175  * This array has one entry for each xlated bpf insn.
176  *
177  * jited_off is the byte off to the last byte of the jited insn.
178  *
179  * Hence, with
180  * insn_start:
181  *      The first bpf insn off of the prog.  The insn off
182  *      here is relative to the main prog.
183  *      e.g. if prog is a subprog, insn_start > 0
184  * linfo_idx:
185  *      The prog's idx to prog->aux->linfo and jited_linfo
186  *
187  * jited_linfo[linfo_idx] = prog->bpf_func
188  *
189  * For i > linfo_idx,
190  *
191  * jited_linfo[i] = prog->bpf_func +
192  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
193  */
194 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
195 			       const u32 *insn_to_jit_off)
196 {
197 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
198 	const struct bpf_line_info *linfo;
199 	void **jited_linfo;
200 
201 	if (!prog->aux->jited_linfo)
202 		/* Userspace did not provide linfo */
203 		return;
204 
205 	linfo_idx = prog->aux->linfo_idx;
206 	linfo = &prog->aux->linfo[linfo_idx];
207 	insn_start = linfo[0].insn_off;
208 	insn_end = insn_start + prog->len;
209 
210 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
211 	jited_linfo[0] = prog->bpf_func;
212 
213 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
214 
215 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
216 		/* The verifier ensures that linfo[i].insn_off is
217 		 * strictly increasing
218 		 */
219 		jited_linfo[i] = prog->bpf_func +
220 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
221 }
222 
223 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
224 				  gfp_t gfp_extra_flags)
225 {
226 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
227 	struct bpf_prog *fp;
228 	u32 pages;
229 
230 	size = round_up(size, PAGE_SIZE);
231 	pages = size / PAGE_SIZE;
232 	if (pages <= fp_old->pages)
233 		return fp_old;
234 
235 	fp = __vmalloc(size, gfp_flags);
236 	if (fp) {
237 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
238 		fp->pages = pages;
239 		fp->aux->prog = fp;
240 
241 		/* We keep fp->aux from fp_old around in the new
242 		 * reallocated structure.
243 		 */
244 		fp_old->aux = NULL;
245 		fp_old->stats = NULL;
246 		fp_old->active = NULL;
247 		__bpf_prog_free(fp_old);
248 	}
249 
250 	return fp;
251 }
252 
253 void __bpf_prog_free(struct bpf_prog *fp)
254 {
255 	if (fp->aux) {
256 		mutex_destroy(&fp->aux->used_maps_mutex);
257 		mutex_destroy(&fp->aux->dst_mutex);
258 		kfree(fp->aux->poke_tab);
259 		kfree(fp->aux);
260 	}
261 	free_percpu(fp->stats);
262 	free_percpu(fp->active);
263 	vfree(fp);
264 }
265 
266 int bpf_prog_calc_tag(struct bpf_prog *fp)
267 {
268 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
269 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
270 	u32 digest[SHA1_DIGEST_WORDS];
271 	u32 ws[SHA1_WORKSPACE_WORDS];
272 	u32 i, bsize, psize, blocks;
273 	struct bpf_insn *dst;
274 	bool was_ld_map;
275 	u8 *raw, *todo;
276 	__be32 *result;
277 	__be64 *bits;
278 
279 	raw = vmalloc(raw_size);
280 	if (!raw)
281 		return -ENOMEM;
282 
283 	sha1_init(digest);
284 	memset(ws, 0, sizeof(ws));
285 
286 	/* We need to take out the map fd for the digest calculation
287 	 * since they are unstable from user space side.
288 	 */
289 	dst = (void *)raw;
290 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
291 		dst[i] = fp->insnsi[i];
292 		if (!was_ld_map &&
293 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
294 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
295 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
296 			was_ld_map = true;
297 			dst[i].imm = 0;
298 		} else if (was_ld_map &&
299 			   dst[i].code == 0 &&
300 			   dst[i].dst_reg == 0 &&
301 			   dst[i].src_reg == 0 &&
302 			   dst[i].off == 0) {
303 			was_ld_map = false;
304 			dst[i].imm = 0;
305 		} else {
306 			was_ld_map = false;
307 		}
308 	}
309 
310 	psize = bpf_prog_insn_size(fp);
311 	memset(&raw[psize], 0, raw_size - psize);
312 	raw[psize++] = 0x80;
313 
314 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
315 	blocks = bsize / SHA1_BLOCK_SIZE;
316 	todo   = raw;
317 	if (bsize - psize >= sizeof(__be64)) {
318 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
319 	} else {
320 		bits = (__be64 *)(todo + bsize + bits_offset);
321 		blocks++;
322 	}
323 	*bits = cpu_to_be64((psize - 1) << 3);
324 
325 	while (blocks--) {
326 		sha1_transform(digest, todo, ws);
327 		todo += SHA1_BLOCK_SIZE;
328 	}
329 
330 	result = (__force __be32 *)digest;
331 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
332 		result[i] = cpu_to_be32(digest[i]);
333 	memcpy(fp->tag, result, sizeof(fp->tag));
334 
335 	vfree(raw);
336 	return 0;
337 }
338 
339 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
340 				s32 end_new, s32 curr, const bool probe_pass)
341 {
342 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
343 	s32 delta = end_new - end_old;
344 	s64 imm = insn->imm;
345 
346 	if (curr < pos && curr + imm + 1 >= end_old)
347 		imm += delta;
348 	else if (curr >= end_new && curr + imm + 1 < end_new)
349 		imm -= delta;
350 	if (imm < imm_min || imm > imm_max)
351 		return -ERANGE;
352 	if (!probe_pass)
353 		insn->imm = imm;
354 	return 0;
355 }
356 
357 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
358 				s32 end_new, s32 curr, const bool probe_pass)
359 {
360 	const s32 off_min = S16_MIN, off_max = S16_MAX;
361 	s32 delta = end_new - end_old;
362 	s32 off = insn->off;
363 
364 	if (curr < pos && curr + off + 1 >= end_old)
365 		off += delta;
366 	else if (curr >= end_new && curr + off + 1 < end_new)
367 		off -= delta;
368 	if (off < off_min || off > off_max)
369 		return -ERANGE;
370 	if (!probe_pass)
371 		insn->off = off;
372 	return 0;
373 }
374 
375 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
376 			    s32 end_new, const bool probe_pass)
377 {
378 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
379 	struct bpf_insn *insn = prog->insnsi;
380 	int ret = 0;
381 
382 	for (i = 0; i < insn_cnt; i++, insn++) {
383 		u8 code;
384 
385 		/* In the probing pass we still operate on the original,
386 		 * unpatched image in order to check overflows before we
387 		 * do any other adjustments. Therefore skip the patchlet.
388 		 */
389 		if (probe_pass && i == pos) {
390 			i = end_new;
391 			insn = prog->insnsi + end_old;
392 		}
393 		code = insn->code;
394 		if ((BPF_CLASS(code) != BPF_JMP &&
395 		     BPF_CLASS(code) != BPF_JMP32) ||
396 		    BPF_OP(code) == BPF_EXIT)
397 			continue;
398 		/* Adjust offset of jmps if we cross patch boundaries. */
399 		if (BPF_OP(code) == BPF_CALL) {
400 			if (insn->src_reg != BPF_PSEUDO_CALL)
401 				continue;
402 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
403 						   end_new, i, probe_pass);
404 		} else {
405 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
406 						   end_new, i, probe_pass);
407 		}
408 		if (ret)
409 			break;
410 	}
411 
412 	return ret;
413 }
414 
415 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
416 {
417 	struct bpf_line_info *linfo;
418 	u32 i, nr_linfo;
419 
420 	nr_linfo = prog->aux->nr_linfo;
421 	if (!nr_linfo || !delta)
422 		return;
423 
424 	linfo = prog->aux->linfo;
425 
426 	for (i = 0; i < nr_linfo; i++)
427 		if (off < linfo[i].insn_off)
428 			break;
429 
430 	/* Push all off < linfo[i].insn_off by delta */
431 	for (; i < nr_linfo; i++)
432 		linfo[i].insn_off += delta;
433 }
434 
435 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
436 				       const struct bpf_insn *patch, u32 len)
437 {
438 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
439 	const u32 cnt_max = S16_MAX;
440 	struct bpf_prog *prog_adj;
441 	int err;
442 
443 	/* Since our patchlet doesn't expand the image, we're done. */
444 	if (insn_delta == 0) {
445 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
446 		return prog;
447 	}
448 
449 	insn_adj_cnt = prog->len + insn_delta;
450 
451 	/* Reject anything that would potentially let the insn->off
452 	 * target overflow when we have excessive program expansions.
453 	 * We need to probe here before we do any reallocation where
454 	 * we afterwards may not fail anymore.
455 	 */
456 	if (insn_adj_cnt > cnt_max &&
457 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
458 		return ERR_PTR(err);
459 
460 	/* Several new instructions need to be inserted. Make room
461 	 * for them. Likely, there's no need for a new allocation as
462 	 * last page could have large enough tailroom.
