xref: /linux/kernel/bpf/core.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/frame.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define AX	regs[BPF_REG_AX]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 
95 	fp->pages = size / PAGE_SIZE;
96 	fp->aux = aux;
97 	fp->aux->prog = fp;
98 	fp->jit_requested = ebpf_jit_enabled();
99 
100 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101 
102 	return fp;
103 }
104 
105 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
106 {
107 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
108 	struct bpf_prog *prog;
109 	int cpu;
110 
111 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
112 	if (!prog)
113 		return NULL;
114 
115 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
116 	if (!prog->aux->stats) {
117 		kfree(prog->aux);
118 		vfree(prog);
119 		return NULL;
120 	}
121 
122 	for_each_possible_cpu(cpu) {
123 		struct bpf_prog_stats *pstats;
124 
125 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
126 		u64_stats_init(&pstats->syncp);
127 	}
128 	return prog;
129 }
130 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
131 
132 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
133 {
134 	if (!prog->aux->nr_linfo || !prog->jit_requested)
135 		return 0;
136 
137 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
138 					 sizeof(*prog->aux->jited_linfo),
139 					 GFP_KERNEL | __GFP_NOWARN);
140 	if (!prog->aux->jited_linfo)
141 		return -ENOMEM;
142 
143 	return 0;
144 }
145 
146 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
147 {
148 	kfree(prog->aux->jited_linfo);
149 	prog->aux->jited_linfo = NULL;
150 }
151 
152 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
153 {
154 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
155 		bpf_prog_free_jited_linfo(prog);
156 }
157 
158 /* The jit engine is responsible to provide an array
159  * for insn_off to the jited_off mapping (insn_to_jit_off).
160  *
161  * The idx to this array is the insn_off.  Hence, the insn_off
162  * here is relative to the prog itself instead of the main prog.
163  * This array has one entry for each xlated bpf insn.
164  *
165  * jited_off is the byte off to the last byte of the jited insn.
166  *
167  * Hence, with
168  * insn_start:
169  *      The first bpf insn off of the prog.  The insn off
170  *      here is relative to the main prog.
171  *      e.g. if prog is a subprog, insn_start > 0
172  * linfo_idx:
173  *      The prog's idx to prog->aux->linfo and jited_linfo
174  *
175  * jited_linfo[linfo_idx] = prog->bpf_func
176  *
177  * For i > linfo_idx,
178  *
179  * jited_linfo[i] = prog->bpf_func +
180  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
181  */
182 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
183 			       const u32 *insn_to_jit_off)
184 {
185 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
186 	const struct bpf_line_info *linfo;
187 	void **jited_linfo;
188 
189 	if (!prog->aux->jited_linfo)
190 		/* Userspace did not provide linfo */
191 		return;
192 
193 	linfo_idx = prog->aux->linfo_idx;
194 	linfo = &prog->aux->linfo[linfo_idx];
195 	insn_start = linfo[0].insn_off;
196 	insn_end = insn_start + prog->len;
197 
198 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
199 	jited_linfo[0] = prog->bpf_func;
200 
201 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
202 
203 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
204 		/* The verifier ensures that linfo[i].insn_off is
205 		 * strictly increasing
206 		 */
207 		jited_linfo[i] = prog->bpf_func +
208 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
209 }
210 
211 void bpf_prog_free_linfo(struct bpf_prog *prog)
212 {
213 	bpf_prog_free_jited_linfo(prog);
214 	kvfree(prog->aux->linfo);
215 }
216 
217 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
218 				  gfp_t gfp_extra_flags)
219 {
220 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
221 	struct bpf_prog *fp;
222 	u32 pages, delta;
223 	int ret;
224 
225 	BUG_ON(fp_old == NULL);
226 
227 	size = round_up(size, PAGE_SIZE);
228 	pages = size / PAGE_SIZE;
229 	if (pages <= fp_old->pages)
230 		return fp_old;
231 
232 	delta = pages - fp_old->pages;
233 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
234 	if (ret)
235 		return NULL;
236 
237 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
238 	if (fp == NULL) {
239 		__bpf_prog_uncharge(fp_old->aux->user, delta);
240 	} else {
241 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
242 		fp->pages = pages;
243 		fp->aux->prog = fp;
244 
245 		/* We keep fp->aux from fp_old around in the new
246 		 * reallocated structure.
247 		 */
248 		fp_old->aux = NULL;
249 		__bpf_prog_free(fp_old);
250 	}
251 
252 	return fp;
253 }
254 
255 void __bpf_prog_free(struct bpf_prog *fp)
256 {
257 	if (fp->aux) {
258 		free_percpu(fp->aux->stats);
259 		kfree(fp->aux->poke_tab);
260 		kfree(fp->aux);
261 	}
262 	vfree(fp);
263 }
264 
265 int bpf_prog_calc_tag(struct bpf_prog *fp)
266 {
267 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
268 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
269 	u32 digest[SHA_DIGEST_WORDS];
270 	u32 ws[SHA_WORKSPACE_WORDS];
271 	u32 i, bsize, psize, blocks;
272 	struct bpf_insn *dst;
273 	bool was_ld_map;
274 	u8 *raw, *todo;
275 	__be32 *result;
276 	__be64 *bits;
277 
278 	raw = vmalloc(raw_size);
279 	if (!raw)
280 		return -ENOMEM;
281 
282 	sha_init(digest);
283 	memset(ws, 0, sizeof(ws));
284 
285 	/* We need to take out the map fd for the digest calculation
286 	 * since they are unstable from user space side.
287 	 */
288 	dst = (void *)raw;
289 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
290 		dst[i] = fp->insnsi[i];
291 		if (!was_ld_map &&
292 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
293 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
294 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
295 			was_ld_map = true;
296 			dst[i].imm = 0;
297 		} else if (was_ld_map &&
298 			   dst[i].code == 0 &&
299 			   dst[i].dst_reg == 0 &&
300 			   dst[i].src_reg == 0 &&
301 			   dst[i].off == 0) {
302 			was_ld_map = false;
303 			dst[i].imm = 0;
304 		} else {
305 			was_ld_map = false;
306 		}
307 	}
308 
309 	psize = bpf_prog_insn_size(fp);
310 	memset(&raw[psize], 0, raw_size - psize);
311 	raw[psize++] = 0x80;
312 
313 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
314 	blocks = bsize / SHA_MESSAGE_BYTES;
315 	todo   = raw;
316 	if (bsize - psize >= sizeof(__be64)) {
317 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
318 	} else {
319 		bits = (__be64 *)(todo + bsize + bits_offset);
320 		blocks++;
321 	}
322 	*bits = cpu_to_be64((psize - 1) << 3);
323 
324 	while (blocks--) {
325 		sha_transform(digest, todo, ws);
326 		todo += SHA_MESSAGE_BYTES;
327 	}
328 
329 	result = (__force __be32 *)digest;
330 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
331 		result[i] = cpu_to_be32(digest[i]);
332 	memcpy(fp->tag, result, sizeof(fp->tag));
333 
334 	vfree(raw);
335 	return 0;
336 }
337 
338 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
339 				s32 end_new, s32 curr, const bool probe_pass)
340 {
341 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
342 	s32 delta = end_new - end_old;
343 	s64 imm = insn->imm;
344 
345 	if (curr < pos && curr + imm + 1 >= end_old)
346 		imm += delta;
347 	else if (curr >= end_new && curr + imm + 1 < end_new)
348 		imm -= delta;
349 	if (imm < imm_min || imm > imm_max)
350 		return -ERANGE;
351 	if (!probe_pass)
352 		insn->imm = imm;
353 	return 0;
354 }
355 
356 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
357 				s32 end_new, s32 curr, const bool probe_pass)
358 {
359 	const s32 off_min = S16_MIN, off_max = S16_MAX;
360 	s32 delta = end_new - end_old;
361 	s32 off = insn->off;
362 
363 	if (curr < pos && curr + off + 1 >= end_old)
364 		off += delta;
365 	else if (curr >= end_new && curr + off + 1 < end_new)
366 		off -= delta;
367 	if (off < off_min || off > off_max)
368 		return -ERANGE;
369 	if (!probe_pass)
370 		insn->off = off;
371 	return 0;
372 }
373 
374 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
375 			    s32 end_new, const bool probe_pass)
376 {
377 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
378 	struct bpf_insn *insn = prog->insnsi;
379 	int ret = 0;
380 
381 	for (i = 0; i < insn_cnt; i++, insn++) {
382 		u8 code;
383 
384 		/* In the probing pass we still operate on the original,
385 		 * unpatched image in order to check overflows before we
386 		 * do any other adjustments. Therefore skip the patchlet.
