xref: /linux/kernel/bpf/core.c (revision ce63b2c89cc02d8acf7472272016ecd979fb08d5)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define ARG1	regs[BPF_REG_ARG1]
55 #define CTX	regs[BPF_REG_CTX]
56 #define IMM	insn->imm
57 
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64 	u8 *ptr = NULL;
65 
66 	if (k >= SKF_NET_OFF)
67 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 	else if (k >= SKF_LL_OFF)
69 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70 
71 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 		return ptr;
73 
74 	return NULL;
75 }
76 
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80 	struct bpf_prog_aux *aux;
81 	struct bpf_prog *fp;
82 
83 	size = round_up(size, PAGE_SIZE);
84 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85 	if (fp == NULL)
86 		return NULL;
87 
88 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 	if (aux == NULL) {
90 		vfree(fp);
91 		return NULL;
92 	}
93 
94 	fp->pages = size / PAGE_SIZE;
95 	fp->aux = aux;
96 	fp->aux->prog = fp;
97 	fp->jit_requested = ebpf_jit_enabled();
98 
99 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
100 
101 	return fp;
102 }
103 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
104 
105 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
106 				  gfp_t gfp_extra_flags)
107 {
108 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
109 	struct bpf_prog *fp;
110 	u32 pages, delta;
111 	int ret;
112 
113 	BUG_ON(fp_old == NULL);
114 
115 	size = round_up(size, PAGE_SIZE);
116 	pages = size / PAGE_SIZE;
117 	if (pages <= fp_old->pages)
118 		return fp_old;
119 
120 	delta = pages - fp_old->pages;
121 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
122 	if (ret)
123 		return NULL;
124 
125 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
126 	if (fp == NULL) {
127 		__bpf_prog_uncharge(fp_old->aux->user, delta);
128 	} else {
129 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
130 		fp->pages = pages;
131 		fp->aux->prog = fp;
132 
133 		/* We keep fp->aux from fp_old around in the new
134 		 * reallocated structure.
135 		 */
136 		fp_old->aux = NULL;
137 		__bpf_prog_free(fp_old);
138 	}
139 
140 	return fp;
141 }
142 
143 void __bpf_prog_free(struct bpf_prog *fp)
144 {
145 	kfree(fp->aux);
146 	vfree(fp);
147 }
148 
149 int bpf_prog_calc_tag(struct bpf_prog *fp)
150 {
151 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
152 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
153 	u32 digest[SHA_DIGEST_WORDS];
154 	u32 ws[SHA_WORKSPACE_WORDS];
155 	u32 i, bsize, psize, blocks;
156 	struct bpf_insn *dst;
157 	bool was_ld_map;
158 	u8 *raw, *todo;
159 	__be32 *result;
160 	__be64 *bits;
161 
162 	raw = vmalloc(raw_size);
163 	if (!raw)
164 		return -ENOMEM;
165 
166 	sha_init(digest);
167 	memset(ws, 0, sizeof(ws));
168 
169 	/* We need to take out the map fd for the digest calculation
170 	 * since they are unstable from user space side.
171 	 */
172 	dst = (void *)raw;
173 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
174 		dst[i] = fp->insnsi[i];
175 		if (!was_ld_map &&
176 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
177 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
178 			was_ld_map = true;
179 			dst[i].imm = 0;
180 		} else if (was_ld_map &&
181 			   dst[i].code == 0 &&
182 			   dst[i].dst_reg == 0 &&
183 			   dst[i].src_reg == 0 &&
184 			   dst[i].off == 0) {
185 			was_ld_map = false;
186 			dst[i].imm = 0;
187 		} else {
188 			was_ld_map = false;
189 		}
190 	}
191 
192 	psize = bpf_prog_insn_size(fp);
193 	memset(&raw[psize], 0, raw_size - psize);
194 	raw[psize++] = 0x80;
195 
196 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
197 	blocks = bsize / SHA_MESSAGE_BYTES;
198 	todo   = raw;
199 	if (bsize - psize >= sizeof(__be64)) {
200 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
201 	} else {
202 		bits = (__be64 *)(todo + bsize + bits_offset);
203 		blocks++;
204 	}
205 	*bits = cpu_to_be64((psize - 1) << 3);
206 
207 	while (blocks--) {
208 		sha_transform(digest, todo, ws);
209 		todo += SHA_MESSAGE_BYTES;
210 	}
211 
212 	result = (__force __be32 *)digest;
213 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
214 		result[i] = cpu_to_be32(digest[i]);
215 	memcpy(fp->tag, result, sizeof(fp->tag));
216 
217 	vfree(raw);
218 	return 0;
219 }
220 
221 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
222 				u32 curr, const bool probe_pass)
223 {
224 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
225 	s64 imm = insn->imm;
226 
227 	if (curr < pos && curr + imm + 1 > pos)
228 		imm += delta;
229 	else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
230 		imm -= delta;
231 	if (imm < imm_min || imm > imm_max)
232 		return -ERANGE;
233 	if (!probe_pass)
234 		insn->imm = imm;
235 	return 0;
236 }
237 
238 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
239 				u32 curr, const bool probe_pass)
240 {
241 	const s32 off_min = S16_MIN, off_max = S16_MAX;
242 	s32 off = insn->off;
243 
244 	if (curr < pos && curr + off + 1 > pos)
245 		off += delta;
246 	else if (curr > pos + delta && curr + off + 1 <= pos + delta)
247 		off -= delta;
248 	if (off < off_min || off > off_max)
249 		return -ERANGE;
250 	if (!probe_pass)
251 		insn->off = off;
252 	return 0;
253 }
254 
255 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
256 			    const bool probe_pass)
257 {
258 	u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
259 	struct bpf_insn *insn = prog->insnsi;
260 	int ret = 0;
261 
262 	for (i = 0; i < insn_cnt; i++, insn++) {
263 		u8 code;
264 
265 		/* In the probing pass we still operate on the original,
266 		 * unpatched image in order to check overflows before we
267 		 * do any other adjustments. Therefore skip the patchlet.