463 	 */
464 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
465 				    GFP_USER);
466 	if (!prog_adj)
467 		return ERR_PTR(-ENOMEM);
468 
469 	prog_adj->len = insn_adj_cnt;
470 
471 	/* Patching happens in 3 steps:
472 	 *
473 	 * 1) Move over tail of insnsi from next instruction onwards,
474 	 *    so we can patch the single target insn with one or more
475 	 *    new ones (patching is always from 1 to n insns, n > 0).
476 	 * 2) Inject new instructions at the target location.
477 	 * 3) Adjust branch offsets if necessary.
478 	 */
479 	insn_rest = insn_adj_cnt - off - len;
480 
481 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
482 		sizeof(*patch) * insn_rest);
483 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
484 
485 	/* We are guaranteed to not fail at this point, otherwise
486 	 * the ship has sailed to reverse to the original state. An
487 	 * overflow cannot happen at this point.
488 	 */
489 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
490 
491 	bpf_adj_linfo(prog_adj, off, insn_delta);
492 
493 	return prog_adj;
494 }
495 
496 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
497 {
498 	/* Branch offsets can't overflow when program is shrinking, no need
499 	 * to call bpf_adj_branches(..., true) here
500 	 */
501 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
502 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
503 	prog->len -= cnt;
504 
505 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
506 }
507 
508 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
509 {
510 	int i;
511 
512 	for (i = 0; i < fp->aux->func_cnt; i++)
513 		bpf_prog_kallsyms_del(fp->aux->func[i]);
514 }
515 
516 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
517 {
518 	bpf_prog_kallsyms_del_subprogs(fp);
519 	bpf_prog_kallsyms_del(fp);
520 }
521 
522 #ifdef CONFIG_BPF_JIT
523 /* All BPF JIT sysctl knobs here. */
524 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
525 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
526 int bpf_jit_harden   __read_mostly;
527 long bpf_jit_limit   __read_mostly;
528 
529 static void
530 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
531 {
532 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
533 	unsigned long addr = (unsigned long)hdr;
534 
535 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
536 
537 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
538 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
539 }
540 
541 static void
542 bpf_prog_ksym_set_name(struct bpf_prog *prog)
543 {
544 	char *sym = prog->aux->ksym.name;
545 	const char *end = sym + KSYM_NAME_LEN;
546 	const struct btf_type *type;
547 	const char *func_name;
548 
549 	BUILD_BUG_ON(sizeof("bpf_prog_") +
550 		     sizeof(prog->tag) * 2 +
551 		     /* name has been null terminated.
552 		      * We should need +1 for the '_' preceding
553 		      * the name.  However, the null character
554 		      * is double counted between the name and the
555 		      * sizeof("bpf_prog_") above, so we omit
556 		      * the +1 here.
557 		      */
558 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
559 
560 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
561 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
562 
563 	/* prog->aux->name will be ignored if full btf name is available */
564 	if (prog->aux->func_info_cnt) {
565 		type = btf_type_by_id(prog->aux->btf,
566 				      prog->aux->func_info[prog->aux->func_idx].type_id);
567 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
568 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
569 		return;
570 	}
571 
572 	if (prog->aux->name[0])
573 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
574 	else
575 		*sym = 0;
576 }
577 
578 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
579 {
580 	return container_of(n, struct bpf_ksym, tnode)->start;
581 }
582 
583 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
584 					  struct latch_tree_node *b)
585 {
586 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
587 }
588 
589 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
590 {
591 	unsigned long val = (unsigned long)key;
592 	const struct bpf_ksym *ksym;
593 
594 	ksym = container_of(n, struct bpf_ksym, tnode);
595 
596 	if (val < ksym->start)
597 		return -1;
598 	if (val >= ksym->end)
599 		return  1;
600 
601 	return 0;
602 }
603 
604 static const struct latch_tree_ops bpf_tree_ops = {
605 	.less	= bpf_tree_less,
606 	.comp	= bpf_tree_comp,
607 };
608 
609 static DEFINE_SPINLOCK(bpf_lock);
610 static LIST_HEAD(bpf_kallsyms);
611 static struct latch_tree_root bpf_tree __cacheline_aligned;
612 
613 void bpf_ksym_add(struct bpf_ksym *ksym)
614 {
615 	spin_lock_bh(&bpf_lock);
616 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
617 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
618 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
619 	spin_unlock_bh(&bpf_lock);
620 }
621 
622 static void __bpf_ksym_del(struct bpf_ksym *ksym)
623 {
624 	if (list_empty(&ksym->lnode))
625 		return;
626 
627 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
628 	list_del_rcu(&ksym->lnode);
629 }
630 
631 void bpf_ksym_del(struct bpf_ksym *ksym)
632 {
633 	spin_lock_bh(&bpf_lock);
634 	__bpf_ksym_del(ksym);
635 	spin_unlock_bh(&bpf_lock);
636 }
637 
638 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
639 {
640 	return fp->jited && !bpf_prog_was_classic(fp);
641 }
642 
643 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
644 {
645 	return list_empty(&fp->aux->ksym.lnode) ||
646 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
647 }
648 
649 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
650 {
651 	if (!bpf_prog_kallsyms_candidate(fp) ||
652 	    !bpf_capable())
653 		return;
654 
655 	bpf_prog_ksym_set_addr(fp);
656 	bpf_prog_ksym_set_name(fp);
657 	fp->aux->ksym.prog = true;
658 
659 	bpf_ksym_add(&fp->aux->ksym);
660 }
661 
662 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
663 {
664 	if (!bpf_prog_kallsyms_candidate(fp))
665 		return;
666 
667 	bpf_ksym_del(&fp->aux->ksym);
668 }
669 
670 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
671 {
672 	struct latch_tree_node *n;
673 
674 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
675 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
676 }
677 
678 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
679 				 unsigned long *off, char *sym)
680 {
681 	struct bpf_ksym *ksym;
682 	char *ret = NULL;
683 
684 	rcu_read_lock();
685 	ksym = bpf_ksym_find(addr);
686 	if (ksym) {
687 		unsigned long symbol_start = ksym->start;
688 		unsigned long symbol_end = ksym->end;
689 
690 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
691 
692 		ret = sym;
693 		if (size)
694 			*size = symbol_end - symbol_start;
695 		if (off)
696 			*off  = addr - symbol_start;
697 	}
698 	rcu_read_unlock();
699 
700 	return ret;
701 }
702 
703 bool is_bpf_text_address(unsigned long addr)
704 {
705 	bool ret;
706 
707 	rcu_read_lock();
708 	ret = bpf_ksym_find(addr) != NULL;
709 	rcu_read_unlock();
710 
711 	return ret;
712 }
713 
714 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
715 {
716 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
717 
718 	return ksym && ksym->prog ?
719 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
720 	       NULL;
721 }
722 
723 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
724 {
725 	const struct exception_table_entry *e = NULL;
726 	struct bpf_prog *prog;
727 
728 	rcu_read_lock();
729 	prog = bpf_prog_ksym_find(addr);
730 	if (!prog)
731 		goto out;
732 	if (!prog->aux->num_exentries)
733 		goto out;
734 
735 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
736 out:
737 	rcu_read_unlock();
738 	return e;
739 }
740 
741 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
742 		    char *sym)
743 {
744 	struct bpf_ksym *ksym;
745 	unsigned int it = 0;
746 	int ret = -ERANGE;
747 
748 	if (!bpf_jit_kallsyms_enabled())
749 		return ret;
750 
751 	rcu_read_lock();
752 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
753 		if (it++ != symnum)
754 			continue;
755 
756 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
757 
758 		*value = ksym->start;
759 		*type  = BPF_SYM_ELF_TYPE;
760 
761 		ret = 0;
762 		break;
763 	}
764 	rcu_read_unlock();
765 
766 	return ret;
767 }
768 
769 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
770 				struct bpf_jit_poke_descriptor *poke)
771 {
772 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
773 	static const u32 poke_tab_max = 1024;
774 	u32 slot = prog->aux->size_poke_tab;
775 	u32 size = slot + 1;
776 
777 	if (size > poke_tab_max)
778 		return -ENOSPC;
779 	if (poke->tailcall_target || poke->tailcall_target_stable ||
780 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
781 		return -EINVAL;
782 
783 	switch (poke->reason) {
784 	case BPF_POKE_REASON_TAIL_CALL:
785 		if (!poke->tail_call.map)
786 			return -EINVAL;
787 		break;
788 	default:
789 		return -EINVAL;
790 	}
791 
792 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
793 	if (!tab)
794 		return -ENOMEM;
795 
796 	memcpy(&tab[slot], poke, sizeof(*poke));
797 	prog->aux->size_poke_tab = size;
798 	prog->aux->poke_tab = tab;
799 
800 	return slot;
801 }
802 
803 static atomic_long_t bpf_jit_current;
804 
805 /* Can be overridden by an arch's JIT compiler if it has a custom,
806  * dedicated BPF backend memory area, or if neither of the two
807  * below apply.