387 		 */
388 		if (probe_pass && i == pos) {
389 			i = end_new;
390 			insn = prog->insnsi + end_old;
391 		}
392 		code = insn->code;
393 		if ((BPF_CLASS(code) != BPF_JMP &&
394 		     BPF_CLASS(code) != BPF_JMP32) ||
395 		    BPF_OP(code) == BPF_EXIT)
396 			continue;
397 		/* Adjust offset of jmps if we cross patch boundaries. */
398 		if (BPF_OP(code) == BPF_CALL) {
399 			if (insn->src_reg != BPF_PSEUDO_CALL)
400 				continue;
401 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 						   end_new, i, probe_pass);
403 		} else {
404 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
405 						   end_new, i, probe_pass);
406 		}
407 		if (ret)
408 			break;
409 	}
410 
411 	return ret;
412 }
413 
414 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
415 {
416 	struct bpf_line_info *linfo;
417 	u32 i, nr_linfo;
418 
419 	nr_linfo = prog->aux->nr_linfo;
420 	if (!nr_linfo || !delta)
421 		return;
422 
423 	linfo = prog->aux->linfo;
424 
425 	for (i = 0; i < nr_linfo; i++)
426 		if (off < linfo[i].insn_off)
427 			break;
428 
429 	/* Push all off < linfo[i].insn_off by delta */
430 	for (; i < nr_linfo; i++)
431 		linfo[i].insn_off += delta;
432 }
433 
434 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
435 				       const struct bpf_insn *patch, u32 len)
436 {
437 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
438 	const u32 cnt_max = S16_MAX;
439 	struct bpf_prog *prog_adj;
440 	int err;
441 
442 	/* Since our patchlet doesn't expand the image, we're done. */
443 	if (insn_delta == 0) {
444 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
445 		return prog;
446 	}
447 
448 	insn_adj_cnt = prog->len + insn_delta;
449 
450 	/* Reject anything that would potentially let the insn->off
451 	 * target overflow when we have excessive program expansions.
452 	 * We need to probe here before we do any reallocation where
453 	 * we afterwards may not fail anymore.
454 	 */
455 	if (insn_adj_cnt > cnt_max &&
456 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
457 		return ERR_PTR(err);
458 
459 	/* Several new instructions need to be inserted. Make room
460 	 * for them. Likely, there's no need for a new allocation as
461 	 * last page could have large enough tailroom.
462 	 */
463 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
464 				    GFP_USER);
465 	if (!prog_adj)
466 		return ERR_PTR(-ENOMEM);
467 
468 	prog_adj->len = insn_adj_cnt;
469 
470 	/* Patching happens in 3 steps:
471 	 *
472 	 * 1) Move over tail of insnsi from next instruction onwards,
473 	 *    so we can patch the single target insn with one or more
474 	 *    new ones (patching is always from 1 to n insns, n > 0).
475 	 * 2) Inject new instructions at the target location.
476 	 * 3) Adjust branch offsets if necessary.
477 	 */
478 	insn_rest = insn_adj_cnt - off - len;
479 
480 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
481 		sizeof(*patch) * insn_rest);
482 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
483 
484 	/* We are guaranteed to not fail at this point, otherwise
485 	 * the ship has sailed to reverse to the original state. An
486 	 * overflow cannot happen at this point.
487 	 */
488 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
489 
490 	bpf_adj_linfo(prog_adj, off, insn_delta);
491 
492 	return prog_adj;
493 }
494 
495 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
496 {
497 	/* Branch offsets can't overflow when program is shrinking, no need
498 	 * to call bpf_adj_branches(..., true) here
499 	 */
500 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
501 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
502 	prog->len -= cnt;
503 
504 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
505 }
506 
507 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
508 {
509 	int i;
510 
511 	for (i = 0; i < fp->aux->func_cnt; i++)
512 		bpf_prog_kallsyms_del(fp->aux->func[i]);
513 }
514 
515 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
516 {
517 	bpf_prog_kallsyms_del_subprogs(fp);
518 	bpf_prog_kallsyms_del(fp);
519 }
520 
521 #ifdef CONFIG_BPF_JIT
522 /* All BPF JIT sysctl knobs here. */
523 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
524 int bpf_jit_harden   __read_mostly;
525 int bpf_jit_kallsyms __read_mostly;
526 long bpf_jit_limit   __read_mostly;
527 
528 static __always_inline void
529 bpf_get_prog_addr_region(const struct bpf_prog *prog,
530 			 unsigned long *symbol_start,
531 			 unsigned long *symbol_end)
532 {
533 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
534 	unsigned long addr = (unsigned long)hdr;
535 
536 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
537 
538 	*symbol_start = addr;
539 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
540 }
541 
542 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
543 {
544 	const char *end = sym + KSYM_NAME_LEN;
545 	const struct btf_type *type;
546 	const char *func_name;
547 
548 	BUILD_BUG_ON(sizeof("bpf_prog_") +
549 		     sizeof(prog->tag) * 2 +
550 		     /* name has been null terminated.
551 		      * We should need +1 for the '_' preceding
552 		      * the name.  However, the null character
553 		      * is double counted between the name and the
554 		      * sizeof("bpf_prog_") above, so we omit
555 		      * the +1 here.
556 		      */
557 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
558 
559 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
560 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
561 
562 	/* prog->aux->name will be ignored if full btf name is available */
563 	if (prog->aux->func_info_cnt) {
564 		type = btf_type_by_id(prog->aux->btf,
565 				      prog->aux->func_info[prog->aux->func_idx].type_id);
566 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
567 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
568 		return;
569 	}
570 
571 	if (prog->aux->name[0])
572 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
573 	else
574 		*sym = 0;
575 }
576 
577 static __always_inline unsigned long
578 bpf_get_prog_addr_start(struct latch_tree_node *n)
579 {
580 	unsigned long symbol_start, symbol_end;
581 	const struct bpf_prog_aux *aux;
582 
583 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
584 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
585 
586 	return symbol_start;
587 }
588 
589 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
590 					  struct latch_tree_node *b)
591 {
592 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
593 }
594 
595 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
596 {
597 	unsigned long val = (unsigned long)key;
598 	unsigned long symbol_start, symbol_end;
599 	const struct bpf_prog_aux *aux;
600 
601 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
602 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
603 
604 	if (val < symbol_start)
605 		return -1;
606 	if (val >= symbol_end)
607 		return  1;
608 
609 	return 0;
610 }
611 
612 static const struct latch_tree_ops bpf_tree_ops = {
613 	.less	= bpf_tree_less,
614 	.comp	= bpf_tree_comp,
615 };
616 
617 static DEFINE_SPINLOCK(bpf_lock);
618 static LIST_HEAD(bpf_kallsyms);
619 static struct latch_tree_root bpf_tree __cacheline_aligned;
620 
621 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
622 {
623 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
624 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
625 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
626 }
627 
628 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
629 {
630 	if (list_empty(&aux->ksym_lnode))
631 		return;
632 
633 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
634 	list_del_rcu(&aux->ksym_lnode);
635 }
636 
637 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
638 {
639 	return fp->jited && !bpf_prog_was_classic(fp);
640 }
641 
642 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
643 {
644 	return list_empty(&fp->aux->ksym_lnode) ||
645 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
646 }
647 
648 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
649 {
650 	if (!bpf_prog_kallsyms_candidate(fp) ||
651 	    !capable(CAP_SYS_ADMIN))
652 		return;
653 
654 	spin_lock_bh(&bpf_lock);
655 	bpf_prog_ksym_node_add(fp->aux);
656 	spin_unlock_bh(&bpf_lock);
657 }
658 
659 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
660 {
661 	if (!bpf_prog_kallsyms_candidate(fp))
662 		return;
663 
664 	spin_lock_bh(&bpf_lock);
665 	bpf_prog_ksym_node_del(fp->aux);
666 	spin_unlock_bh(&bpf_lock);
667 }
668 
669 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
670 {
671 	struct latch_tree_node *n;
672 
673 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
674 	return n ?