268 		 */
269 		if (probe_pass && i == pos) {
270 			i += delta + 1;
271 			insn++;
272 		}
273 		code = insn->code;
274 		if (BPF_CLASS(code) != BPF_JMP ||
275 		    BPF_OP(code) == BPF_EXIT)
276 			continue;
277 		/* Adjust offset of jmps if we cross patch boundaries. */
278 		if (BPF_OP(code) == BPF_CALL) {
279 			if (insn->src_reg != BPF_PSEUDO_CALL)
280 				continue;
281 			ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
282 						   probe_pass);
283 		} else {
284 			ret = bpf_adj_delta_to_off(insn, pos, delta, i,
285 						   probe_pass);
286 		}
287 		if (ret)
288 			break;
289 	}
290 
291 	return ret;
292 }
293 
294 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
295 				       const struct bpf_insn *patch, u32 len)
296 {
297 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
298 	const u32 cnt_max = S16_MAX;
299 	struct bpf_prog *prog_adj;
300 
301 	/* Since our patchlet doesn't expand the image, we're done. */
302 	if (insn_delta == 0) {
303 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
304 		return prog;
305 	}
306 
307 	insn_adj_cnt = prog->len + insn_delta;
308 
309 	/* Reject anything that would potentially let the insn->off
310 	 * target overflow when we have excessive program expansions.
311 	 * We need to probe here before we do any reallocation where
312 	 * we afterwards may not fail anymore.
313 	 */
314 	if (insn_adj_cnt > cnt_max &&
315 	    bpf_adj_branches(prog, off, insn_delta, true))
316 		return NULL;
317 
318 	/* Several new instructions need to be inserted. Make room
319 	 * for them. Likely, there's no need for a new allocation as
320 	 * last page could have large enough tailroom.
321 	 */
322 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
323 				    GFP_USER);
324 	if (!prog_adj)
325 		return NULL;
326 
327 	prog_adj->len = insn_adj_cnt;
328 
329 	/* Patching happens in 3 steps:
330 	 *
331 	 * 1) Move over tail of insnsi from next instruction onwards,
332 	 *    so we can patch the single target insn with one or more
333 	 *    new ones (patching is always from 1 to n insns, n > 0).
334 	 * 2) Inject new instructions at the target location.
335 	 * 3) Adjust branch offsets if necessary.
336 	 */
337 	insn_rest = insn_adj_cnt - off - len;
338 
339 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
340 		sizeof(*patch) * insn_rest);
341 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
342 
343 	/* We are guaranteed to not fail at this point, otherwise
344 	 * the ship has sailed to reverse to the original state. An
345 	 * overflow cannot happen at this point.
346 	 */
347 	BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
348 
349 	return prog_adj;
350 }
351 
352 #ifdef CONFIG_BPF_JIT
353 /* All BPF JIT sysctl knobs here. */
354 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
355 int bpf_jit_harden   __read_mostly;
356 int bpf_jit_kallsyms __read_mostly;
357 
358 static __always_inline void
359 bpf_get_prog_addr_region(const struct bpf_prog *prog,
360 			 unsigned long *symbol_start,
361 			 unsigned long *symbol_end)
362 {
363 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
364 	unsigned long addr = (unsigned long)hdr;
365 
366 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
367 
368 	*symbol_start = addr;
369 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
370 }
371 
372 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
373 {
374 	const char *end = sym + KSYM_NAME_LEN;
375 
376 	BUILD_BUG_ON(sizeof("bpf_prog_") +
377 		     sizeof(prog->tag) * 2 +
378 		     /* name has been null terminated.
379 		      * We should need +1 for the '_' preceding
380 		      * the name.  However, the null character
381 		      * is double counted between the name and the
382 		      * sizeof("bpf_prog_") above, so we omit
383 		      * the +1 here.
384 		      */
385 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
386 
387 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
388 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
389 	if (prog->aux->name[0])
390 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
391 	else
392 		*sym = 0;
393 }
394 
395 static __always_inline unsigned long
396 bpf_get_prog_addr_start(struct latch_tree_node *n)
397 {
398 	unsigned long symbol_start, symbol_end;
399 	const struct bpf_prog_aux *aux;
400 
401 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
402 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
403 
404 	return symbol_start;
405 }
406 
407 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
408 					  struct latch_tree_node *b)
409 {
410 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
411 }
412 
413 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
414 {
415 	unsigned long val = (unsigned long)key;
416 	unsigned long symbol_start, symbol_end;
417 	const struct bpf_prog_aux *aux;
418 
419 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
420 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
421 
422 	if (val < symbol_start)
423 		return -1;
424 	if (val >= symbol_end)
425 		return  1;
426 
427 	return 0;
428 }
429 
430 static const struct latch_tree_ops bpf_tree_ops = {
431 	.less	= bpf_tree_less,
432 	.comp	= bpf_tree_comp,
433 };
434 
435 static DEFINE_SPINLOCK(bpf_lock);
436 static LIST_HEAD(bpf_kallsyms);
437 static struct latch_tree_root bpf_tree __cacheline_aligned;
438 
439 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
440 {
441 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
442 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
443 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
444 }
445 
446 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
447 {
448 	if (list_empty(&aux->ksym_lnode))
449 		return;
450 
451 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
452 	list_del_rcu(&aux->ksym_lnode);
453 }
454 
455 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
456 {
457 	return fp->jited && !bpf_prog_was_classic(fp);
458 }
459 
460 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
461 {
462 	return list_empty(&fp->aux->ksym_lnode) ||
463 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
464 }
465 
466 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
467 {
468 	if (!bpf_prog_kallsyms_candidate(fp) ||
469 	    !capable(CAP_SYS_ADMIN))
470 		return;
471 
472 	spin_lock_bh(&bpf_lock);
473 	bpf_prog_ksym_node_add(fp->aux);
474 	spin_unlock_bh(&bpf_lock);
475 }
476 
477 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
478 {
479 	if (!bpf_prog_kallsyms_candidate(fp))
480 		return;
481 
482 	spin_lock_bh(&bpf_lock);
483 	bpf_prog_ksym_node_del(fp->aux);
484 	spin_unlock_bh(&bpf_lock);
485 }
486 
487 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
488 {
489 	struct latch_tree_node *n;
490 
491 	if (!bpf_jit_kallsyms_enabled())
492 		return NULL;
493 
494 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
495 	return n ?