808  */
809 u64 __weak bpf_jit_alloc_exec_limit(void)
810 {
811 #if defined(MODULES_VADDR)
812 	return MODULES_END - MODULES_VADDR;
813 #else
814 	return VMALLOC_END - VMALLOC_START;
815 #endif
816 }
817 
818 static int __init bpf_jit_charge_init(void)
819 {
820 	/* Only used as heuristic here to derive limit. */
821 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
822 					    PAGE_SIZE), LONG_MAX);
823 	return 0;
824 }
825 pure_initcall(bpf_jit_charge_init);
826 
827 int bpf_jit_charge_modmem(u32 pages)
828 {
829 	if (atomic_long_add_return(pages, &bpf_jit_current) >
830 	    (bpf_jit_limit >> PAGE_SHIFT)) {
831 		if (!bpf_capable()) {
832 			atomic_long_sub(pages, &bpf_jit_current);
833 			return -EPERM;
834 		}
835 	}
836 
837 	return 0;
838 }
839 
840 void bpf_jit_uncharge_modmem(u32 pages)
841 {
842 	atomic_long_sub(pages, &bpf_jit_current);
843 }
844 
845 void *__weak bpf_jit_alloc_exec(unsigned long size)
846 {
847 	return module_alloc(size);
848 }
849 
850 void __weak bpf_jit_free_exec(void *addr)
851 {
852 	module_memfree(addr);
853 }
854 
855 struct bpf_binary_header *
856 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
857 		     unsigned int alignment,
858 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
859 {
860 	struct bpf_binary_header *hdr;
861 	u32 size, hole, start, pages;
862 
863 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
864 		     alignment > BPF_IMAGE_ALIGNMENT);
865 
866 	/* Most of BPF filters are really small, but if some of them
867 	 * fill a page, allow at least 128 extra bytes to insert a
868 	 * random section of illegal instructions.
869 	 */
870 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
871 	pages = size / PAGE_SIZE;
872 
873 	if (bpf_jit_charge_modmem(pages))
874 		return NULL;
875 	hdr = bpf_jit_alloc_exec(size);
876 	if (!hdr) {
877 		bpf_jit_uncharge_modmem(pages);
878 		return NULL;
879 	}
880 
881 	/* Fill space with illegal/arch-dep instructions. */
882 	bpf_fill_ill_insns(hdr, size);
883 
884 	hdr->pages = pages;
885 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
886 		     PAGE_SIZE - sizeof(*hdr));
887 	start = (get_random_int() % hole) & ~(alignment - 1);
888 
889 	/* Leave a random number of instructions before BPF code. */
890 	*image_ptr = &hdr->image[start];
891 
892 	return hdr;
893 }
894 
895 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
896 {
897 	u32 pages = hdr->pages;
898 
899 	bpf_jit_free_exec(hdr);
900 	bpf_jit_uncharge_modmem(pages);
901 }
902 
903 /* This symbol is only overridden by archs that have different
904  * requirements than the usual eBPF JITs, f.e. when they only
905  * implement cBPF JIT, do not set images read-only, etc.
906  */
907 void __weak bpf_jit_free(struct bpf_prog *fp)
908 {
909 	if (fp->jited) {
910 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
911 
912 		bpf_jit_binary_free(hdr);
913 
914 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
915 	}
916 
917 	bpf_prog_unlock_free(fp);
918 }
919 
920 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
921 			  const struct bpf_insn *insn, bool extra_pass,
922 			  u64 *func_addr, bool *func_addr_fixed)
923 {
924 	s16 off = insn->off;
925 	s32 imm = insn->imm;
926 	u8 *addr;
927 
928 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
929 	if (!*func_addr_fixed) {
930 		/* Place-holder address till the last pass has collected
931 		 * all addresses for JITed subprograms in which case we
932 		 * can pick them up from prog->aux.
933 		 */
934 		if (!extra_pass)
935 			addr = NULL;
936 		else if (prog->aux->func &&
937 			 off >= 0 && off < prog->aux->func_cnt)
938 			addr = (u8 *)prog->aux->func[off]->bpf_func;
939 		else
940 			return -EINVAL;
941 	} else {
942 		/* Address of a BPF helper call. Since part of the core
943 		 * kernel, it's always at a fixed location. __bpf_call_base
944 		 * and the helper with imm relative to it are both in core
945 		 * kernel.
946 		 */
947 		addr = (u8 *)__bpf_call_base + imm;
948 	}
949 
950 	*func_addr = (unsigned long)addr;
951 	return 0;
952 }
953 
954 static int bpf_jit_blind_insn(const struct bpf_insn *from,
955 			      const struct bpf_insn *aux,
956 			      struct bpf_insn *to_buff,
957 			      bool emit_zext)
958 {
959 	struct bpf_insn *to = to_buff;
960 	u32 imm_rnd = get_random_int();
961 	s16 off;
962 
963 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
964 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
965 
966 	/* Constraints on AX register:
967 	 *
968 	 * AX register is inaccessible from user space. It is mapped in
969 	 * all JITs, and used here for constant blinding rewrites. It is
970 	 * typically "stateless" meaning its contents are only valid within
971 	 * the executed instruction, but not across several instructions.
972 	 * There are a few exceptions however which are further detailed
973 	 * below.
974 	 *
975 	 * Constant blinding is only used by JITs, not in the interpreter.
976 	 * The interpreter uses AX in some occasions as a local temporary
977 	 * register e.g. in DIV or MOD instructions.
978 	 *
979 	 * In restricted circumstances, the verifier can also use the AX
980 	 * register for rewrites as long as they do not interfere with
981 	 * the above cases!
982 	 */
983 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
984 		goto out;
985 
986 	if (from->imm == 0 &&
987 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
988 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
989 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
990 		goto out;
991 	}
992 
993 	switch (from->code) {
994 	case BPF_ALU | BPF_ADD | BPF_K:
995 	case BPF_ALU | BPF_SUB | BPF_K:
996 	case BPF_ALU | BPF_AND | BPF_K:
997 	case BPF_ALU | BPF_OR  | BPF_K:
998 	case BPF_ALU | BPF_XOR | BPF_K:
999 	case BPF_ALU | BPF_MUL | BPF_K:
1000 	case BPF_ALU | BPF_MOV | BPF_K:
1001 	case BPF_ALU | BPF_DIV | BPF_K:
1002 	case BPF_ALU | BPF_MOD | BPF_K:
1003 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1004 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1005 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1006 		break;
1007 
1008 	case BPF_ALU64 | BPF_ADD | BPF_K:
1009 	case BPF_ALU64 | BPF_SUB | BPF_K:
1010 	case BPF_ALU64 | BPF_AND | BPF_K:
1011 	case BPF_ALU64 | BPF_OR  | BPF_K:
1012 	case BPF_ALU64 | BPF_XOR | BPF_K:
1013 	case BPF_ALU64 | BPF_MUL | BPF_K:
1014 	case BPF_ALU64 | BPF_MOV | BPF_K:
1015 	case BPF_ALU64 | BPF_DIV | BPF_K:
1016 	case BPF_ALU64 | BPF_MOD | BPF_K:
1017 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1018 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1019 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1020 		break;
1021 
1022 	case BPF_JMP | BPF_JEQ  | BPF_K:
1023 	case BPF_JMP | BPF_JNE  | BPF_K:
1024 	case BPF_JMP | BPF_JGT  | BPF_K:
1025 	case BPF_JMP | BPF_JLT  | BPF_K:
1026 	case BPF_JMP | BPF_JGE  | BPF_K:
1027 	case BPF_JMP | BPF_JLE  | BPF_K:
1028 	case BPF_JMP | BPF_JSGT | BPF_K:
1029 	case BPF_JMP | BPF_JSLT | BPF_K:
1030 	case BPF_JMP | BPF_JSGE | BPF_K:
1031 	case BPF_JMP | BPF_JSLE | BPF_K:
1032 	case BPF_JMP | BPF_JSET | BPF_K:
1033 		/* Accommodate for extra offset in case of a backjump. */
1034 		off = from->off;
1035 		if (off < 0)
1036 			off -= 2;
1037 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1038 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1039 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1040 		break;
1041 
1042 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1043 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1044 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1045 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1046 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1047 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1048 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1049 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1050 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1051 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1052 	case BPF_JMP32 | BPF_JSET | BPF_K:
1053 		/* Accommodate for extra offset in case of a backjump. */
1054 		off = from->off;
1055 		if (off < 0)
1056 			off -= 2;
1057 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1058 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1059 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1060 				      off);
1061 		break;
1062 
1063 	case BPF_LD | BPF_IMM | BPF_DW:
1064 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1065 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1066 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1067 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1068 		break;
1069 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1070 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1071 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1072 		if (emit_zext)
1073 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1074 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1075 		break;
1076 
1077 	case BPF_ST | BPF_MEM | BPF_DW:
1078 	case BPF_ST | BPF_MEM | BPF_W:
1079 	case BPF_ST | BPF_MEM | BPF_H:
1080 	case BPF_ST | BPF_MEM | BPF_B:
1081 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1082 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1083 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1084 		break;
1085 	}
1086 out:
1087 	return to - to_buff;
1088 }
1089 
1090 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1091 					      gfp_t gfp_extra_flags)
1092 {
1093 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1094 	struct bpf_prog *fp;
1095 
1096 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1097 	if (fp != NULL) {
1098 		/* aux->prog still points to the fp_other one, so
1099 		 * when promoting the clone to the real program,
1100 		 * this still needs to be adapted.