675 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
676 	       NULL;
677 }
678 
679 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
680 				 unsigned long *off, char *sym)
681 {
682 	unsigned long symbol_start, symbol_end;
683 	struct bpf_prog *prog;
684 	char *ret = NULL;
685 
686 	rcu_read_lock();
687 	prog = bpf_prog_kallsyms_find(addr);
688 	if (prog) {
689 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
690 		bpf_get_prog_name(prog, sym);
691 
692 		ret = sym;
693 		if (size)
694 			*size = symbol_end - symbol_start;
695 		if (off)
696 			*off  = addr - symbol_start;
697 	}
698 	rcu_read_unlock();
699 
700 	return ret;
701 }
702 
703 bool is_bpf_text_address(unsigned long addr)
704 {
705 	bool ret;
706 
707 	rcu_read_lock();
708 	ret = bpf_prog_kallsyms_find(addr) != NULL;
709 	rcu_read_unlock();
710 
711 	return ret;
712 }
713 
714 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
715 {
716 	const struct exception_table_entry *e = NULL;
717 	struct bpf_prog *prog;
718 
719 	rcu_read_lock();
720 	prog = bpf_prog_kallsyms_find(addr);
721 	if (!prog)
722 		goto out;
723 	if (!prog->aux->num_exentries)
724 		goto out;
725 
726 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
727 out:
728 	rcu_read_unlock();
729 	return e;
730 }
731 
732 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
733 		    char *sym)
734 {
735 	struct bpf_prog_aux *aux;
736 	unsigned int it = 0;
737 	int ret = -ERANGE;
738 
739 	if (!bpf_jit_kallsyms_enabled())
740 		return ret;
741 
742 	rcu_read_lock();
743 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
744 		if (it++ != symnum)
745 			continue;
746 
747 		bpf_get_prog_name(aux->prog, sym);
748 
749 		*value = (unsigned long)aux->prog->bpf_func;
750 		*type  = BPF_SYM_ELF_TYPE;
751 
752 		ret = 0;
753 		break;
754 	}
755 	rcu_read_unlock();
756 
757 	return ret;
758 }
759 
760 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
761 				struct bpf_jit_poke_descriptor *poke)
762 {
763 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
764 	static const u32 poke_tab_max = 1024;
765 	u32 slot = prog->aux->size_poke_tab;
766 	u32 size = slot + 1;
767 
768 	if (size > poke_tab_max)
769 		return -ENOSPC;
770 	if (poke->ip || poke->ip_stable || poke->adj_off)
771 		return -EINVAL;
772 
773 	switch (poke->reason) {
774 	case BPF_POKE_REASON_TAIL_CALL:
775 		if (!poke->tail_call.map)
776 			return -EINVAL;
777 		break;
778 	default:
779 		return -EINVAL;
780 	}
781 
782 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
783 	if (!tab)
784 		return -ENOMEM;
785 
786 	memcpy(&tab[slot], poke, sizeof(*poke));
787 	prog->aux->size_poke_tab = size;
788 	prog->aux->poke_tab = tab;
789 
790 	return slot;
791 }
792 
793 static atomic_long_t bpf_jit_current;
794 
795 /* Can be overridden by an arch's JIT compiler if it has a custom,
796  * dedicated BPF backend memory area, or if neither of the two
797  * below apply.
798  */
799 u64 __weak bpf_jit_alloc_exec_limit(void)
800 {
801 #if defined(MODULES_VADDR)
802 	return MODULES_END - MODULES_VADDR;
803 #else
804 	return VMALLOC_END - VMALLOC_START;
805 #endif
806 }
807 
808 static int __init bpf_jit_charge_init(void)
809 {
810 	/* Only used as heuristic here to derive limit. */
811 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
812 					    PAGE_SIZE), LONG_MAX);
813 	return 0;
814 }
815 pure_initcall(bpf_jit_charge_init);
816 
817 static int bpf_jit_charge_modmem(u32 pages)
818 {
819 	if (atomic_long_add_return(pages, &bpf_jit_current) >
820 	    (bpf_jit_limit >> PAGE_SHIFT)) {
821 		if (!capable(CAP_SYS_ADMIN)) {
822 			atomic_long_sub(pages, &bpf_jit_current);
823 			return -EPERM;
824 		}
825 	}
826 
827 	return 0;
828 }
829 
830 static void bpf_jit_uncharge_modmem(u32 pages)
831 {
832 	atomic_long_sub(pages, &bpf_jit_current);
833 }
834 
835 void *__weak bpf_jit_alloc_exec(unsigned long size)
836 {
837 	return module_alloc(size);
838 }
839 
840 void __weak bpf_jit_free_exec(void *addr)
841 {
842 	module_memfree(addr);
843 }
844 
845 struct bpf_binary_header *
846 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
847 		     unsigned int alignment,
848 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
849 {
850 	struct bpf_binary_header *hdr;
851 	u32 size, hole, start, pages;
852 
853 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
854 		     alignment > BPF_IMAGE_ALIGNMENT);
855 
856 	/* Most of BPF filters are really small, but if some of them
857 	 * fill a page, allow at least 128 extra bytes to insert a
858 	 * random section of illegal instructions.
859 	 */
860 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
861 	pages = size / PAGE_SIZE;
862 
863 	if (bpf_jit_charge_modmem(pages))
864 		return NULL;
865 	hdr = bpf_jit_alloc_exec(size);
866 	if (!hdr) {
867 		bpf_jit_uncharge_modmem(pages);
868 		return NULL;
869 	}
870 
871 	/* Fill space with illegal/arch-dep instructions. */
872 	bpf_fill_ill_insns(hdr, size);
873 
874 	hdr->pages = pages;
875 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
876 		     PAGE_SIZE - sizeof(*hdr));
877 	start = (get_random_int() % hole) & ~(alignment - 1);
878 
879 	/* Leave a random number of instructions before BPF code. */
880 	*image_ptr = &hdr->image[start];
881 
882 	return hdr;
883 }
884 
885 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
886 {
887 	u32 pages = hdr->pages;
888 
889 	bpf_jit_free_exec(hdr);
890 	bpf_jit_uncharge_modmem(pages);
891 }
892 
893 /* This symbol is only overridden by archs that have different
894  * requirements than the usual eBPF JITs, f.e. when they only
895  * implement cBPF JIT, do not set images read-only, etc.
896  */
897 void __weak bpf_jit_free(struct bpf_prog *fp)
898 {
899 	if (fp->jited) {
900 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
901 
902 		bpf_jit_binary_free(hdr);
903 
904 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
905 	}
906 
907 	bpf_prog_unlock_free(fp);
908 }
909 
910 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
911 			  const struct bpf_insn *insn, bool extra_pass,
912 			  u64 *func_addr, bool *func_addr_fixed)
913 {
914 	s16 off = insn->off;
915 	s32 imm = insn->imm;
916 	u8 *addr;
917 
918 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
919 	if (!*func_addr_fixed) {
920 		/* Place-holder address till the last pass has collected
921 		 * all addresses for JITed subprograms in which case we
922 		 * can pick them up from prog->aux.
923 		 */
924 		if (!extra_pass)
925 			addr = NULL;
926 		else if (prog->aux->func &&
927 			 off >= 0 && off < prog->aux->func_cnt)
928 			addr = (u8 *)prog->aux->func[off]->bpf_func;
929 		else
930 			return -EINVAL;
931 	} else {
932 		/* Address of a BPF helper call. Since part of the core
933 		 * kernel, it's always at a fixed location. __bpf_call_base
934 		 * and the helper with imm relative to it are both in core
935 		 * kernel.
936 		 */
937 		addr = (u8 *)__bpf_call_base + imm;
938 	}
939 
940 	*func_addr = (unsigned long)addr;
941 	return 0;
942 }
943 
944 static int bpf_jit_blind_insn(const struct bpf_insn *from,
945 			      const struct bpf_insn *aux,
946 			      struct bpf_insn *to_buff,
947 			      bool emit_zext)
948 {
949 	struct bpf_insn *to = to_buff;
950 	u32 imm_rnd = get_random_int();
951 	s16 off;
952 
953 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
954 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
955 
956 	/* Constraints on AX register:
957 	 *
958 	 * AX register is inaccessible from user space. It is mapped in
959 	 * all JITs, and used here for constant blinding rewrites. It is
960 	 * typically "stateless" meaning its contents are only valid within
961 	 * the executed instruction, but not across several instructions.
962 	 * There are a few exceptions however which are further detailed
963 	 * below.
964 	 *
965 	 * Constant blinding is only used by JITs, not in the interpreter.
966 	 * The interpreter uses AX in some occasions as a local temporary
967 	 * register e.g. in DIV or MOD instructions.
968 	 *
969 	 * In restricted circumstances, the verifier can also use the AX
970 	 * register for rewrites as long as they do not interfere with
971 	 * the above cases!