496 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
497 	       NULL;
498 }
499 
500 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
501 				 unsigned long *off, char *sym)
502 {
503 	unsigned long symbol_start, symbol_end;
504 	struct bpf_prog *prog;
505 	char *ret = NULL;
506 
507 	rcu_read_lock();
508 	prog = bpf_prog_kallsyms_find(addr);
509 	if (prog) {
510 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
511 		bpf_get_prog_name(prog, sym);
512 
513 		ret = sym;
514 		if (size)
515 			*size = symbol_end - symbol_start;
516 		if (off)
517 			*off  = addr - symbol_start;
518 	}
519 	rcu_read_unlock();
520 
521 	return ret;
522 }
523 
524 bool is_bpf_text_address(unsigned long addr)
525 {
526 	bool ret;
527 
528 	rcu_read_lock();
529 	ret = bpf_prog_kallsyms_find(addr) != NULL;
530 	rcu_read_unlock();
531 
532 	return ret;
533 }
534 
535 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
536 		    char *sym)
537 {
538 	unsigned long symbol_start, symbol_end;
539 	struct bpf_prog_aux *aux;
540 	unsigned int it = 0;
541 	int ret = -ERANGE;
542 
543 	if (!bpf_jit_kallsyms_enabled())
544 		return ret;
545 
546 	rcu_read_lock();
547 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
548 		if (it++ != symnum)
549 			continue;
550 
551 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
552 		bpf_get_prog_name(aux->prog, sym);
553 
554 		*value = symbol_start;
555 		*type  = BPF_SYM_ELF_TYPE;
556 
557 		ret = 0;
558 		break;
559 	}
560 	rcu_read_unlock();
561 
562 	return ret;
563 }
564 
565 struct bpf_binary_header *
566 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
567 		     unsigned int alignment,
568 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
569 {
570 	struct bpf_binary_header *hdr;
571 	unsigned int size, hole, start;
572 
573 	/* Most of BPF filters are really small, but if some of them
574 	 * fill a page, allow at least 128 extra bytes to insert a
575 	 * random section of illegal instructions.
576 	 */
577 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
578 	hdr = module_alloc(size);
579 	if (hdr == NULL)
580 		return NULL;
581 
582 	/* Fill space with illegal/arch-dep instructions. */
583 	bpf_fill_ill_insns(hdr, size);
584 
585 	hdr->pages = size / PAGE_SIZE;
586 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
587 		     PAGE_SIZE - sizeof(*hdr));
588 	start = (get_random_int() % hole) & ~(alignment - 1);
589 
590 	/* Leave a random number of instructions before BPF code. */
591 	*image_ptr = &hdr->image[start];
592 
593 	return hdr;
594 }
595 
596 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
597 {
598 	module_memfree(hdr);
599 }
600 
601 /* This symbol is only overridden by archs that have different
602  * requirements than the usual eBPF JITs, f.e. when they only
603  * implement cBPF JIT, do not set images read-only, etc.
604  */
605 void __weak bpf_jit_free(struct bpf_prog *fp)
606 {
607 	if (fp->jited) {
608 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
609 
610 		bpf_jit_binary_unlock_ro(hdr);
611 		bpf_jit_binary_free(hdr);
612 
613 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
614 	}
615 
616 	bpf_prog_unlock_free(fp);
617 }
618 
619 static int bpf_jit_blind_insn(const struct bpf_insn *from,
620 			      const struct bpf_insn *aux,
621 			      struct bpf_insn *to_buff)
622 {
623 	struct bpf_insn *to = to_buff;
624 	u32 imm_rnd = get_random_int();
625 	s16 off;
626 
627 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
628 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
629 
630 	if (from->imm == 0 &&
631 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
632 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
633 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
634 		goto out;
635 	}
636 
637 	switch (from->code) {
638 	case BPF_ALU | BPF_ADD | BPF_K:
639 	case BPF_ALU | BPF_SUB | BPF_K:
640 	case BPF_ALU | BPF_AND | BPF_K:
641 	case BPF_ALU | BPF_OR  | BPF_K:
642 	case BPF_ALU | BPF_XOR | BPF_K:
643 	case BPF_ALU | BPF_MUL | BPF_K:
644 	case BPF_ALU | BPF_MOV | BPF_K:
645 	case BPF_ALU | BPF_DIV | BPF_K:
646 	case BPF_ALU | BPF_MOD | BPF_K:
647 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
648 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
649 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
650 		break;
651 
652 	case BPF_ALU64 | BPF_ADD | BPF_K:
653 	case BPF_ALU64 | BPF_SUB | BPF_K:
654 	case BPF_ALU64 | BPF_AND | BPF_K:
655 	case BPF_ALU64 | BPF_OR  | BPF_K:
656 	case BPF_ALU64 | BPF_XOR | BPF_K:
657 	case BPF_ALU64 | BPF_MUL | BPF_K:
658 	case BPF_ALU64 | BPF_MOV | BPF_K:
659 	case BPF_ALU64 | BPF_DIV | BPF_K:
660 	case BPF_ALU64 | BPF_MOD | BPF_K:
661 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
662 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
663 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
664 		break;
665 
666 	case BPF_JMP | BPF_JEQ  | BPF_K:
667 	case BPF_JMP | BPF_JNE  | BPF_K:
668 	case BPF_JMP | BPF_JGT  | BPF_K:
669 	case BPF_JMP | BPF_JLT  | BPF_K:
670 	case BPF_JMP | BPF_JGE  | BPF_K:
671 	case BPF_JMP | BPF_JLE  | BPF_K:
672 	case BPF_JMP | BPF_JSGT | BPF_K:
673 	case BPF_JMP | BPF_JSLT | BPF_K:
674 	case BPF_JMP | BPF_JSGE | BPF_K:
675 	case BPF_JMP | BPF_JSLE | BPF_K:
676 	case BPF_JMP | BPF_JSET | BPF_K:
677 		/* Accommodate for extra offset in case of a backjump. */
678 		off = from->off;
679 		if (off < 0)
680 			off -= 2;
681 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
682 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
683 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
684 		break;
685 
686 	case BPF_LD | BPF_ABS | BPF_W:
687 	case BPF_LD | BPF_ABS | BPF_H:
688 	case BPF_LD | BPF_ABS | BPF_B:
689 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
690 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
691 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
692 		break;
693 
694 	case BPF_LD | BPF_IND | BPF_W:
695 	case BPF_LD | BPF_IND | BPF_H:
696 	case BPF_LD | BPF_IND | BPF_B:
697 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
698 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
699 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
700 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
701 		break;
702 
703 	case BPF_LD | BPF_IMM | BPF_DW:
704 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
705 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
706 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
707 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
708 		break;
709 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
710 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
711 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
712 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
713 		break;
714 
715 	case BPF_ST | BPF_MEM | BPF_DW:
716 	case BPF_ST | BPF_MEM | BPF_W:
717 	case BPF_ST | BPF_MEM | BPF_H:
718 	case BPF_ST | BPF_MEM | BPF_B:
719 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
720 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
721 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
722 		break;
723 	}
724 out:
725 	return to - to_buff;
726 }
727 
728 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
729 					      gfp_t gfp_extra_flags)
730 {
731 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
732 	struct bpf_prog *fp;
733 
734 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
735 	if (fp != NULL) {
736 		/* aux->prog still points to the fp_other one, so
737 		 * when promoting the clone to the real program,
738 		 * this still needs to be adapted.