1101 		 */
1102 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1103 	}
1104 
1105 	return fp;
1106 }
1107 
1108 static void bpf_prog_clone_free(struct bpf_prog *fp)
1109 {
1110 	/* aux was stolen by the other clone, so we cannot free
1111 	 * it from this path! It will be freed eventually by the
1112 	 * other program on release.
1113 	 *
1114 	 * At this point, we don't need a deferred release since
1115 	 * clone is guaranteed to not be locked.
1116 	 */
1117 	fp->aux = NULL;
1118 	fp->stats = NULL;
1119 	fp->active = NULL;
1120 	__bpf_prog_free(fp);
1121 }
1122 
1123 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1124 {
1125 	/* We have to repoint aux->prog to self, as we don't
1126 	 * know whether fp here is the clone or the original.
1127 	 */
1128 	fp->aux->prog = fp;
1129 	bpf_prog_clone_free(fp_other);
1130 }
1131 
1132 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1133 {
1134 	struct bpf_insn insn_buff[16], aux[2];
1135 	struct bpf_prog *clone, *tmp;
1136 	int insn_delta, insn_cnt;
1137 	struct bpf_insn *insn;
1138 	int i, rewritten;
1139 
1140 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1141 		return prog;
1142 
1143 	clone = bpf_prog_clone_create(prog, GFP_USER);
1144 	if (!clone)
1145 		return ERR_PTR(-ENOMEM);
1146 
1147 	insn_cnt = clone->len;
1148 	insn = clone->insnsi;
1149 
1150 	for (i = 0; i < insn_cnt; i++, insn++) {
1151 		/* We temporarily need to hold the original ld64 insn
1152 		 * so that we can still access the first part in the
1153 		 * second blinding run.
1154 		 */
1155 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1156 		    insn[1].code == 0)
1157 			memcpy(aux, insn, sizeof(aux));
1158 
1159 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1160 						clone->aux->verifier_zext);
1161 		if (!rewritten)
1162 			continue;
1163 
1164 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1165 		if (IS_ERR(tmp)) {
1166 			/* Patching may have repointed aux->prog during
1167 			 * realloc from the original one, so we need to
1168 			 * fix it up here on error.
1169 			 */
1170 			bpf_jit_prog_release_other(prog, clone);
1171 			return tmp;
1172 		}
1173 
1174 		clone = tmp;
1175 		insn_delta = rewritten - 1;
1176 
1177 		/* Walk new program and skip insns we just inserted. */
1178 		insn = clone->insnsi + i + insn_delta;
1179 		insn_cnt += insn_delta;
1180 		i        += insn_delta;
1181 	}
1182 
1183 	clone->blinded = 1;
1184 	return clone;
1185 }
1186 #endif /* CONFIG_BPF_JIT */
1187 
1188 /* Base function for offset calculation. Needs to go into .text section,
1189  * therefore keeping it non-static as well; will also be used by JITs
1190  * anyway later on, so do not let the compiler omit it. This also needs
1191  * to go into kallsyms for correlation from e.g. bpftool, so naming
1192  * must not change.
1193  */
1194 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1195 {
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(__bpf_call_base);
1199 
1200 /* All UAPI available opcodes. */
1201 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1202 	/* 32 bit ALU operations. */		\
1203 	/*   Register based. */			\
1204 	INSN_3(ALU, ADD,  X),			\
1205 	INSN_3(ALU, SUB,  X),			\
1206 	INSN_3(ALU, AND,  X),			\
1207 	INSN_3(ALU, OR,   X),			\
1208 	INSN_3(ALU, LSH,  X),			\
1209 	INSN_3(ALU, RSH,  X),			\
1210 	INSN_3(ALU, XOR,  X),			\
1211 	INSN_3(ALU, MUL,  X),			\
1212 	INSN_3(ALU, MOV,  X),			\
1213 	INSN_3(ALU, ARSH, X),			\
1214 	INSN_3(ALU, DIV,  X),			\
1215 	INSN_3(ALU, MOD,  X),			\
1216 	INSN_2(ALU, NEG),			\
1217 	INSN_3(ALU, END, TO_BE),		\
1218 	INSN_3(ALU, END, TO_LE),		\
1219 	/*   Immediate based. */		\
1220 	INSN_3(ALU, ADD,  K),			\
1221 	INSN_3(ALU, SUB,  K),			\
1222 	INSN_3(ALU, AND,  K),			\
1223 	INSN_3(ALU, OR,   K),			\
1224 	INSN_3(ALU, LSH,  K),			\
1225 	INSN_3(ALU, RSH,  K),			\
1226 	INSN_3(ALU, XOR,  K),			\
1227 	INSN_3(ALU, MUL,  K),			\
1228 	INSN_3(ALU, MOV,  K),			\
1229 	INSN_3(ALU, ARSH, K),			\
1230 	INSN_3(ALU, DIV,  K),			\
1231 	INSN_3(ALU, MOD,  K),			\
1232 	/* 64 bit ALU operations. */		\
1233 	/*   Register based. */			\
1234 	INSN_3(ALU64, ADD,  X),			\
1235 	INSN_3(ALU64, SUB,  X),			\
1236 	INSN_3(ALU64, AND,  X),			\
1237 	INSN_3(ALU64, OR,   X),			\
1238 	INSN_3(ALU64, LSH,  X),			\
1239 	INSN_3(ALU64, RSH,  X),			\
1240 	INSN_3(ALU64, XOR,  X),			\
1241 	INSN_3(ALU64, MUL,  X),			\
1242 	INSN_3(ALU64, MOV,  X),			\
1243 	INSN_3(ALU64, ARSH, X),			\
1244 	INSN_3(ALU64, DIV,  X),			\
1245 	INSN_3(ALU64, MOD,  X),			\
1246 	INSN_2(ALU64, NEG),			\
1247 	/*   Immediate based. */		\
1248 	INSN_3(ALU64, ADD,  K),			\
1249 	INSN_3(ALU64, SUB,  K),			\
1250 	INSN_3(ALU64, AND,  K),			\
1251 	INSN_3(ALU64, OR,   K),			\
1252 	INSN_3(ALU64, LSH,  K),			\
1253 	INSN_3(ALU64, RSH,  K),			\
1254 	INSN_3(ALU64, XOR,  K),			\
1255 	INSN_3(ALU64, MUL,  K),			\
1256 	INSN_3(ALU64, MOV,  K),			\
1257 	INSN_3(ALU64, ARSH, K),			\
1258 	INSN_3(ALU64, DIV,  K),			\
1259 	INSN_3(ALU64, MOD,  K),			\
1260 	/* Call instruction. */			\
1261 	INSN_2(JMP, CALL),			\
1262 	/* Exit instruction. */			\
1263 	INSN_2(JMP, EXIT),			\
1264 	/* 32-bit Jump instructions. */		\
1265 	/*   Register based. */			\
1266 	INSN_3(JMP32, JEQ,  X),			\
1267 	INSN_3(JMP32, JNE,  X),			\
1268 	INSN_3(JMP32, JGT,  X),			\
1269 	INSN_3(JMP32, JLT,  X),			\
1270 	INSN_3(JMP32, JGE,  X),			\
1271 	INSN_3(JMP32, JLE,  X),			\
1272 	INSN_3(JMP32, JSGT, X),			\
1273 	INSN_3(JMP32, JSLT, X),			\
1274 	INSN_3(JMP32, JSGE, X),			\
1275 	INSN_3(JMP32, JSLE, X),			\
1276 	INSN_3(JMP32, JSET, X),			\
1277 	/*   Immediate based. */		\
1278 	INSN_3(JMP32, JEQ,  K),			\
1279 	INSN_3(JMP32, JNE,  K),			\
1280 	INSN_3(JMP32, JGT,  K),			\
1281 	INSN_3(JMP32, JLT,  K),			\
1282 	INSN_3(JMP32, JGE,  K),			\
1283 	INSN_3(JMP32, JLE,  K),			\
1284 	INSN_3(JMP32, JSGT, K),			\
1285 	INSN_3(JMP32, JSLT, K),			\
1286 	INSN_3(JMP32, JSGE, K),			\
1287 	INSN_3(JMP32, JSLE, K),			\
1288 	INSN_3(JMP32, JSET, K),			\
1289 	/* Jump instructions. */		\
1290 	/*   Register based. */			\
1291 	INSN_3(JMP, JEQ,  X),			\
1292 	INSN_3(JMP, JNE,  X),			\
1293 	INSN_3(JMP, JGT,  X),			\
1294 	INSN_3(JMP, JLT,  X),			\
1295 	INSN_3(JMP, JGE,  X),			\
1296 	INSN_3(JMP, JLE,  X),			\
1297 	INSN_3(JMP, JSGT, X),			\
1298 	INSN_3(JMP, JSLT, X),			\
1299 	INSN_3(JMP, JSGE, X),			\
1300 	INSN_3(JMP, JSLE, X),			\
1301 	INSN_3(JMP, JSET, X),			\
1302 	/*   Immediate based. */		\
1303 	INSN_3(JMP, JEQ,  K),			\
1304 	INSN_3(JMP, JNE,  K),			\
1305 	INSN_3(JMP, JGT,  K),			\
1306 	INSN_3(JMP, JLT,  K),			\
1307 	INSN_3(JMP, JGE,  K),			\
1308 	INSN_3(JMP, JLE,  K),			\
1309 	INSN_3(JMP, JSGT, K),			\
1310 	INSN_3(JMP, JSLT, K),			\
1311 	INSN_3(JMP, JSGE, K),			\
1312 	INSN_3(JMP, JSLE, K),			\
1313 	INSN_3(JMP, JSET, K),			\
1314 	INSN_2(JMP, JA),			\
1315 	/* Store instructions. */		\
1316 	/*   Register based. */			\
1317 	INSN_3(STX, MEM,  B),			\
1318 	INSN_3(STX, MEM,  H),			\
1319 	INSN_3(STX, MEM,  W),			\
1320 	INSN_3(STX, MEM,  DW),			\
1321 	INSN_3(STX, ATOMIC, W),			\
1322 	INSN_3(STX, ATOMIC, DW),		\
1323 	/*   Immediate based. */		\
1324 	INSN_3(ST, MEM, B),			\
1325 	INSN_3(ST, MEM, H),			\
1326 	INSN_3(ST, MEM, W),			\
1327 	INSN_3(ST, MEM, DW),			\
1328 	/* Load instructions. */		\
1329 	/*   Register based. */			\
1330 	INSN_3(LDX, MEM, B),			\
1331 	INSN_3(LDX, MEM, H),			\
1332 	INSN_3(LDX, MEM, W),			\
1333 	INSN_3(LDX, MEM, DW),			\
1334 	/*   Immediate based. */		\
1335 	INSN_3(LD, IMM, DW)
1336 
1337 bool bpf_opcode_in_insntable(u8 code)
1338 {
1339 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1340 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1341 	static const bool public_insntable[256] = {
1342 		[0 ... 255] = false,
1343 		/* Now overwrite non-defaults ... */
1344 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1345 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1346 		[BPF_LD | BPF_ABS | BPF_B] = true,
1347 		[BPF_LD | BPF_ABS | BPF_H] = true,
1348 		[BPF_LD | BPF_ABS | BPF_W] = true,
1349 		[BPF_LD | BPF_IND | BPF_B] = true,
1350 		[BPF_LD | BPF_IND | BPF_H] = true,
1351 		[BPF_LD | BPF_IND | BPF_W] = true,
1352 	};
1353 #undef BPF_INSN_3_TBL
1354 #undef BPF_INSN_2_TBL
1355 	return public_insntable[code];
1356 }
1357 
1358 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1359 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1360 {
1361 	memset(dst, 0, size);
1362 	return -EFAULT;
1363 }
1364 
1365 /**
1366  *	___bpf_prog_run - run eBPF program on a given context
1367  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1368  *	@insn: is the array of eBPF instructions
1369  *
1370  * Decode and execute eBPF instructions.