972 	 */
973 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
974 		goto out;
975 
976 	if (from->imm == 0 &&
977 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
978 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
979 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
980 		goto out;
981 	}
982 
983 	switch (from->code) {
984 	case BPF_ALU | BPF_ADD | BPF_K:
985 	case BPF_ALU | BPF_SUB | BPF_K:
986 	case BPF_ALU | BPF_AND | BPF_K:
987 	case BPF_ALU | BPF_OR  | BPF_K:
988 	case BPF_ALU | BPF_XOR | BPF_K:
989 	case BPF_ALU | BPF_MUL | BPF_K:
990 	case BPF_ALU | BPF_MOV | BPF_K:
991 	case BPF_ALU | BPF_DIV | BPF_K:
992 	case BPF_ALU | BPF_MOD | BPF_K:
993 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
994 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
995 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
996 		break;
997 
998 	case BPF_ALU64 | BPF_ADD | BPF_K:
999 	case BPF_ALU64 | BPF_SUB | BPF_K:
1000 	case BPF_ALU64 | BPF_AND | BPF_K:
1001 	case BPF_ALU64 | BPF_OR  | BPF_K:
1002 	case BPF_ALU64 | BPF_XOR | BPF_K:
1003 	case BPF_ALU64 | BPF_MUL | BPF_K:
1004 	case BPF_ALU64 | BPF_MOV | BPF_K:
1005 	case BPF_ALU64 | BPF_DIV | BPF_K:
1006 	case BPF_ALU64 | BPF_MOD | BPF_K:
1007 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1008 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1009 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1010 		break;
1011 
1012 	case BPF_JMP | BPF_JEQ  | BPF_K:
1013 	case BPF_JMP | BPF_JNE  | BPF_K:
1014 	case BPF_JMP | BPF_JGT  | BPF_K:
1015 	case BPF_JMP | BPF_JLT  | BPF_K:
1016 	case BPF_JMP | BPF_JGE  | BPF_K:
1017 	case BPF_JMP | BPF_JLE  | BPF_K:
1018 	case BPF_JMP | BPF_JSGT | BPF_K:
1019 	case BPF_JMP | BPF_JSLT | BPF_K:
1020 	case BPF_JMP | BPF_JSGE | BPF_K:
1021 	case BPF_JMP | BPF_JSLE | BPF_K:
1022 	case BPF_JMP | BPF_JSET | BPF_K:
1023 		/* Accommodate for extra offset in case of a backjump. */
1024 		off = from->off;
1025 		if (off < 0)
1026 			off -= 2;
1027 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1028 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1029 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1030 		break;
1031 
1032 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1033 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1034 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1035 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1036 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1037 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1038 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1039 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1040 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1041 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1042 	case BPF_JMP32 | BPF_JSET | BPF_K:
1043 		/* Accommodate for extra offset in case of a backjump. */
1044 		off = from->off;
1045 		if (off < 0)
1046 			off -= 2;
1047 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1048 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1049 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1050 				      off);
1051 		break;
1052 
1053 	case BPF_LD | BPF_IMM | BPF_DW:
1054 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1055 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1056 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1057 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1058 		break;
1059 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1060 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1061 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062 		if (emit_zext)
1063 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1064 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1065 		break;
1066 
1067 	case BPF_ST | BPF_MEM | BPF_DW:
1068 	case BPF_ST | BPF_MEM | BPF_W:
1069 	case BPF_ST | BPF_MEM | BPF_H:
1070 	case BPF_ST | BPF_MEM | BPF_B:
1071 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1072 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1073 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1074 		break;
1075 	}
1076 out:
1077 	return to - to_buff;
1078 }
1079 
1080 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1081 					      gfp_t gfp_extra_flags)
1082 {
1083 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1084 	struct bpf_prog *fp;
1085 
1086 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1087 	if (fp != NULL) {
1088 		/* aux->prog still points to the fp_other one, so
1089 		 * when promoting the clone to the real program,
1090 		 * this still needs to be adapted.
1091 		 */
1092 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1093 	}
1094 
1095 	return fp;
1096 }
1097 
1098 static void bpf_prog_clone_free(struct bpf_prog *fp)
1099 {
1100 	/* aux was stolen by the other clone, so we cannot free
1101 	 * it from this path! It will be freed eventually by the
1102 	 * other program on release.
1103 	 *
1104 	 * At this point, we don't need a deferred release since
1105 	 * clone is guaranteed to not be locked.
1106 	 */
1107 	fp->aux = NULL;
1108 	__bpf_prog_free(fp);
1109 }
1110 
1111 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1112 {
1113 	/* We have to repoint aux->prog to self, as we don't
1114 	 * know whether fp here is the clone or the original.
1115 	 */
1116 	fp->aux->prog = fp;
1117 	bpf_prog_clone_free(fp_other);
1118 }
1119 
1120 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1121 {
1122 	struct bpf_insn insn_buff[16], aux[2];
1123 	struct bpf_prog *clone, *tmp;
1124 	int insn_delta, insn_cnt;
1125 	struct bpf_insn *insn;
1126 	int i, rewritten;
1127 
1128 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1129 		return prog;
1130 
1131 	clone = bpf_prog_clone_create(prog, GFP_USER);
1132 	if (!clone)
1133 		return ERR_PTR(-ENOMEM);
1134 
1135 	insn_cnt = clone->len;
1136 	insn = clone->insnsi;
1137 
1138 	for (i = 0; i < insn_cnt; i++, insn++) {
1139 		/* We temporarily need to hold the original ld64 insn
1140 		 * so that we can still access the first part in the
1141 		 * second blinding run.
1142 		 */
1143 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1144 		    insn[1].code == 0)
1145 			memcpy(aux, insn, sizeof(aux));
1146 
1147 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1148 						clone->aux->verifier_zext);
1149 		if (!rewritten)
1150 			continue;
1151 
1152 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1153 		if (IS_ERR(tmp)) {
1154 			/* Patching may have repointed aux->prog during
1155 			 * realloc from the original one, so we need to
1156 			 * fix it up here on error.
1157 			 */
1158 			bpf_jit_prog_release_other(prog, clone);
1159 			return tmp;
1160 		}
1161 
1162 		clone = tmp;
1163 		insn_delta = rewritten - 1;
1164 
1165 		/* Walk new program and skip insns we just inserted. */
1166 		insn = clone->insnsi + i + insn_delta;
1167 		insn_cnt += insn_delta;
1168 		i        += insn_delta;
1169 	}
1170 
1171 	clone->blinded = 1;
1172 	return clone;
1173 }
1174 #endif /* CONFIG_BPF_JIT */
1175 
1176 /* Base function for offset calculation. Needs to go into .text section,
1177  * therefore keeping it non-static as well; will also be used by JITs
1178  * anyway later on, so do not let the compiler omit it. This also needs
1179  * to go into kallsyms for correlation from e.g. bpftool, so naming
1180  * must not change.