739 		 */
740 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
741 	}
742 
743 	return fp;
744 }
745 
746 static void bpf_prog_clone_free(struct bpf_prog *fp)
747 {
748 	/* aux was stolen by the other clone, so we cannot free
749 	 * it from this path! It will be freed eventually by the
750 	 * other program on release.
751 	 *
752 	 * At this point, we don't need a deferred release since
753 	 * clone is guaranteed to not be locked.
754 	 */
755 	fp->aux = NULL;
756 	__bpf_prog_free(fp);
757 }
758 
759 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
760 {
761 	/* We have to repoint aux->prog to self, as we don't
762 	 * know whether fp here is the clone or the original.
763 	 */
764 	fp->aux->prog = fp;
765 	bpf_prog_clone_free(fp_other);
766 }
767 
768 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
769 {
770 	struct bpf_insn insn_buff[16], aux[2];
771 	struct bpf_prog *clone, *tmp;
772 	int insn_delta, insn_cnt;
773 	struct bpf_insn *insn;
774 	int i, rewritten;
775 
776 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
777 		return prog;
778 
779 	clone = bpf_prog_clone_create(prog, GFP_USER);
780 	if (!clone)
781 		return ERR_PTR(-ENOMEM);
782 
783 	insn_cnt = clone->len;
784 	insn = clone->insnsi;
785 
786 	for (i = 0; i < insn_cnt; i++, insn++) {
787 		/* We temporarily need to hold the original ld64 insn
788 		 * so that we can still access the first part in the
789 		 * second blinding run.
790 		 */
791 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
792 		    insn[1].code == 0)
793 			memcpy(aux, insn, sizeof(aux));
794 
795 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
796 		if (!rewritten)
797 			continue;
798 
799 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
800 		if (!tmp) {
801 			/* Patching may have repointed aux->prog during
802 			 * realloc from the original one, so we need to
803 			 * fix it up here on error.
804 			 */
805 			bpf_jit_prog_release_other(prog, clone);
806 			return ERR_PTR(-ENOMEM);
807 		}
808 
809 		clone = tmp;
810 		insn_delta = rewritten - 1;
811 
812 		/* Walk new program and skip insns we just inserted. */
813 		insn = clone->insnsi + i + insn_delta;
814 		insn_cnt += insn_delta;
815 		i        += insn_delta;
816 	}
817 
818 	clone->blinded = 1;
819 	return clone;
820 }
821 #endif /* CONFIG_BPF_JIT */
822 
823 /* Base function for offset calculation. Needs to go into .text section,
824  * therefore keeping it non-static as well; will also be used by JITs
825  * anyway later on, so do not let the compiler omit it. This also needs
826  * to go into kallsyms for correlation from e.g. bpftool, so naming
827  * must not change.