1371  *
1372  * Return: whatever value is in %BPF_R0 at program exit
1373  */
1374 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1375 {
1376 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1377 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1378 	static const void * const jumptable[256] __annotate_jump_table = {
1379 		[0 ... 255] = &&default_label,
1380 		/* Now overwrite non-defaults ... */
1381 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1382 		/* Non-UAPI available opcodes. */
1383 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1384 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1385 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1386 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1387 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1388 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1389 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1390 	};
1391 #undef BPF_INSN_3_LBL
1392 #undef BPF_INSN_2_LBL
1393 	u32 tail_call_cnt = 0;
1394 
1395 #define CONT	 ({ insn++; goto select_insn; })
1396 #define CONT_JMP ({ insn++; goto select_insn; })
1397 
1398 select_insn:
1399 	goto *jumptable[insn->code];
1400 
1401 	/* Explicitly mask the register-based shift amounts with 63 or 31
1402 	 * to avoid undefined behavior. Normally this won't affect the
1403 	 * generated code, for example, in case of native 64 bit archs such
1404 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1405 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1406 	 * the BPF shift operations to machine instructions which produce
1407 	 * implementation-defined results in such a case; the resulting
1408 	 * contents of the register may be arbitrary, but program behaviour
1409 	 * as a whole remains defined. In other words, in case of JIT backends,
1410 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1411 	 */
1412 	/* ALU (shifts) */
1413 #define SHT(OPCODE, OP)					\
1414 	ALU64_##OPCODE##_X:				\
1415 		DST = DST OP (SRC & 63);		\
1416 		CONT;					\
1417 	ALU_##OPCODE##_X:				\
1418 		DST = (u32) DST OP ((u32) SRC & 31);	\
1419 		CONT;					\
1420 	ALU64_##OPCODE##_K:				\
1421 		DST = DST OP IMM;			\
1422 		CONT;					\
1423 	ALU_##OPCODE##_K:				\
1424 		DST = (u32) DST OP (u32) IMM;		\
1425 		CONT;
1426 	/* ALU (rest) */
1427 #define ALU(OPCODE, OP)					\
1428 	ALU64_##OPCODE##_X:				\
1429 		DST = DST OP SRC;			\
1430 		CONT;					\
1431 	ALU_##OPCODE##_X:				\
1432 		DST = (u32) DST OP (u32) SRC;		\
1433 		CONT;					\
1434 	ALU64_##OPCODE##_K:				\
1435 		DST = DST OP IMM;			\
1436 		CONT;					\
1437 	ALU_##OPCODE##_K:				\
1438 		DST = (u32) DST OP (u32) IMM;		\
1439 		CONT;
1440 	ALU(ADD,  +)
1441 	ALU(SUB,  -)
1442 	ALU(AND,  &)
1443 	ALU(OR,   |)
1444 	ALU(XOR,  ^)
1445 	ALU(MUL,  *)
1446 	SHT(LSH, <<)
1447 	SHT(RSH, >>)
1448 #undef SHT
1449 #undef ALU
1450 	ALU_NEG:
1451 		DST = (u32) -DST;
1452 		CONT;
1453 	ALU64_NEG:
1454 		DST = -DST;
1455 		CONT;
1456 	ALU_MOV_X:
1457 		DST = (u32) SRC;
1458 		CONT;
1459 	ALU_MOV_K:
1460 		DST = (u32) IMM;
1461 		CONT;
1462 	ALU64_MOV_X:
1463 		DST = SRC;
1464 		CONT;
1465 	ALU64_MOV_K:
1466 		DST = IMM;
1467 		CONT;
1468 	LD_IMM_DW:
1469 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1470 		insn++;
1471 		CONT;
1472 	ALU_ARSH_X:
1473 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1474 		CONT;
1475 	ALU_ARSH_K:
1476 		DST = (u64) (u32) (((s32) DST) >> IMM);
1477 		CONT;
1478 	ALU64_ARSH_X:
1479 		(*(s64 *) &DST) >>= (SRC & 63);
1480 		CONT;
1481 	ALU64_ARSH_K:
1482 		(*(s64 *) &DST) >>= IMM;
1483 		CONT;
1484 	ALU64_MOD_X:
1485 		div64_u64_rem(DST, SRC, &AX);
1486 		DST = AX;
1487 		CONT;
1488 	ALU_MOD_X:
1489 		AX = (u32) DST;
1490 		DST = do_div(AX, (u32) SRC);
1491 		CONT;
1492 	ALU64_MOD_K:
1493 		div64_u64_rem(DST, IMM, &AX);
1494 		DST = AX;
1495 		CONT;
1496 	ALU_MOD_K:
1497 		AX = (u32) DST;
1498 		DST = do_div(AX, (u32) IMM);
1499 		CONT;
1500 	ALU64_DIV_X:
1501 		DST = div64_u64(DST, SRC);
1502 		CONT;
1503 	ALU_DIV_X:
1504 		AX = (u32) DST;
1505 		do_div(AX, (u32) SRC);
1506 		DST = (u32) AX;
1507 		CONT;
1508 	ALU64_DIV_K:
1509 		DST = div64_u64(DST, IMM);
1510 		CONT;
1511 	ALU_DIV_K:
1512 		AX = (u32) DST;
1513 		do_div(AX, (u32) IMM);
1514 		DST = (u32) AX;
1515 		CONT;
1516 	ALU_END_TO_BE:
1517 		switch (IMM) {
1518 		case 16:
1519 			DST = (__force u16) cpu_to_be16(DST);
1520 			break;
1521 		case 32:
1522 			DST = (__force u32) cpu_to_be32(DST);
1523 			break;
1524 		case 64:
1525 			DST = (__force u64) cpu_to_be64(DST);
1526 			break;
1527 		}
1528 		CONT;
1529 	ALU_END_TO_LE:
1530 		switch (IMM) {
1531 		case 16:
1532 			DST = (__force u16) cpu_to_le16(DST);
1533 			break;
1534 		case 32:
1535 			DST = (__force u32) cpu_to_le32(DST);
1536 			break;
1537 		case 64:
1538 			DST = (__force u64) cpu_to_le64(DST);
1539 			break;
1540 		}
1541 		CONT;
1542 
1543 	/* CALL */
1544 	JMP_CALL:
1545 		/* Function call scratches BPF_R1-BPF_R5 registers,
1546 		 * preserves BPF_R6-BPF_R9, and stores return value
1547 		 * into BPF_R0.