1181  */
1182 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1183 {
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(__bpf_call_base);
1187 
1188 /* All UAPI available opcodes. */
1189 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1190 	/* 32 bit ALU operations. */		\
1191 	/*   Register based. */			\
1192 	INSN_3(ALU, ADD,  X),			\
1193 	INSN_3(ALU, SUB,  X),			\
1194 	INSN_3(ALU, AND,  X),			\
1195 	INSN_3(ALU, OR,   X),			\
1196 	INSN_3(ALU, LSH,  X),			\
1197 	INSN_3(ALU, RSH,  X),			\
1198 	INSN_3(ALU, XOR,  X),			\
1199 	INSN_3(ALU, MUL,  X),			\
1200 	INSN_3(ALU, MOV,  X),			\
1201 	INSN_3(ALU, ARSH, X),			\
1202 	INSN_3(ALU, DIV,  X),			\
1203 	INSN_3(ALU, MOD,  X),			\
1204 	INSN_2(ALU, NEG),			\
1205 	INSN_3(ALU, END, TO_BE),		\
1206 	INSN_3(ALU, END, TO_LE),		\
1207 	/*   Immediate based. */		\
1208 	INSN_3(ALU, ADD,  K),			\
1209 	INSN_3(ALU, SUB,  K),			\
1210 	INSN_3(ALU, AND,  K),			\
1211 	INSN_3(ALU, OR,   K),			\
1212 	INSN_3(ALU, LSH,  K),			\
1213 	INSN_3(ALU, RSH,  K),			\
1214 	INSN_3(ALU, XOR,  K),			\
1215 	INSN_3(ALU, MUL,  K),			\
1216 	INSN_3(ALU, MOV,  K),			\
1217 	INSN_3(ALU, ARSH, K),			\
1218 	INSN_3(ALU, DIV,  K),			\
1219 	INSN_3(ALU, MOD,  K),			\
1220 	/* 64 bit ALU operations. */		\
1221 	/*   Register based. */			\
1222 	INSN_3(ALU64, ADD,  X),			\
1223 	INSN_3(ALU64, SUB,  X),			\
1224 	INSN_3(ALU64, AND,  X),			\
1225 	INSN_3(ALU64, OR,   X),			\
1226 	INSN_3(ALU64, LSH,  X),			\
1227 	INSN_3(ALU64, RSH,  X),			\
1228 	INSN_3(ALU64, XOR,  X),			\
1229 	INSN_3(ALU64, MUL,  X),			\
1230 	INSN_3(ALU64, MOV,  X),			\
1231 	INSN_3(ALU64, ARSH, X),			\
1232 	INSN_3(ALU64, DIV,  X),			\
1233 	INSN_3(ALU64, MOD,  X),			\
1234 	INSN_2(ALU64, NEG),			\
1235 	/*   Immediate based. */		\
1236 	INSN_3(ALU64, ADD,  K),			\
1237 	INSN_3(ALU64, SUB,  K),			\
1238 	INSN_3(ALU64, AND,  K),			\
1239 	INSN_3(ALU64, OR,   K),			\
1240 	INSN_3(ALU64, LSH,  K),			\
1241 	INSN_3(ALU64, RSH,  K),			\
1242 	INSN_3(ALU64, XOR,  K),			\
1243 	INSN_3(ALU64, MUL,  K),			\
1244 	INSN_3(ALU64, MOV,  K),			\
1245 	INSN_3(ALU64, ARSH, K),			\
1246 	INSN_3(ALU64, DIV,  K),			\
1247 	INSN_3(ALU64, MOD,  K),			\
1248 	/* Call instruction. */			\
1249 	INSN_2(JMP, CALL),			\
1250 	/* Exit instruction. */			\
1251 	INSN_2(JMP, EXIT),			\
1252 	/* 32-bit Jump instructions. */		\
1253 	/*   Register based. */			\
1254 	INSN_3(JMP32, JEQ,  X),			\
1255 	INSN_3(JMP32, JNE,  X),			\
1256 	INSN_3(JMP32, JGT,  X),			\
1257 	INSN_3(JMP32, JLT,  X),			\
1258 	INSN_3(JMP32, JGE,  X),			\
1259 	INSN_3(JMP32, JLE,  X),			\
1260 	INSN_3(JMP32, JSGT, X),			\
1261 	INSN_3(JMP32, JSLT, X),			\
1262 	INSN_3(JMP32, JSGE, X),			\
1263 	INSN_3(JMP32, JSLE, X),			\
1264 	INSN_3(JMP32, JSET, X),			\
1265 	/*   Immediate based. */		\
1266 	INSN_3(JMP32, JEQ,  K),			\
1267 	INSN_3(JMP32, JNE,  K),			\
1268 	INSN_3(JMP32, JGT,  K),			\
1269 	INSN_3(JMP32, JLT,  K),			\
1270 	INSN_3(JMP32, JGE,  K),			\
1271 	INSN_3(JMP32, JLE,  K),			\
1272 	INSN_3(JMP32, JSGT, K),			\
1273 	INSN_3(JMP32, JSLT, K),			\
1274 	INSN_3(JMP32, JSGE, K),			\
1275 	INSN_3(JMP32, JSLE, K),			\
1276 	INSN_3(JMP32, JSET, K),			\
1277 	/* Jump instructions. */		\
1278 	/*   Register based. */			\
1279 	INSN_3(JMP, JEQ,  X),			\
1280 	INSN_3(JMP, JNE,  X),			\
1281 	INSN_3(JMP, JGT,  X),			\
1282 	INSN_3(JMP, JLT,  X),			\
1283 	INSN_3(JMP, JGE,  X),			\
1284 	INSN_3(JMP, JLE,  X),			\
1285 	INSN_3(JMP, JSGT, X),			\
1286 	INSN_3(JMP, JSLT, X),			\
1287 	INSN_3(JMP, JSGE, X),			\
1288 	INSN_3(JMP, JSLE, X),			\
1289 	INSN_3(JMP, JSET, X),			\
1290 	/*   Immediate based. */		\
1291 	INSN_3(JMP, JEQ,  K),			\
1292 	INSN_3(JMP, JNE,  K),			\
1293 	INSN_3(JMP, JGT,  K),			\
1294 	INSN_3(JMP, JLT,  K),			\
1295 	INSN_3(JMP, JGE,  K),			\
1296 	INSN_3(JMP, JLE,  K),			\
1297 	INSN_3(JMP, JSGT, K),			\
1298 	INSN_3(JMP, JSLT, K),			\
1299 	INSN_3(JMP, JSGE, K),			\
1300 	INSN_3(JMP, JSLE, K),			\
1301 	INSN_3(JMP, JSET, K),			\
1302 	INSN_2(JMP, JA),			\
1303 	/* Store instructions. */		\
1304 	/*   Register based. */			\
1305 	INSN_3(STX, MEM,  B),			\
1306 	INSN_3(STX, MEM,  H),			\
1307 	INSN_3(STX, MEM,  W),			\
1308 	INSN_3(STX, MEM,  DW),			\
1309 	INSN_3(STX, XADD, W),			\
1310 	INSN_3(STX, XADD, DW),			\
1311 	/*   Immediate based. */		\
1312 	INSN_3(ST, MEM, B),			\
1313 	INSN_3(ST, MEM, H),			\
1314 	INSN_3(ST, MEM, W),			\
1315 	INSN_3(ST, MEM, DW),			\
1316 	/* Load instructions. */		\
1317 	/*   Register based. */			\
1318 	INSN_3(LDX, MEM, B),			\
1319 	INSN_3(LDX, MEM, H),			\
1320 	INSN_3(LDX, MEM, W),			\
1321 	INSN_3(LDX, MEM, DW),			\
1322 	/*   Immediate based. */		\
1323 	INSN_3(LD, IMM, DW)
1324 
1325 bool bpf_opcode_in_insntable(u8 code)
1326 {
1327 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1328 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1329 	static const bool public_insntable[256] = {
1330 		[0 ... 255] = false,
1331 		/* Now overwrite non-defaults ... */
1332 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1333 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1334 		[BPF_LD | BPF_ABS | BPF_B] = true,
1335 		[BPF_LD | BPF_ABS | BPF_H] = true,
1336 		[BPF_LD | BPF_ABS | BPF_W] = true,
1337 		[BPF_LD | BPF_IND | BPF_B] = true,
1338 		[BPF_LD | BPF_IND | BPF_H] = true,
1339 		[BPF_LD | BPF_IND | BPF_W] = true,
1340 	};
1341 #undef BPF_INSN_3_TBL
1342 #undef BPF_INSN_2_TBL
1343 	return public_insntable[code];
1344 }
1345 
1346 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1347 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1348 {
1349 	memset(dst, 0, size);
1350 	return -EFAULT;
1351 }
1352 
1353 /**
1354  *	__bpf_prog_run - run eBPF program on a given context
1355  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1356  *	@insn: is the array of eBPF instructions
1357  *	@stack: is the eBPF storage stack
1358  *
1359  * Decode and execute eBPF instructions.