828  */
829 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
830 {
831 	return 0;
832 }
833 EXPORT_SYMBOL_GPL(__bpf_call_base);
834 
835 /* All UAPI available opcodes. */
836 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
837 	/* 32 bit ALU operations. */		\
838 	/*   Register based. */			\
839 	INSN_3(ALU, ADD, X),			\
840 	INSN_3(ALU, SUB, X),			\
841 	INSN_3(ALU, AND, X),			\
842 	INSN_3(ALU, OR,  X),			\
843 	INSN_3(ALU, LSH, X),			\
844 	INSN_3(ALU, RSH, X),			\
845 	INSN_3(ALU, XOR, X),			\
846 	INSN_3(ALU, MUL, X),			\
847 	INSN_3(ALU, MOV, X),			\
848 	INSN_3(ALU, DIV, X),			\
849 	INSN_3(ALU, MOD, X),			\
850 	INSN_2(ALU, NEG),			\
851 	INSN_3(ALU, END, TO_BE),		\
852 	INSN_3(ALU, END, TO_LE),		\
853 	/*   Immediate based. */		\
854 	INSN_3(ALU, ADD, K),			\
855 	INSN_3(ALU, SUB, K),			\
856 	INSN_3(ALU, AND, K),			\
857 	INSN_3(ALU, OR,  K),			\
858 	INSN_3(ALU, LSH, K),			\
859 	INSN_3(ALU, RSH, K),			\
860 	INSN_3(ALU, XOR, K),			\
861 	INSN_3(ALU, MUL, K),			\
862 	INSN_3(ALU, MOV, K),			\
863 	INSN_3(ALU, DIV, K),			\
864 	INSN_3(ALU, MOD, K),			\
865 	/* 64 bit ALU operations. */		\
866 	/*   Register based. */			\
867 	INSN_3(ALU64, ADD,  X),			\
868 	INSN_3(ALU64, SUB,  X),			\
869 	INSN_3(ALU64, AND,  X),			\
870 	INSN_3(ALU64, OR,   X),			\
871 	INSN_3(ALU64, LSH,  X),			\
872 	INSN_3(ALU64, RSH,  X),			\
873 	INSN_3(ALU64, XOR,  X),			\
874 	INSN_3(ALU64, MUL,  X),			\
875 	INSN_3(ALU64, MOV,  X),			\
876 	INSN_3(ALU64, ARSH, X),			\
877 	INSN_3(ALU64, DIV,  X),			\
878 	INSN_3(ALU64, MOD,  X),			\
879 	INSN_2(ALU64, NEG),			\
880 	/*   Immediate based. */		\
881 	INSN_3(ALU64, ADD,  K),			\
882 	INSN_3(ALU64, SUB,  K),			\
883 	INSN_3(ALU64, AND,  K),			\
884 	INSN_3(ALU64, OR,   K),			\
885 	INSN_3(ALU64, LSH,  K),			\
886 	INSN_3(ALU64, RSH,  K),			\
887 	INSN_3(ALU64, XOR,  K),			\
888 	INSN_3(ALU64, MUL,  K),			\
889 	INSN_3(ALU64, MOV,  K),			\
890 	INSN_3(ALU64, ARSH, K),			\
891 	INSN_3(ALU64, DIV,  K),			\
892 	INSN_3(ALU64, MOD,  K),			\
893 	/* Call instruction. */			\
894 	INSN_2(JMP, CALL),			\
895 	/* Exit instruction. */			\
896 	INSN_2(JMP, EXIT),			\
897 	/* Jump instructions. */		\
898 	/*   Register based. */			\
899 	INSN_3(JMP, JEQ,  X),			\
900 	INSN_3(JMP, JNE,  X),			\
901 	INSN_3(JMP, JGT,  X),			\
902 	INSN_3(JMP, JLT,  X),			\
903 	INSN_3(JMP, JGE,  X),			\
904 	INSN_3(JMP, JLE,  X),			\
905 	INSN_3(JMP, JSGT, X),			\
906 	INSN_3(JMP, JSLT, X),			\
907 	INSN_3(JMP, JSGE, X),			\
908 	INSN_3(JMP, JSLE, X),			\
909 	INSN_3(JMP, JSET, X),			\
910 	/*   Immediate based. */		\
911 	INSN_3(JMP, JEQ,  K),			\
912 	INSN_3(JMP, JNE,  K),			\
913 	INSN_3(JMP, JGT,  K),			\
914 	INSN_3(JMP, JLT,  K),			\
915 	INSN_3(JMP, JGE,  K),			\
916 	INSN_3(JMP, JLE,  K),			\
917 	INSN_3(JMP, JSGT, K),			\
918 	INSN_3(JMP, JSLT, K),			\
919 	INSN_3(JMP, JSGE, K),			\
920 	INSN_3(JMP, JSLE, K),			\
921 	INSN_3(JMP, JSET, K),			\
922 	INSN_2(JMP, JA),			\
923 	/* Store instructions. */		\
924 	/*   Register based. */			\
925 	INSN_3(STX, MEM,  B),			\
926 	INSN_3(STX, MEM,  H),			\
927 	INSN_3(STX, MEM,  W),			\
928 	INSN_3(STX, MEM,  DW),			\
929 	INSN_3(STX, XADD, W),			\
930 	INSN_3(STX, XADD, DW),			\
931 	/*   Immediate based. */		\
932 	INSN_3(ST, MEM, B),			\
933 	INSN_3(ST, MEM, H),			\
934 	INSN_3(ST, MEM, W),			\
935 	INSN_3(ST, MEM, DW),			\
936 	/* Load instructions. */		\
937 	/*   Register based. */			\
938 	INSN_3(LDX, MEM, B),			\
939 	INSN_3(LDX, MEM, H),			\
940 	INSN_3(LDX, MEM, W),			\
941 	INSN_3(LDX, MEM, DW),			\
942 	/*   Immediate based. */		\
943 	INSN_3(LD, IMM, DW),			\
944 	/*   Misc (old cBPF carry-over). */	\
945 	INSN_3(LD, ABS, B),			\
946 	INSN_3(LD, ABS, H),			\
947 	INSN_3(LD, ABS, W),			\
948 	INSN_3(LD, IND, B),			\
949 	INSN_3(LD, IND, H),			\
950 	INSN_3(LD, IND, W)
951 
952 bool bpf_opcode_in_insntable(u8 code)
953 {
954 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
955 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
956 	static const bool public_insntable[256] = {
957 		[0 ... 255] = false,
958 		/* Now overwrite non-defaults ... */
959 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
960 	};
961 #undef BPF_INSN_3_TBL
962 #undef BPF_INSN_2_TBL
963 	return public_insntable[code];
964 }
965 
966 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
967 /**
968  *	__bpf_prog_run - run eBPF program on a given context
969  *	@ctx: is the data we are operating on
970  *	@insn: is the array of eBPF instructions
971  *
972  * Decode and execute eBPF instructions.