1548 		 */
1549 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1550 						       BPF_R4, BPF_R5);
1551 		CONT;
1552 
1553 	JMP_CALL_ARGS:
1554 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1555 							    BPF_R3, BPF_R4,
1556 							    BPF_R5,
1557 							    insn + insn->off + 1);
1558 		CONT;
1559 
1560 	JMP_TAIL_CALL: {
1561 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1562 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1563 		struct bpf_prog *prog;
1564 		u32 index = BPF_R3;
1565 
1566 		if (unlikely(index >= array->map.max_entries))
1567 			goto out;
1568 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1569 			goto out;
1570 
1571 		tail_call_cnt++;
1572 
1573 		prog = READ_ONCE(array->ptrs[index]);
1574 		if (!prog)
1575 			goto out;
1576 
1577 		/* ARG1 at this point is guaranteed to point to CTX from
1578 		 * the verifier side due to the fact that the tail call is
1579 		 * handled like a helper, that is, bpf_tail_call_proto,
1580 		 * where arg1_type is ARG_PTR_TO_CTX.
1581 		 */
1582 		insn = prog->insnsi;
1583 		goto select_insn;
1584 out:
1585 		CONT;
1586 	}
1587 	JMP_JA:
1588 		insn += insn->off;
1589 		CONT;
1590 	JMP_EXIT:
1591 		return BPF_R0;
1592 	/* JMP */
1593 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1594 	JMP_##OPCODE##_X:					\
1595 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1596 			insn += insn->off;			\
1597 			CONT_JMP;				\
1598 		}						\
1599 		CONT;						\
1600 	JMP32_##OPCODE##_X:					\
1601 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1602 			insn += insn->off;			\
1603 			CONT_JMP;				\
1604 		}						\
1605 		CONT;						\
1606 	JMP_##OPCODE##_K:					\
1607 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1608 			insn += insn->off;			\
1609 			CONT_JMP;				\
1610 		}						\
1611 		CONT;						\
1612 	JMP32_##OPCODE##_K:					\
1613 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1614 			insn += insn->off;			\
1615 			CONT_JMP;				\
1616 		}						\
1617 		CONT;
1618 	COND_JMP(u, JEQ, ==)
1619 	COND_JMP(u, JNE, !=)
1620 	COND_JMP(u, JGT, >)
1621 	COND_JMP(u, JLT, <)
1622 	COND_JMP(u, JGE, >=)
1623 	COND_JMP(u, JLE, <=)
1624 	COND_JMP(u, JSET, &)
1625 	COND_JMP(s, JSGT, >)
1626 	COND_JMP(s, JSLT, <)
1627 	COND_JMP(s, JSGE, >=)
1628 	COND_JMP(s, JSLE, <=)
1629 #undef COND_JMP
1630 	/* ST, STX and LDX*/
1631 	ST_NOSPEC:
1632 		/* Speculation barrier for mitigating Speculative Store Bypass.
1633 		 * In case of arm64, we rely on the firmware mitigation as
1634 		 * controlled via the ssbd kernel parameter. Whenever the
1635 		 * mitigation is enabled, it works for all of the kernel code
1636 		 * with no need to provide any additional instructions here.
1637 		 * In case of x86, we use 'lfence' insn for mitigation. We
1638 		 * reuse preexisting logic from Spectre v1 mitigation that
1639 		 * happens to produce the required code on x86 for v4 as well.
1640 		 */
1641 #ifdef CONFIG_X86
1642 		barrier_nospec();
1643 #endif
1644 		CONT;
1645 #define LDST(SIZEOP, SIZE)						\
1646 	STX_MEM_##SIZEOP:						\
1647 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1648 		CONT;							\
1649 	ST_MEM_##SIZEOP:						\
1650 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1651 		CONT;							\
1652 	LDX_MEM_##SIZEOP:						\
1653 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1654 		CONT;
1655 
1656 	LDST(B,   u8)
1657 	LDST(H,  u16)
1658 	LDST(W,  u32)
1659 	LDST(DW, u64)
1660 #undef LDST
1661 #define LDX_PROBE(SIZEOP, SIZE)							\
1662 	LDX_PROBE_MEM_##SIZEOP:							\
1663 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1664 		CONT;
1665 	LDX_PROBE(B,  1)
1666 	LDX_PROBE(H,  2)
1667 	LDX_PROBE(W,  4)
1668 	LDX_PROBE(DW, 8)
1669 #undef LDX_PROBE
1670 
1671 #define ATOMIC_ALU_OP(BOP, KOP)						\
1672 		case BOP:						\
1673 			if (BPF_SIZE(insn->code) == BPF_W)		\
1674 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1675 					     (DST + insn->off));	\
1676 			else						\
1677 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1678 					       (DST + insn->off));	\
1679 			break;						\
1680 		case BOP | BPF_FETCH:					\
1681 			if (BPF_SIZE(insn->code) == BPF_W)		\
1682 				SRC = (u32) atomic_fetch_##KOP(		\
1683 					(u32) SRC,			\
1684 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1685 			else						\
1686 				SRC = (u64) atomic64_fetch_##KOP(	\
1687 					(u64) SRC,			\
1688 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1689 			break;
1690 
1691 	STX_ATOMIC_DW:
1692 	STX_ATOMIC_W:
1693 		switch (IMM) {
1694 		ATOMIC_ALU_OP(BPF_ADD, add)
1695 		ATOMIC_ALU_OP(BPF_AND, and)
1696 		ATOMIC_ALU_OP(BPF_OR, or)
1697 		ATOMIC_ALU_OP(BPF_XOR, xor)
1698 #undef ATOMIC_ALU_OP
1699 
1700 		case BPF_XCHG:
1701 			if (BPF_SIZE(insn->code) == BPF_W)
1702 				SRC = (u32) atomic_xchg(
1703 					(atomic_t *)(unsigned long) (DST + insn->off),
1704 					(u32) SRC);
1705 			else
1706 				SRC = (u64) atomic64_xchg(
1707 					(atomic64_t *)(unsigned long) (DST + insn->off),
1708 					(u64) SRC);
1709 			break;
1710 		case BPF_CMPXCHG:
1711 			if (BPF_SIZE(insn->code) == BPF_W)
1712 				BPF_R0 = (u32) atomic_cmpxchg(
1713 					(atomic_t *)(unsigned long) (DST + insn->off),
1714 					(u32) BPF_R0, (u32) SRC);
1715 			else
1716 				BPF_R0 = (u64) atomic64_cmpxchg(
1717 					(atomic64_t *)(unsigned long) (DST + insn->off),
1718 					(u64) BPF_R0, (u64) SRC);
1719 			break;
1720 
1721 		default:
1722 			goto default_label;
1723 		}
1724 		CONT;
1725 
1726 	default_label:
1727 		/* If we ever reach this, we have a bug somewhere. Die hard here
1728 		 * instead of just returning 0; we could be somewhere in a subprog,
1729 		 * so execution could continue otherwise which we do /not/ want.
1730 		 *
1731 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1732 		 */
1733 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1734 			insn->code, insn->imm);
1735 		BUG_ON(1);
1736 		return 0;
1737 }
1738 
1739 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1740 #define DEFINE_BPF_PROG_RUN(stack_size) \
1741 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1742 { \
1743 	u64 stack[stack_size / sizeof(u64)]; \
1744 	u64 regs[MAX_BPF_EXT_REG]; \
1745 \
1746 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1747 	ARG1 = (u64) (unsigned long) ctx; \
1748 	return ___bpf_prog_run(regs, insn); \
1749 }
1750 
1751 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1752 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1753 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1754 				      const struct bpf_insn *insn) \
1755 { \
1756 	u64 stack[stack_size / sizeof(u64)]; \
1757 	u64 regs[MAX_BPF_EXT_REG]; \
1758 \
1759 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1760 	BPF_R1 = r1; \
1761 	BPF_R2 = r2; \
1762 	BPF_R3 = r3; \
1763 	BPF_R4 = r4; \
1764 	BPF_R5 = r5; \
1765 	return ___bpf_prog_run(regs, insn); \
1766 }
1767 
1768 #define EVAL1(FN, X) FN(X)
1769 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1770 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1771 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1772 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1773 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1774 
1775 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1776 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1777 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1778 
1779 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1780 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1781 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1782 
1783 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1784 
1785 static unsigned int (*interpreters[])(const void *ctx,
1786 				      const struct bpf_insn *insn) = {
1787 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1788 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1789 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1790 };
1791 #undef PROG_NAME_LIST
1792 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1793 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1794 				  const struct bpf_insn *insn) = {
1795 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1796 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1797 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1798 };
1799 #undef PROG_NAME_LIST
1800 
1801 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1802 {
1803 	stack_depth = max_t(u32, stack_depth, 1);
1804 	insn->off = (s16) insn->imm;
1805 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1806 		__bpf_call_base_args;
1807 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1808 }
1809 
1810 #else
1811 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1812 					 const struct bpf_insn *insn)
1813 {
1814 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1815 	 * is not working properly, so warn about it!
1816 	 */
1817 	WARN_ON_ONCE(1);
1818 	return 0;
1819 }
1820 #endif
1821 
1822 bool bpf_prog_array_compatible(struct bpf_array *array,
1823 			       const struct bpf_prog *fp)
1824 {
1825 	if (fp->kprobe_override)
1826 		return false;
1827 
1828 	if (!array->aux->type) {
1829 		/* There's no owner yet where we could check for
1830 		 * compatibility.