1360  */
1361 static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1362 {
1363 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1364 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1365 	static const void * const jumptable[256] __annotate_jump_table = {
1366 		[0 ... 255] = &&default_label,
1367 		/* Now overwrite non-defaults ... */
1368 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1369 		/* Non-UAPI available opcodes. */
1370 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1371 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1372 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1373 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1374 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1375 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1376 	};
1377 #undef BPF_INSN_3_LBL
1378 #undef BPF_INSN_2_LBL
1379 	u32 tail_call_cnt = 0;
1380 
1381 #define CONT	 ({ insn++; goto select_insn; })
1382 #define CONT_JMP ({ insn++; goto select_insn; })
1383 
1384 select_insn:
1385 	goto *jumptable[insn->code];
1386 
1387 	/* ALU */
1388 #define ALU(OPCODE, OP)			\
1389 	ALU64_##OPCODE##_X:		\
1390 		DST = DST OP SRC;	\
1391 		CONT;			\
1392 	ALU_##OPCODE##_X:		\
1393 		DST = (u32) DST OP (u32) SRC;	\
1394 		CONT;			\
1395 	ALU64_##OPCODE##_K:		\
1396 		DST = DST OP IMM;		\
1397 		CONT;			\
1398 	ALU_##OPCODE##_K:		\
1399 		DST = (u32) DST OP (u32) IMM;	\
1400 		CONT;
1401 
1402 	ALU(ADD,  +)
1403 	ALU(SUB,  -)
1404 	ALU(AND,  &)
1405 	ALU(OR,   |)
1406 	ALU(LSH, <<)
1407 	ALU(RSH, >>)
1408 	ALU(XOR,  ^)
1409 	ALU(MUL,  *)
1410 #undef ALU
1411 	ALU_NEG:
1412 		DST = (u32) -DST;
1413 		CONT;
1414 	ALU64_NEG:
1415 		DST = -DST;
1416 		CONT;
1417 	ALU_MOV_X:
1418 		DST = (u32) SRC;
1419 		CONT;
1420 	ALU_MOV_K:
1421 		DST = (u32) IMM;
1422 		CONT;
1423 	ALU64_MOV_X:
1424 		DST = SRC;
1425 		CONT;
1426 	ALU64_MOV_K:
1427 		DST = IMM;
1428 		CONT;
1429 	LD_IMM_DW:
1430 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1431 		insn++;
1432 		CONT;
1433 	ALU_ARSH_X:
1434 		DST = (u64) (u32) (((s32) DST) >> SRC);
1435 		CONT;
1436 	ALU_ARSH_K:
1437 		DST = (u64) (u32) (((s32) DST) >> IMM);
1438 		CONT;
1439 	ALU64_ARSH_X:
1440 		(*(s64 *) &DST) >>= SRC;
1441 		CONT;
1442 	ALU64_ARSH_K:
1443 		(*(s64 *) &DST) >>= IMM;
1444 		CONT;
1445 	ALU64_MOD_X:
1446 		div64_u64_rem(DST, SRC, &AX);
1447 		DST = AX;
1448 		CONT;
1449 	ALU_MOD_X:
1450 		AX = (u32) DST;
1451 		DST = do_div(AX, (u32) SRC);
1452 		CONT;
1453 	ALU64_MOD_K:
1454 		div64_u64_rem(DST, IMM, &AX);
1455 		DST = AX;
1456 		CONT;
1457 	ALU_MOD_K:
1458 		AX = (u32) DST;
1459 		DST = do_div(AX, (u32) IMM);
1460 		CONT;
1461 	ALU64_DIV_X:
1462 		DST = div64_u64(DST, SRC);
1463 		CONT;
1464 	ALU_DIV_X:
1465 		AX = (u32) DST;
1466 		do_div(AX, (u32) SRC);
1467 		DST = (u32) AX;
1468 		CONT;
1469 	ALU64_DIV_K:
1470 		DST = div64_u64(DST, IMM);
1471 		CONT;
1472 	ALU_DIV_K:
1473 		AX = (u32) DST;
1474 		do_div(AX, (u32) IMM);
1475 		DST = (u32) AX;
1476 		CONT;
1477 	ALU_END_TO_BE:
1478 		switch (IMM) {
1479 		case 16:
1480 			DST = (__force u16) cpu_to_be16(DST);
1481 			break;
1482 		case 32:
1483 			DST = (__force u32) cpu_to_be32(DST);
1484 			break;
1485 		case 64:
1486 			DST = (__force u64) cpu_to_be64(DST);
1487 			break;
1488 		}
1489 		CONT;
1490 	ALU_END_TO_LE:
1491 		switch (IMM) {
1492 		case 16:
1493 			DST = (__force u16) cpu_to_le16(DST);
1494 			break;
1495 		case 32:
1496 			DST = (__force u32) cpu_to_le32(DST);
1497 			break;
1498 		case 64:
1499 			DST = (__force u64) cpu_to_le64(DST);
1500 			break;
1501 		}
1502 		CONT;
1503 
1504 	/* CALL */
1505 	JMP_CALL:
1506 		/* Function call scratches BPF_R1-BPF_R5 registers,
1507 		 * preserves BPF_R6-BPF_R9, and stores return value
1508 		 * into BPF_R0.
1509 		 */
1510 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1511 						       BPF_R4, BPF_R5);
1512 		CONT;
1513 
1514 	JMP_CALL_ARGS:
1515 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1516 							    BPF_R3, BPF_R4,
1517 							    BPF_R5,
1518 							    insn + insn->off + 1);
1519 		CONT;
1520 
1521 	JMP_TAIL_CALL: {
1522 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1523 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1524 		struct bpf_prog *prog;
1525 		u32 index = BPF_R3;
1526 
1527 		if (unlikely(index >= array->map.max_entries))
1528 			goto out;
1529 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1530 			goto out;
1531 
1532 		tail_call_cnt++;
1533 
1534 		prog = READ_ONCE(array->ptrs[index]);
1535 		if (!prog)
1536 			goto out;
1537 
1538 		/* ARG1 at this point is guaranteed to point to CTX from
1539 		 * the verifier side due to the fact that the tail call is
1540 		 * handeled like a helper, that is, bpf_tail_call_proto,
1541 		 * where arg1_type is ARG_PTR_TO_CTX.
1542 		 */
1543 		insn = prog->insnsi;
1544 		goto select_insn;
1545 out:
1546 		CONT;
1547 	}
1548 	JMP_JA:
1549 		insn += insn->off;
1550 		CONT;
1551 	JMP_EXIT:
1552 		return BPF_R0;
1553 	/* JMP */
1554 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1555 	JMP_##OPCODE##_X:					\
1556 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1557 			insn += insn->off;			\
1558 			CONT_JMP;				\
1559 		}						\
1560 		CONT;						\
1561 	JMP32_##OPCODE##_X:					\
1562 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1563 			insn += insn->off;			\
1564 			CONT_JMP;				\
1565 		}						\
1566 		CONT;						\
1567 	JMP_##OPCODE##_K:					\
1568 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1569 			insn += insn->off;			\
1570 			CONT_JMP;				\
1571 		}						\
1572 		CONT;						\
1573 	JMP32_##OPCODE##_K:					\
1574 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1575 			insn += insn->off;			\
1576 			CONT_JMP;				\
1577 		}						\
1578 		CONT;
1579 	COND_JMP(u, JEQ, ==)
1580 	COND_JMP(u, JNE, !=)
1581 	COND_JMP(u, JGT, >)
1582 	COND_JMP(u, JLT, <)
1583 	COND_JMP(u, JGE, >=)
1584 	COND_JMP(u, JLE, <=)
1585 	COND_JMP(u, JSET, &)
1586 	COND_JMP(s, JSGT, >)
1587 	COND_JMP(s, JSLT, <)
1588 	COND_JMP(s, JSGE, >=)
1589 	COND_JMP(s, JSLE, <=)
1590 #undef COND_JMP
1591 	/* STX and ST and LDX*/
1592 #define LDST(SIZEOP, SIZE)						\
1593 	STX_MEM_##SIZEOP:						\
1594 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1595 		CONT;							\
1596 	ST_MEM_##SIZEOP:						\
1597 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1598 		CONT;							\
1599 	LDX_MEM_##SIZEOP:						\
1600 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1601 		CONT;
1602 
1603 	LDST(B,   u8)
1604 	LDST(H,  u16)
1605 	LDST(W,  u32)
1606 	LDST(DW, u64)
1607 #undef LDST
1608 #define LDX_PROBE(SIZEOP, SIZE)							\
1609 	LDX_PROBE_MEM_##SIZEOP:							\
1610 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1611 		CONT;
1612 	LDX_PROBE(B,  1)
1613 	LDX_PROBE(H,  2)
1614 	LDX_PROBE(W,  4)
1615 	LDX_PROBE(DW, 8)
1616 #undef LDX_PROBE
1617 
1618 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1619 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1620 			   (DST + insn->off));
1621 		CONT;
1622 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1623 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1624 			     (DST + insn->off));
1625 		CONT;
1626 
1627 	default_label:
1628 		/* If we ever reach this, we have a bug somewhere. Die hard here
1629 		 * instead of just returning 0; we could be somewhere in a subprog,
1630 		 * so execution could continue otherwise which we do /not/ want.