973  */
974 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
975 {
976 	u64 tmp;
977 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
978 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
979 	static const void *jumptable[256] = {
980 		[0 ... 255] = &&default_label,
981 		/* Now overwrite non-defaults ... */
982 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
983 		/* Non-UAPI available opcodes. */
984 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
985 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
986 	};
987 #undef BPF_INSN_3_LBL
988 #undef BPF_INSN_2_LBL
989 	u32 tail_call_cnt = 0;
990 	void *ptr;
991 	int off;
992 
993 #define CONT	 ({ insn++; goto select_insn; })
994 #define CONT_JMP ({ insn++; goto select_insn; })
995 
996 select_insn:
997 	goto *jumptable[insn->code];
998 
999 	/* ALU */
1000 #define ALU(OPCODE, OP)			\
1001 	ALU64_##OPCODE##_X:		\
1002 		DST = DST OP SRC;	\
1003 		CONT;			\
1004 	ALU_##OPCODE##_X:		\
1005 		DST = (u32) DST OP (u32) SRC;	\
1006 		CONT;			\
1007 	ALU64_##OPCODE##_K:		\
1008 		DST = DST OP IMM;		\
1009 		CONT;			\
1010 	ALU_##OPCODE##_K:		\
1011 		DST = (u32) DST OP (u32) IMM;	\
1012 		CONT;
1013 
1014 	ALU(ADD,  +)
1015 	ALU(SUB,  -)
1016 	ALU(AND,  &)
1017 	ALU(OR,   |)
1018 	ALU(LSH, <<)
1019 	ALU(RSH, >>)
1020 	ALU(XOR,  ^)
1021 	ALU(MUL,  *)
1022 #undef ALU
1023 	ALU_NEG:
1024 		DST = (u32) -DST;
1025 		CONT;
1026 	ALU64_NEG:
1027 		DST = -DST;
1028 		CONT;
1029 	ALU_MOV_X:
1030 		DST = (u32) SRC;
1031 		CONT;
1032 	ALU_MOV_K:
1033 		DST = (u32) IMM;
1034 		CONT;
1035 	ALU64_MOV_X:
1036 		DST = SRC;
1037 		CONT;
1038 	ALU64_MOV_K:
1039 		DST = IMM;
1040 		CONT;
1041 	LD_IMM_DW:
1042 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1043 		insn++;
1044 		CONT;
1045 	ALU64_ARSH_X:
1046 		(*(s64 *) &DST) >>= SRC;
1047 		CONT;
1048 	ALU64_ARSH_K:
1049 		(*(s64 *) &DST) >>= IMM;
1050 		CONT;
1051 	ALU64_MOD_X:
1052 		div64_u64_rem(DST, SRC, &tmp);
1053 		DST = tmp;
1054 		CONT;
1055 	ALU_MOD_X:
1056 		tmp = (u32) DST;
1057 		DST = do_div(tmp, (u32) SRC);
1058 		CONT;
1059 	ALU64_MOD_K:
1060 		div64_u64_rem(DST, IMM, &tmp);
1061 		DST = tmp;
1062 		CONT;
1063 	ALU_MOD_K:
1064 		tmp = (u32) DST;
1065 		DST = do_div(tmp, (u32) IMM);
1066 		CONT;
1067 	ALU64_DIV_X:
1068 		DST = div64_u64(DST, SRC);
1069 		CONT;
1070 	ALU_DIV_X:
1071 		tmp = (u32) DST;
1072 		do_div(tmp, (u32) SRC);
1073 		DST = (u32) tmp;
1074 		CONT;
1075 	ALU64_DIV_K:
1076 		DST = div64_u64(DST, IMM);
1077 		CONT;
1078 	ALU_DIV_K:
1079 		tmp = (u32) DST;
1080 		do_div(tmp, (u32) IMM);
1081 		DST = (u32) tmp;
1082 		CONT;
1083 	ALU_END_TO_BE:
1084 		switch (IMM) {
1085 		case 16:
1086 			DST = (__force u16) cpu_to_be16(DST);
1087 			break;
1088 		case 32:
1089 			DST = (__force u32) cpu_to_be32(DST);
1090 			break;
1091 		case 64:
1092 			DST = (__force u64) cpu_to_be64(DST);
1093 			break;
1094 		}
1095 		CONT;
1096 	ALU_END_TO_LE:
1097 		switch (IMM) {
1098 		case 16:
1099 			DST = (__force u16) cpu_to_le16(DST);
1100 			break;
1101 		case 32:
1102 			DST = (__force u32) cpu_to_le32(DST);
1103 			break;
1104 		case 64:
1105 			DST = (__force u64) cpu_to_le64(DST);
1106 			break;
1107 		}
1108 		CONT;
1109 
1110 	/* CALL */
1111 	JMP_CALL:
1112 		/* Function call scratches BPF_R1-BPF_R5 registers,
1113 		 * preserves BPF_R6-BPF_R9, and stores return value
1114 		 * into BPF_R0.
1115 		 */
1116 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1117 						       BPF_R4, BPF_R5);
1118 		CONT;
1119 
1120 	JMP_CALL_ARGS:
1121 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1122 							    BPF_R3, BPF_R4,
1123 							    BPF_R5,
1124 							    insn + insn->off + 1);
1125 		CONT;
1126 
1127 	JMP_TAIL_CALL: {
1128 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1129 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1130 		struct bpf_prog *prog;
1131 		u32 index = BPF_R3;
1132 
1133 		if (unlikely(index >= array->map.max_entries))
1134 			goto out;
1135 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1136 			goto out;
1137 
1138 		tail_call_cnt++;
1139 
1140 		prog = READ_ONCE(array->ptrs[index]);
1141 		if (!prog)
1142 			goto out;
1143 
1144 		/* ARG1 at this point is guaranteed to point to CTX from
1145 		 * the verifier side due to the fact that the tail call is
1146 		 * handeled like a helper, that is, bpf_tail_call_proto,
1147 		 * where arg1_type is ARG_PTR_TO_CTX.