1831 		 */
1832 		array->aux->type  = fp->type;
1833 		array->aux->jited = fp->jited;
1834 		return true;
1835 	}
1836 
1837 	return array->aux->type  == fp->type &&
1838 	       array->aux->jited == fp->jited;
1839 }
1840 
1841 static int bpf_check_tail_call(const struct bpf_prog *fp)
1842 {
1843 	struct bpf_prog_aux *aux = fp->aux;
1844 	int i, ret = 0;
1845 
1846 	mutex_lock(&aux->used_maps_mutex);
1847 	for (i = 0; i < aux->used_map_cnt; i++) {
1848 		struct bpf_map *map = aux->used_maps[i];
1849 		struct bpf_array *array;
1850 
1851 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1852 			continue;
1853 
1854 		array = container_of(map, struct bpf_array, map);
1855 		if (!bpf_prog_array_compatible(array, fp)) {
1856 			ret = -EINVAL;
1857 			goto out;
1858 		}
1859 	}
1860 
1861 out:
1862 	mutex_unlock(&aux->used_maps_mutex);
1863 	return ret;
1864 }
1865 
1866 static void bpf_prog_select_func(struct bpf_prog *fp)
1867 {
1868 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1869 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1870 
1871 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1872 #else
1873 	fp->bpf_func = __bpf_prog_ret0_warn;
1874 #endif
1875 }
1876 
1877 /**
1878  *	bpf_prog_select_runtime - select exec runtime for BPF program
1879  *	@fp: bpf_prog populated with internal BPF program
1880  *	@err: pointer to error variable
1881  *
1882  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1883  * The BPF program will be executed via bpf_prog_run() function.
1884  *
1885  * Return: the &fp argument along with &err set to 0 for success or
1886  * a negative errno code on failure
1887  */
1888 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1889 {
1890 	/* In case of BPF to BPF calls, verifier did all the prep
1891 	 * work with regards to JITing, etc.
1892 	 */
1893 	bool jit_needed = false;
1894 
1895 	if (fp->bpf_func)
1896 		goto finalize;
1897 
1898 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1899 	    bpf_prog_has_kfunc_call(fp))
1900 		jit_needed = true;
1901 
1902 	bpf_prog_select_func(fp);
1903 
1904 	/* eBPF JITs can rewrite the program in case constant
1905 	 * blinding is active. However, in case of error during
1906 	 * blinding, bpf_int_jit_compile() must always return a
1907 	 * valid program, which in this case would simply not
1908 	 * be JITed, but falls back to the interpreter.
1909 	 */
1910 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1911 		*err = bpf_prog_alloc_jited_linfo(fp);
1912 		if (*err)
1913 			return fp;
1914 
1915 		fp = bpf_int_jit_compile(fp);
1916 		bpf_prog_jit_attempt_done(fp);
1917 		if (!fp->jited && jit_needed) {
1918 			*err = -ENOTSUPP;
1919 			return fp;
1920 		}
1921 	} else {
1922 		*err = bpf_prog_offload_compile(fp);
1923 		if (*err)
1924 			return fp;
1925 	}
1926 
1927 finalize:
1928 	bpf_prog_lock_ro(fp);
1929 
1930 	/* The tail call compatibility check can only be done at
1931 	 * this late stage as we need to determine, if we deal
1932 	 * with JITed or non JITed program concatenations and not
1933 	 * all eBPF JITs might immediately support all features.
1934 	 */
1935 	*err = bpf_check_tail_call(fp);
1936 
1937 	return fp;
1938 }
1939 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1940 
1941 static unsigned int __bpf_prog_ret1(const void *ctx,
1942 				    const struct bpf_insn *insn)
1943 {
1944 	return 1;
1945 }
1946 
1947 static struct bpf_prog_dummy {
1948 	struct bpf_prog prog;
1949 } dummy_bpf_prog = {
1950 	.prog = {
1951 		.bpf_func = __bpf_prog_ret1,
1952 	},
1953 };
1954 
1955 /* to avoid allocating empty bpf_prog_array for cgroups that
1956  * don't have bpf program attached use one global 'empty_prog_array'
1957  * It will not be modified the caller of bpf_prog_array_alloc()
1958  * (since caller requested prog_cnt == 0)
1959  * that pointer should be 'freed' by bpf_prog_array_free()
1960  */
1961 static struct {
1962 	struct bpf_prog_array hdr;
1963 	struct bpf_prog *null_prog;
1964 } empty_prog_array = {
1965 	.null_prog = NULL,
1966 };
1967 
1968 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1969 {
1970 	if (prog_cnt)
1971 		return kzalloc(sizeof(struct bpf_prog_array) +
1972 			       sizeof(struct bpf_prog_array_item) *
1973 			       (prog_cnt + 1),
1974 			       flags);
1975 
1976 	return &empty_prog_array.hdr;
1977 }
1978 
1979 void bpf_prog_array_free(struct bpf_prog_array *progs)
1980 {
1981 	if (!progs || progs == &empty_prog_array.hdr)
1982 		return;
1983 	kfree_rcu(progs, rcu);
1984 }
1985 
1986 int bpf_prog_array_length(struct bpf_prog_array *array)
1987 {
1988 	struct bpf_prog_array_item *item;
1989 	u32 cnt = 0;
1990 
1991 	for (item = array->items; item->prog; item++)
1992 		if (item->prog != &dummy_bpf_prog.prog)
1993 			cnt++;
1994 	return cnt;
1995 }
1996 
1997 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1998 {
1999 	struct bpf_prog_array_item *item;
2000 
2001 	for (item = array->items; item->prog; item++)
2002 		if (item->prog != &dummy_bpf_prog.prog)
2003 			return false;
2004 	return true;
2005 }
2006 
2007 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2008 				     u32 *prog_ids,
2009 				     u32 request_cnt)
2010 {
2011 	struct bpf_prog_array_item *item;
2012 	int i = 0;
2013 
2014 	for (item = array->items; item->prog; item++) {
2015 		if (item->prog == &dummy_bpf_prog.prog)
2016 			continue;
2017 		prog_ids[i] = item->prog->aux->id;
2018 		if (++i == request_cnt) {
2019 			item++;
2020 			break;
2021 		}
2022 	}
2023 
2024 	return !!(item->prog);
2025 }
2026 
2027 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2028 				__u32 __user *prog_ids, u32 cnt)
2029 {
2030 	unsigned long err = 0;
2031 	bool nospc;
2032 	u32 *ids;
2033 
2034 	/* users of this function are doing:
2035 	 * cnt = bpf_prog_array_length();
2036 	 * if (cnt > 0)
2037 	 *     bpf_prog_array_copy_to_user(..., cnt);
2038 	 * so below kcalloc doesn't need extra cnt > 0 check.
2039 	 */
2040 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2041 	if (!ids)
2042 		return -ENOMEM;
2043 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2044 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2045 	kfree(ids);
2046 	if (err)
2047 		return -EFAULT;
2048 	if (nospc)
2049 		return -ENOSPC;
2050 	return 0;
2051 }
2052 
2053 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2054 				struct bpf_prog *old_prog)
2055 {
2056 	struct bpf_prog_array_item *item;
2057 
2058 	for (item = array->items; item->prog; item++)
2059 		if (item->prog == old_prog) {
2060 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2061 			break;
2062 		}
2063 }
2064 
2065 /**
2066  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2067  *                                   index into the program array with
2068  *                                   a dummy no-op program.
2069  * @array: a bpf_prog_array
2070  * @index: the index of the program to replace
2071  *
2072  * Skips over dummy programs, by not counting them, when calculating
2073  * the position of the program to replace.
2074  *
2075  * Return:
2076  * * 0		- Success
2077  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2078  * * -ENOENT	- Index out of range
2079  */
2080 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2081 {
2082 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2083 }
2084 
2085 /**
2086  * bpf_prog_array_update_at() - Updates the program at the given index
2087  *                              into the program array.
2088  * @array: a bpf_prog_array
2089  * @index: the index of the program to update
2090  * @prog: the program to insert into the array
2091  *
2092  * Skips over dummy programs, by not counting them, when calculating
2093  * the position of the program to update.
2094  *
2095  * Return:
2096  * * 0		- Success
2097  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2098  * * -ENOENT	- Index out of range
2099  */
2100 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2101 			     struct bpf_prog *prog)
2102 {
2103 	struct bpf_prog_array_item *item;
2104 
2105 	if (unlikely(index < 0))
2106 		return -EINVAL;
2107 
2108 	for (item = array->items; item->prog; item++) {
2109 		if (item->prog == &dummy_bpf_prog.prog)
2110 			continue;
2111 		if (!index) {
2112 			WRITE_ONCE(item->prog, prog);
2113 			return 0;
2114 		}
2115 		index--;
2116 	}
2117 	return -ENOENT;
2118 }
2119 
2120 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2121 			struct bpf_prog *exclude_prog,
2122 			struct bpf_prog *include_prog,
2123 			u64 bpf_cookie,
2124 			struct bpf_prog_array **new_array)
2125 {
2126 	int new_prog_cnt, carry_prog_cnt = 0;
2127 	struct bpf_prog_array_item *existing, *new;
2128 	struct bpf_prog_array *array;
2129 	bool found_exclude = false;
2130 
2131 	/* Figure out how many existing progs we need to carry over to
2132 	 * the new array.