1631 		 *
1632 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1633 		 */
1634 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1635 		BUG_ON(1);
1636 		return 0;
1637 }
1638 
1639 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1640 #define DEFINE_BPF_PROG_RUN(stack_size) \
1641 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1642 { \
1643 	u64 stack[stack_size / sizeof(u64)]; \
1644 	u64 regs[MAX_BPF_EXT_REG]; \
1645 \
1646 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1647 	ARG1 = (u64) (unsigned long) ctx; \
1648 	return ___bpf_prog_run(regs, insn, stack); \
1649 }
1650 
1651 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1652 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1653 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1654 				      const struct bpf_insn *insn) \
1655 { \
1656 	u64 stack[stack_size / sizeof(u64)]; \
1657 	u64 regs[MAX_BPF_EXT_REG]; \
1658 \
1659 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1660 	BPF_R1 = r1; \
1661 	BPF_R2 = r2; \
1662 	BPF_R3 = r3; \
1663 	BPF_R4 = r4; \
1664 	BPF_R5 = r5; \
1665 	return ___bpf_prog_run(regs, insn, stack); \
1666 }
1667 
1668 #define EVAL1(FN, X) FN(X)
1669 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1670 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1671 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1672 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1673 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1674 
1675 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1676 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1677 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1678 
1679 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1680 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1681 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1682 
1683 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1684 
1685 static unsigned int (*interpreters[])(const void *ctx,
1686 				      const struct bpf_insn *insn) = {
1687 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1688 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1689 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1690 };
1691 #undef PROG_NAME_LIST
1692 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1693 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1694 				  const struct bpf_insn *insn) = {
1695 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1696 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1697 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1698 };
1699 #undef PROG_NAME_LIST
1700 
1701 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1702 {
1703 	stack_depth = max_t(u32, stack_depth, 1);
1704 	insn->off = (s16) insn->imm;
1705 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1706 		__bpf_call_base_args;
1707 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1708 }
1709 
1710 #else
1711 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1712 					 const struct bpf_insn *insn)
1713 {
1714 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1715 	 * is not working properly, so warn about it!
1716 	 */
1717 	WARN_ON_ONCE(1);
1718 	return 0;
1719 }
1720 #endif
1721 
1722 bool bpf_prog_array_compatible(struct bpf_array *array,
1723 			       const struct bpf_prog *fp)
1724 {
1725 	if (fp->kprobe_override)
1726 		return false;
1727 
1728 	if (!array->aux->type) {
1729 		/* There's no owner yet where we could check for
1730 		 * compatibility.
1731 		 */
1732 		array->aux->type  = fp->type;
1733 		array->aux->jited = fp->jited;
1734 		return true;
1735 	}
1736 
1737 	return array->aux->type  == fp->type &&
1738 	       array->aux->jited == fp->jited;
1739 }
1740 
1741 static int bpf_check_tail_call(const struct bpf_prog *fp)
1742 {
1743 	struct bpf_prog_aux *aux = fp->aux;
1744 	int i;
1745 
1746 	for (i = 0; i < aux->used_map_cnt; i++) {
1747 		struct bpf_map *map = aux->used_maps[i];
1748 		struct bpf_array *array;
1749 
1750 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1751 			continue;
1752 
1753 		array = container_of(map, struct bpf_array, map);
1754 		if (!bpf_prog_array_compatible(array, fp))
1755 			return -EINVAL;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static void bpf_prog_select_func(struct bpf_prog *fp)
1762 {
1763 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1764 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1765 
1766 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1767 #else
1768 	fp->bpf_func = __bpf_prog_ret0_warn;
1769 #endif
1770 }
1771 
1772 /**
1773  *	bpf_prog_select_runtime - select exec runtime for BPF program
1774  *	@fp: bpf_prog populated with internal BPF program
1775  *	@err: pointer to error variable
1776  *
1777  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1778  * The BPF program will be executed via BPF_PROG_RUN() macro.
1779  */
1780 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1781 {
1782 	/* In case of BPF to BPF calls, verifier did all the prep
1783 	 * work with regards to JITing, etc.
1784 	 */
1785 	if (fp->bpf_func)
1786 		goto finalize;
1787 
1788 	bpf_prog_select_func(fp);
1789 
1790 	/* eBPF JITs can rewrite the program in case constant
1791 	 * blinding is active. However, in case of error during
1792 	 * blinding, bpf_int_jit_compile() must always return a
1793 	 * valid program, which in this case would simply not
1794 	 * be JITed, but falls back to the interpreter.
1795 	 */
1796 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1797 		*err = bpf_prog_alloc_jited_linfo(fp);
1798 		if (*err)
1799 			return fp;
1800 
1801 		fp = bpf_int_jit_compile(fp);
1802 		if (!fp->jited) {
1803 			bpf_prog_free_jited_linfo(fp);
1804 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1805 			*err = -ENOTSUPP;
1806 			return fp;
1807 #endif
1808 		} else {
1809 			bpf_prog_free_unused_jited_linfo(fp);
1810 		}
1811 	} else {
1812 		*err = bpf_prog_offload_compile(fp);
1813 		if (*err)
1814 			return fp;
1815 	}
1816 
1817 finalize:
1818 	bpf_prog_lock_ro(fp);
1819 
1820 	/* The tail call compatibility check can only be done at
1821 	 * this late stage as we need to determine, if we deal
1822 	 * with JITed or non JITed program concatenations and not
1823 	 * all eBPF JITs might immediately support all features.
1824 	 */
1825 	*err = bpf_check_tail_call(fp);
1826 
1827 	return fp;
1828 }
1829 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1830 
1831 static unsigned int __bpf_prog_ret1(const void *ctx,
1832 				    const struct bpf_insn *insn)
1833 {
1834 	return 1;
1835 }
1836 
1837 static struct bpf_prog_dummy {
1838 	struct bpf_prog prog;
1839 } dummy_bpf_prog = {
1840 	.prog = {
1841 		.bpf_func = __bpf_prog_ret1,
1842 	},
1843 };
1844 
1845 /* to avoid allocating empty bpf_prog_array for cgroups that
1846  * don't have bpf program attached use one global 'empty_prog_array'
1847  * It will not be modified the caller of bpf_prog_array_alloc()
1848  * (since caller requested prog_cnt == 0)
1849  * that pointer should be 'freed' by bpf_prog_array_free()
1850  */
1851 static struct {
1852 	struct bpf_prog_array hdr;
1853 	struct bpf_prog *null_prog;
1854 } empty_prog_array = {
1855 	.null_prog = NULL,
1856 };
1857 
1858 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1859 {
1860 	if (prog_cnt)
1861 		return kzalloc(sizeof(struct bpf_prog_array) +
1862 			       sizeof(struct bpf_prog_array_item) *
1863 			       (prog_cnt + 1),
1864 			       flags);
1865 
1866 	return &empty_prog_array.hdr;
1867 }
1868 
1869 void bpf_prog_array_free(struct bpf_prog_array *progs)
1870 {
1871 	if (!progs || progs == &empty_prog_array.hdr)
1872 		return;
1873 	kfree_rcu(progs, rcu);
1874 }
1875 
1876 int bpf_prog_array_length(struct bpf_prog_array *array)
1877 {
1878 	struct bpf_prog_array_item *item;
1879 	u32 cnt = 0;
1880 
1881 	for (item = array->items; item->prog; item++)
1882 		if (item->prog != &dummy_bpf_prog.prog)
1883 			cnt++;
1884 	return cnt;
1885 }
1886 
1887 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1888 {
1889 	struct bpf_prog_array_item *item;
1890 
1891 	for (item = array->items; item->prog; item++)
1892 		if (item->prog != &dummy_bpf_prog.prog)
1893 			return false;
1894 	return true;
1895 }
1896 
1897 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1898 				     u32 *prog_ids,
1899 				     u32 request_cnt)
1900 {
1901 	struct bpf_prog_array_item *item;
1902 	int i = 0;
1903 
1904 	for (item = array->items; item->prog; item++) {
1905 		if (item->prog == &dummy_bpf_prog.prog)
1906 			continue;
1907 		prog_ids[i] = item->prog->aux->id;
1908 		if (++i == request_cnt) {
1909 			item++;
1910 			break;
1911 		}
1912 	}
1913 
1914 	return !!(item->prog);
1915 }
1916 
1917 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1918 				__u32 __user *prog_ids, u32 cnt)
1919 {
1920 	unsigned long err = 0;
1921 	bool nospc;
1922 	u32 *ids;
1923 
1924 	/* users of this function are doing:
1925 	 * cnt = bpf_prog_array_length();
1926 	 * if (cnt > 0)
1927 	 *     bpf_prog_array_copy_to_user(..., cnt);
1928 	 * so below kcalloc doesn't need extra cnt > 0 check.