1148 		 */
1149 		insn = prog->insnsi;
1150 		goto select_insn;
1151 out:
1152 		CONT;
1153 	}
1154 	/* JMP */
1155 	JMP_JA:
1156 		insn += insn->off;
1157 		CONT;
1158 	JMP_JEQ_X:
1159 		if (DST == SRC) {
1160 			insn += insn->off;
1161 			CONT_JMP;
1162 		}
1163 		CONT;
1164 	JMP_JEQ_K:
1165 		if (DST == IMM) {
1166 			insn += insn->off;
1167 			CONT_JMP;
1168 		}
1169 		CONT;
1170 	JMP_JNE_X:
1171 		if (DST != SRC) {
1172 			insn += insn->off;
1173 			CONT_JMP;
1174 		}
1175 		CONT;
1176 	JMP_JNE_K:
1177 		if (DST != IMM) {
1178 			insn += insn->off;
1179 			CONT_JMP;
1180 		}
1181 		CONT;
1182 	JMP_JGT_X:
1183 		if (DST > SRC) {
1184 			insn += insn->off;
1185 			CONT_JMP;
1186 		}
1187 		CONT;
1188 	JMP_JGT_K:
1189 		if (DST > IMM) {
1190 			insn += insn->off;
1191 			CONT_JMP;
1192 		}
1193 		CONT;
1194 	JMP_JLT_X:
1195 		if (DST < SRC) {
1196 			insn += insn->off;
1197 			CONT_JMP;
1198 		}
1199 		CONT;
1200 	JMP_JLT_K:
1201 		if (DST < IMM) {
1202 			insn += insn->off;
1203 			CONT_JMP;
1204 		}
1205 		CONT;
1206 	JMP_JGE_X:
1207 		if (DST >= SRC) {
1208 			insn += insn->off;
1209 			CONT_JMP;
1210 		}
1211 		CONT;
1212 	JMP_JGE_K:
1213 		if (DST >= IMM) {
1214 			insn += insn->off;
1215 			CONT_JMP;
1216 		}
1217 		CONT;
1218 	JMP_JLE_X:
1219 		if (DST <= SRC) {
1220 			insn += insn->off;
1221 			CONT_JMP;
1222 		}
1223 		CONT;
1224 	JMP_JLE_K:
1225 		if (DST <= IMM) {
1226 			insn += insn->off;
1227 			CONT_JMP;
1228 		}
1229 		CONT;
1230 	JMP_JSGT_X:
1231 		if (((s64) DST) > ((s64) SRC)) {
1232 			insn += insn->off;
1233 			CONT_JMP;
1234 		}
1235 		CONT;
1236 	JMP_JSGT_K:
1237 		if (((s64) DST) > ((s64) IMM)) {
1238 			insn += insn->off;
1239 			CONT_JMP;
1240 		}
1241 		CONT;
1242 	JMP_JSLT_X:
1243 		if (((s64) DST) < ((s64) SRC)) {
1244 			insn += insn->off;
1245 			CONT_JMP;
1246 		}
1247 		CONT;
1248 	JMP_JSLT_K:
1249 		if (((s64) DST) < ((s64) IMM)) {
1250 			insn += insn->off;
1251 			CONT_JMP;
1252 		}
1253 		CONT;
1254 	JMP_JSGE_X:
1255 		if (((s64) DST) >= ((s64) SRC)) {
1256 			insn += insn->off;
1257 			CONT_JMP;
1258 		}
1259 		CONT;
1260 	JMP_JSGE_K:
1261 		if (((s64) DST) >= ((s64) IMM)) {
1262 			insn += insn->off;
1263 			CONT_JMP;
1264 		}
1265 		CONT;
1266 	JMP_JSLE_X:
1267 		if (((s64) DST) <= ((s64) SRC)) {
1268 			insn += insn->off;
1269 			CONT_JMP;
1270 		}
1271 		CONT;
1272 	JMP_JSLE_K:
1273 		if (((s64) DST) <= ((s64) IMM)) {
1274 			insn += insn->off;
1275 			CONT_JMP;
1276 		}
1277 		CONT;
1278 	JMP_JSET_X:
1279 		if (DST & SRC) {
1280 			insn += insn->off;
1281 			CONT_JMP;
1282 		}
1283 		CONT;
1284 	JMP_JSET_K:
1285 		if (DST & IMM) {
1286 			insn += insn->off;
1287 			CONT_JMP;
1288 		}
1289 		CONT;
1290 	JMP_EXIT:
1291 		return BPF_R0;
1292 
1293 	/* STX and ST and LDX*/
1294 #define LDST(SIZEOP, SIZE)						\
1295 	STX_MEM_##SIZEOP:						\
1296 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1297 		CONT;							\
1298 	ST_MEM_##SIZEOP:						\
1299 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1300 		CONT;							\
1301 	LDX_MEM_##SIZEOP:						\
1302 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1303 		CONT;
1304 
1305 	LDST(B,   u8)
1306 	LDST(H,  u16)
1307 	LDST(W,  u32)
1308 	LDST(DW, u64)
1309 #undef LDST
1310 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1311 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1312 			   (DST + insn->off));
1313 		CONT;
1314 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1315 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1316 			     (DST + insn->off));
1317 		CONT;
1318 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1319 		off = IMM;
1320 load_word:
1321 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1322 		 * appearing in the programs where ctx == skb
1323 		 * (see may_access_skb() in the verifier). All programs
1324 		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1325 		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1326 		 * verifier will check that BPF_R6 == ctx.
1327 		 *
1328 		 * BPF_ABS and BPF_IND are wrappers of function calls,
1329 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
1330 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1331 		 *
1332 		 * Implicit input:
1333 		 *   ctx == skb == BPF_R6 == CTX
1334 		 *
1335 		 * Explicit input:
1336 		 *   SRC == any register
1337 		 *   IMM == 32-bit immediate
1338 		 *
1339 		 * Output:
1340 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1341 		 */
1342 
1343 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1344 		if (likely(ptr != NULL)) {
1345 			BPF_R0 = get_unaligned_be32(ptr);
1346 			CONT;
1347 		}
1348 
1349 		return 0;
1350 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1351 		off = IMM;
1352 load_half:
1353 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1354 		if (likely(ptr != NULL)) {
1355 			BPF_R0 = get_unaligned_be16(ptr);
1356 			CONT;
1357 		}
1358 
1359 		return 0;
1360 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1361 		off = IMM;
1362 load_byte:
1363 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1364 		if (likely(ptr != NULL)) {
1365 			BPF_R0 = *(u8 *)ptr;
1366 			CONT;
1367 		}
1368 
1369 		return 0;
1370 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1371 		off = IMM + SRC;
1372 		goto load_word;
1373 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1374 		off = IMM + SRC;
1375 		goto load_half;
1376 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1377 		off = IMM + SRC;
1378 		goto load_byte;
1379 
1380 	default_label:
1381 		/* If we ever reach this, we have a bug somewhere. Die hard here
1382 		 * instead of just returning 0; we could be somewhere in a subprog,
1383 		 * so execution could continue otherwise which we do /not/ want.