2133 	 */
2134 	if (old_array) {
2135 		existing = old_array->items;
2136 		for (; existing->prog; existing++) {
2137 			if (existing->prog == exclude_prog) {
2138 				found_exclude = true;
2139 				continue;
2140 			}
2141 			if (existing->prog != &dummy_bpf_prog.prog)
2142 				carry_prog_cnt++;
2143 			if (existing->prog == include_prog)
2144 				return -EEXIST;
2145 		}
2146 	}
2147 
2148 	if (exclude_prog && !found_exclude)
2149 		return -ENOENT;
2150 
2151 	/* How many progs (not NULL) will be in the new array? */
2152 	new_prog_cnt = carry_prog_cnt;
2153 	if (include_prog)
2154 		new_prog_cnt += 1;
2155 
2156 	/* Do we have any prog (not NULL) in the new array? */
2157 	if (!new_prog_cnt) {
2158 		*new_array = NULL;
2159 		return 0;
2160 	}
2161 
2162 	/* +1 as the end of prog_array is marked with NULL */
2163 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2164 	if (!array)
2165 		return -ENOMEM;
2166 	new = array->items;
2167 
2168 	/* Fill in the new prog array */
2169 	if (carry_prog_cnt) {
2170 		existing = old_array->items;
2171 		for (; existing->prog; existing++) {
2172 			if (existing->prog == exclude_prog ||
2173 			    existing->prog == &dummy_bpf_prog.prog)
2174 				continue;
2175 
2176 			new->prog = existing->prog;
2177 			new->bpf_cookie = existing->bpf_cookie;
2178 			new++;
2179 		}
2180 	}
2181 	if (include_prog) {
2182 		new->prog = include_prog;
2183 		new->bpf_cookie = bpf_cookie;
2184 		new++;
2185 	}
2186 	new->prog = NULL;
2187 	*new_array = array;
2188 	return 0;
2189 }
2190 
2191 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2192 			     u32 *prog_ids, u32 request_cnt,
2193 			     u32 *prog_cnt)
2194 {
2195 	u32 cnt = 0;
2196 
2197 	if (array)
2198 		cnt = bpf_prog_array_length(array);
2199 
2200 	*prog_cnt = cnt;
2201 
2202 	/* return early if user requested only program count or nothing to copy */
2203 	if (!request_cnt || !cnt)
2204 		return 0;
2205 
2206 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2207 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2208 								     : 0;
2209 }
2210 
2211 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2212 			  struct bpf_map **used_maps, u32 len)
2213 {
2214 	struct bpf_map *map;
2215 	u32 i;
2216 
2217 	for (i = 0; i < len; i++) {
2218 		map = used_maps[i];
2219 		if (map->ops->map_poke_untrack)
2220 			map->ops->map_poke_untrack(map, aux);
2221 		bpf_map_put(map);
2222 	}
2223 }
2224 
2225 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2226 {
2227 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2228 	kfree(aux->used_maps);
2229 }
2230 
2231 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2232 			  struct btf_mod_pair *used_btfs, u32 len)
2233 {
2234 #ifdef CONFIG_BPF_SYSCALL
2235 	struct btf_mod_pair *btf_mod;
2236 	u32 i;
2237 
2238 	for (i = 0; i < len; i++) {
2239 		btf_mod = &used_btfs[i];
2240 		if (btf_mod->module)
2241 			module_put(btf_mod->module);
2242 		btf_put(btf_mod->btf);
2243 	}
2244 #endif
2245 }
2246 
2247 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2248 {
2249 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2250 	kfree(aux->used_btfs);
2251 }
2252 
2253 static void bpf_prog_free_deferred(struct work_struct *work)
2254 {
2255 	struct bpf_prog_aux *aux;
2256 	int i;
2257 
2258 	aux = container_of(work, struct bpf_prog_aux, work);
2259 #ifdef CONFIG_BPF_SYSCALL
2260 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2261 #endif
2262 	bpf_free_used_maps(aux);
2263 	bpf_free_used_btfs(aux);
2264 	if (bpf_prog_is_dev_bound(aux))
2265 		bpf_prog_offload_destroy(aux->prog);
2266 #ifdef CONFIG_PERF_EVENTS
2267 	if (aux->prog->has_callchain_buf)
2268 		put_callchain_buffers();
2269 #endif
2270 	if (aux->dst_trampoline)
2271 		bpf_trampoline_put(aux->dst_trampoline);
2272 	for (i = 0; i < aux->func_cnt; i++) {
2273 		/* We can just unlink the subprog poke descriptor table as
2274 		 * it was originally linked to the main program and is also
2275 		 * released along with it.
2276 		 */
2277 		aux->func[i]->aux->poke_tab = NULL;
2278 		bpf_jit_free(aux->func[i]);
2279 	}
2280 	if (aux->func_cnt) {
2281 		kfree(aux->func);
2282 		bpf_prog_unlock_free(aux->prog);
2283 	} else {
2284 		bpf_jit_free(aux->prog);
2285 	}
2286 }
2287 
2288 /* Free internal BPF program */
2289 void bpf_prog_free(struct bpf_prog *fp)
2290 {
2291 	struct bpf_prog_aux *aux = fp->aux;
2292 
2293 	if (aux->dst_prog)
2294 		bpf_prog_put(aux->dst_prog);
2295 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2296 	schedule_work(&aux->work);
2297 }
2298 EXPORT_SYMBOL_GPL(bpf_prog_free);
2299 
2300 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2301 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2302 
2303 void bpf_user_rnd_init_once(void)
2304 {
2305 	prandom_init_once(&bpf_user_rnd_state);
2306 }
2307 
2308 BPF_CALL_0(bpf_user_rnd_u32)
2309 {
2310 	/* Should someone ever have the rather unwise idea to use some
2311 	 * of the registers passed into this function, then note that
2312 	 * this function is called from native eBPF and classic-to-eBPF
2313 	 * transformations. Register assignments from both sides are
2314 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2315 	 */
2316 	struct rnd_state *state;
2317 	u32 res;
2318 
2319 	state = &get_cpu_var(bpf_user_rnd_state);
2320 	res = prandom_u32_state(state);
2321 	put_cpu_var(bpf_user_rnd_state);
2322 
2323 	return res;
2324 }
2325 
2326 BPF_CALL_0(bpf_get_raw_cpu_id)
2327 {
2328 	return raw_smp_processor_id();
2329 }
2330 
2331 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2332 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2333 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2334 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2335 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2336 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2337 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2338 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2339 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2340 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2341 
2342 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2343 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2344 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2345 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2346 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2347 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2348 
2349 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2350 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2351 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2352 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2353 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2354 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2355 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2356 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2357 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2358 
2359 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2360 {
2361 	return NULL;
2362 }
2363 
2364 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2365 {
2366 	return NULL;
2367 }
2368 
2369 u64 __weak
2370 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2371 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2372 {
2373 	return -ENOTSUPP;
2374 }
2375 EXPORT_SYMBOL_GPL(bpf_event_output);
2376 
2377 /* Always built-in helper functions. */
2378 const struct bpf_func_proto bpf_tail_call_proto = {
2379 	.func		= NULL,
2380 	.gpl_only	= false,
2381 	.ret_type	= RET_VOID,
2382 	.arg1_type	= ARG_PTR_TO_CTX,
2383 	.arg2_type	= ARG_CONST_MAP_PTR,
2384 	.arg3_type	= ARG_ANYTHING,
2385 };
2386 
2387 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2388  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2389  * eBPF and implicitly also cBPF can get JITed!
2390  */
2391 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2392 {
2393 	return prog;
2394 }
2395 
2396 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2397  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2398  */
2399 void __weak bpf_jit_compile(struct bpf_prog *prog)
2400 {
2401 }
2402 
2403 bool __weak bpf_helper_changes_pkt_data(void *func)
2404 {
2405 	return false;
2406 }
2407 
2408 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2409  * analysis code and wants explicit zero extension inserted by verifier.
2410  * Otherwise, return FALSE.
2411  *
2412  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2413  * you don't override this. JITs that don't want these extra insns can detect
2414  * them using insn_is_zext.
2415  */
2416 bool __weak bpf_jit_needs_zext(void)
2417 {
2418 	return false;
2419 }
2420 
2421 bool __weak bpf_jit_supports_kfunc_call(void)
2422 {
2423 	return false;
2424 }
2425 
2426 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2427  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2428  */
2429 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2430 			 int len)
2431 {
2432 	return -EFAULT;
2433 }
2434 
2435 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2436 			      void *addr1, void *addr2)
2437 {
2438 	return -ENOTSUPP;
2439 }
2440 
2441 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2442 EXPORT_SYMBOL(bpf_stats_enabled_key);
2443 
2444 /* All definitions of tracepoints related to BPF. */
2445 #define CREATE_TRACE_POINTS
2446 #include <linux/bpf_trace.h>
2447 
2448 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2449 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2450