1929 	 */
1930 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1931 	if (!ids)
1932 		return -ENOMEM;
1933 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1934 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1935 	kfree(ids);
1936 	if (err)
1937 		return -EFAULT;
1938 	if (nospc)
1939 		return -ENOSPC;
1940 	return 0;
1941 }
1942 
1943 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1944 				struct bpf_prog *old_prog)
1945 {
1946 	struct bpf_prog_array_item *item;
1947 
1948 	for (item = array->items; item->prog; item++)
1949 		if (item->prog == old_prog) {
1950 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1951 			break;
1952 		}
1953 }
1954 
1955 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1956 			struct bpf_prog *exclude_prog,
1957 			struct bpf_prog *include_prog,
1958 			struct bpf_prog_array **new_array)
1959 {
1960 	int new_prog_cnt, carry_prog_cnt = 0;
1961 	struct bpf_prog_array_item *existing;
1962 	struct bpf_prog_array *array;
1963 	bool found_exclude = false;
1964 	int new_prog_idx = 0;
1965 
1966 	/* Figure out how many existing progs we need to carry over to
1967 	 * the new array.
1968 	 */
1969 	if (old_array) {
1970 		existing = old_array->items;
1971 		for (; existing->prog; existing++) {
1972 			if (existing->prog == exclude_prog) {
1973 				found_exclude = true;
1974 				continue;
1975 			}
1976 			if (existing->prog != &dummy_bpf_prog.prog)
1977 				carry_prog_cnt++;
1978 			if (existing->prog == include_prog)
1979 				return -EEXIST;
1980 		}
1981 	}
1982 
1983 	if (exclude_prog && !found_exclude)
1984 		return -ENOENT;
1985 
1986 	/* How many progs (not NULL) will be in the new array? */
1987 	new_prog_cnt = carry_prog_cnt;
1988 	if (include_prog)
1989 		new_prog_cnt += 1;
1990 
1991 	/* Do we have any prog (not NULL) in the new array? */
1992 	if (!new_prog_cnt) {
1993 		*new_array = NULL;
1994 		return 0;
1995 	}
1996 
1997 	/* +1 as the end of prog_array is marked with NULL */
1998 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1999 	if (!array)
2000 		return -ENOMEM;
2001 
2002 	/* Fill in the new prog array */
2003 	if (carry_prog_cnt) {
2004 		existing = old_array->items;
2005 		for (; existing->prog; existing++)
2006 			if (existing->prog != exclude_prog &&
2007 			    existing->prog != &dummy_bpf_prog.prog) {
2008 				array->items[new_prog_idx++].prog =
2009 					existing->prog;
2010 			}
2011 	}
2012 	if (include_prog)
2013 		array->items[new_prog_idx++].prog = include_prog;
2014 	array->items[new_prog_idx].prog = NULL;
2015 	*new_array = array;
2016 	return 0;
2017 }
2018 
2019 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2020 			     u32 *prog_ids, u32 request_cnt,
2021 			     u32 *prog_cnt)
2022 {
2023 	u32 cnt = 0;
2024 
2025 	if (array)
2026 		cnt = bpf_prog_array_length(array);
2027 
2028 	*prog_cnt = cnt;
2029 
2030 	/* return early if user requested only program count or nothing to copy */
2031 	if (!request_cnt || !cnt)
2032 		return 0;
2033 
2034 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2035 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2036 								     : 0;
2037 }
2038 
2039 static void bpf_free_cgroup_storage(struct bpf_prog_aux *aux)
2040 {
2041 	enum bpf_cgroup_storage_type stype;
2042 
2043 	for_each_cgroup_storage_type(stype) {
2044 		if (!aux->cgroup_storage[stype])
2045 			continue;
2046 		bpf_cgroup_storage_release(aux, aux->cgroup_storage[stype]);
2047 	}
2048 }
2049 
2050 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2051 			  struct bpf_map **used_maps, u32 len)
2052 {
2053 	struct bpf_map *map;
2054 	u32 i;
2055 
2056 	bpf_free_cgroup_storage(aux);
2057 	for (i = 0; i < len; i++) {
2058 		map = used_maps[i];
2059 		if (map->ops->map_poke_untrack)
2060 			map->ops->map_poke_untrack(map, aux);
2061 		bpf_map_put(map);
2062 	}
2063 }
2064 
2065 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2066 {
2067 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2068 	kfree(aux->used_maps);
2069 }
2070 
2071 static void bpf_prog_free_deferred(struct work_struct *work)
2072 {
2073 	struct bpf_prog_aux *aux;
2074 	int i;
2075 
2076 	aux = container_of(work, struct bpf_prog_aux, work);
2077 	bpf_free_used_maps(aux);
2078 	if (bpf_prog_is_dev_bound(aux))
2079 		bpf_prog_offload_destroy(aux->prog);
2080 #ifdef CONFIG_PERF_EVENTS
2081 	if (aux->prog->has_callchain_buf)
2082 		put_callchain_buffers();
2083 #endif
2084 	bpf_trampoline_put(aux->trampoline);
2085 	for (i = 0; i < aux->func_cnt; i++)
2086 		bpf_jit_free(aux->func[i]);
2087 	if (aux->func_cnt) {
2088 		kfree(aux->func);
2089 		bpf_prog_unlock_free(aux->prog);
2090 	} else {
2091 		bpf_jit_free(aux->prog);
2092 	}
2093 }
2094 
2095 /* Free internal BPF program */
2096 void bpf_prog_free(struct bpf_prog *fp)
2097 {
2098 	struct bpf_prog_aux *aux = fp->aux;
2099 
2100 	if (aux->linked_prog)
2101 		bpf_prog_put(aux->linked_prog);
2102 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2103 	schedule_work(&aux->work);
2104 }
2105 EXPORT_SYMBOL_GPL(bpf_prog_free);
2106 
2107 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2108 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2109 
2110 void bpf_user_rnd_init_once(void)
2111 {
2112 	prandom_init_once(&bpf_user_rnd_state);
2113 }
2114 
2115 BPF_CALL_0(bpf_user_rnd_u32)
2116 {
2117 	/* Should someone ever have the rather unwise idea to use some
2118 	 * of the registers passed into this function, then note that
2119 	 * this function is called from native eBPF and classic-to-eBPF
2120 	 * transformations. Register assignments from both sides are
2121 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2122 	 */
2123 	struct rnd_state *state;
2124 	u32 res;
2125 
2126 	state = &get_cpu_var(bpf_user_rnd_state);
2127 	res = prandom_u32_state(state);
2128 	put_cpu_var(bpf_user_rnd_state);
2129 
2130 	return res;
2131 }
2132 
2133 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2134 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2135 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2136 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2137 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2138 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2139 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2140 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2141 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2142 
2143 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2144 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2145 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2146 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2147 
2148 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2149 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2150 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2151 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2152 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2153 
2154 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2155 {
2156 	return NULL;
2157 }
2158 
2159 u64 __weak
2160 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2161 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2162 {
2163 	return -ENOTSUPP;
2164 }
2165 EXPORT_SYMBOL_GPL(bpf_event_output);
2166 
2167 /* Always built-in helper functions. */
2168 const struct bpf_func_proto bpf_tail_call_proto = {
2169 	.func		= NULL,
2170 	.gpl_only	= false,
2171 	.ret_type	= RET_VOID,
2172 	.arg1_type	= ARG_PTR_TO_CTX,
2173 	.arg2_type	= ARG_CONST_MAP_PTR,
2174 	.arg3_type	= ARG_ANYTHING,
2175 };
2176 
2177 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2178  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2179  * eBPF and implicitly also cBPF can get JITed!
2180  */
2181 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2182 {
2183 	return prog;
2184 }
2185 
2186 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2187  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2188  */
2189 void __weak bpf_jit_compile(struct bpf_prog *prog)
2190 {
2191 }
2192 
2193 bool __weak bpf_helper_changes_pkt_data(void *func)
2194 {
2195 	return false;
2196 }
2197 
2198 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2199  * analysis code and wants explicit zero extension inserted by verifier.
2200  * Otherwise, return FALSE.
2201  */
2202 bool __weak bpf_jit_needs_zext(void)
2203 {
2204 	return false;
2205 }
2206 
2207 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2208  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2209  */
2210 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2211 			 int len)
2212 {
2213 	return -EFAULT;
2214 }
2215 
2216 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2217 			      void *addr1, void *addr2)
2218 {
2219 	return -ENOTSUPP;
2220 }
2221 
2222 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2223 EXPORT_SYMBOL(bpf_stats_enabled_key);
2224 
2225 /* All definitions of tracepoints related to BPF. */
2226 #define CREATE_TRACE_POINTS
2227 #include <linux/bpf_trace.h>
2228 
2229 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2230 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2231