1384 		 *
1385 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1386 		 */
1387 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1388 		BUG_ON(1);
1389 		return 0;
1390 }
1391 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1392 
1393 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1394 #define DEFINE_BPF_PROG_RUN(stack_size) \
1395 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1396 { \
1397 	u64 stack[stack_size / sizeof(u64)]; \
1398 	u64 regs[MAX_BPF_REG]; \
1399 \
1400 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1401 	ARG1 = (u64) (unsigned long) ctx; \
1402 	return ___bpf_prog_run(regs, insn, stack); \
1403 }
1404 
1405 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1406 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1407 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1408 				      const struct bpf_insn *insn) \
1409 { \
1410 	u64 stack[stack_size / sizeof(u64)]; \
1411 	u64 regs[MAX_BPF_REG]; \
1412 \
1413 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1414 	BPF_R1 = r1; \
1415 	BPF_R2 = r2; \
1416 	BPF_R3 = r3; \
1417 	BPF_R4 = r4; \
1418 	BPF_R5 = r5; \
1419 	return ___bpf_prog_run(regs, insn, stack); \
1420 }
1421 
1422 #define EVAL1(FN, X) FN(X)
1423 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1424 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1425 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1426 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1427 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1428 
1429 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1430 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1431 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1432 
1433 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1434 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1435 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1436 
1437 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1438 
1439 static unsigned int (*interpreters[])(const void *ctx,
1440 				      const struct bpf_insn *insn) = {
1441 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1442 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1443 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1444 };
1445 #undef PROG_NAME_LIST
1446 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1447 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1448 				  const struct bpf_insn *insn) = {
1449 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1450 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1451 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1452 };
1453 #undef PROG_NAME_LIST
1454 
1455 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1456 {
1457 	stack_depth = max_t(u32, stack_depth, 1);
1458 	insn->off = (s16) insn->imm;
1459 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1460 		__bpf_call_base_args;
1461 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1462 }
1463 
1464 #else
1465 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1466 					 const struct bpf_insn *insn)
1467 {
1468 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1469 	 * is not working properly, so warn about it!
1470 	 */
1471 	WARN_ON_ONCE(1);
1472 	return 0;
1473 }
1474 #endif
1475 
1476 bool bpf_prog_array_compatible(struct bpf_array *array,
1477 			       const struct bpf_prog *fp)
1478 {
1479 	if (fp->kprobe_override)
1480 		return false;
1481 
1482 	if (!array->owner_prog_type) {
1483 		/* There's no owner yet where we could check for
1484 		 * compatibility.
1485 		 */
1486 		array->owner_prog_type = fp->type;
1487 		array->owner_jited = fp->jited;
1488 
1489 		return true;
1490 	}
1491 
1492 	return array->owner_prog_type == fp->type &&
1493 	       array->owner_jited == fp->jited;
1494 }
1495 
1496 static int bpf_check_tail_call(const struct bpf_prog *fp)
1497 {
1498 	struct bpf_prog_aux *aux = fp->aux;
1499 	int i;
1500 
1501 	for (i = 0; i < aux->used_map_cnt; i++) {
1502 		struct bpf_map *map = aux->used_maps[i];
1503 		struct bpf_array *array;
1504 
1505 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1506 			continue;
1507 
1508 		array = container_of(map, struct bpf_array, map);
1509 		if (!bpf_prog_array_compatible(array, fp))
1510 			return -EINVAL;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  *	bpf_prog_select_runtime - select exec runtime for BPF program
1518  *	@fp: bpf_prog populated with internal BPF program
1519  *	@err: pointer to error variable
1520  *
1521  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1522  * The BPF program will be executed via BPF_PROG_RUN() macro.
1523  */
1524 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1525 {
1526 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1527 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1528 
1529 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1530 #else
1531 	fp->bpf_func = __bpf_prog_ret0_warn;
1532 #endif
1533 
1534 	/* eBPF JITs can rewrite the program in case constant
1535 	 * blinding is active. However, in case of error during
1536 	 * blinding, bpf_int_jit_compile() must always return a
1537 	 * valid program, which in this case would simply not
1538 	 * be JITed, but falls back to the interpreter.
1539 	 */
1540 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1541 		fp = bpf_int_jit_compile(fp);
1542 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1543 		if (!fp->jited) {
1544 			*err = -ENOTSUPP;
1545 			return fp;
1546 		}
1547 #endif
1548 	} else {
1549 		*err = bpf_prog_offload_compile(fp);
1550 		if (*err)
1551 			return fp;
1552 	}
1553 	bpf_prog_lock_ro(fp);
1554 
1555 	/* The tail call compatibility check can only be done at
1556 	 * this late stage as we need to determine, if we deal
1557 	 * with JITed or non JITed program concatenations and not
1558 	 * all eBPF JITs might immediately support all features.
1559 	 */
1560 	*err = bpf_check_tail_call(fp);
1561 
1562 	return fp;
1563 }
1564 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1565 
1566 static unsigned int __bpf_prog_ret1(const void *ctx,
1567 				    const struct bpf_insn *insn)
1568 {
1569 	return 1;
1570 }
1571 
1572 static struct bpf_prog_dummy {
1573 	struct bpf_prog prog;
1574 } dummy_bpf_prog = {
1575 	.prog = {
1576 		.bpf_func = __bpf_prog_ret1,
1577 	},
1578 };
1579 
1580 /* to avoid allocating empty bpf_prog_array for cgroups that
1581  * don't have bpf program attached use one global 'empty_prog_array'
1582  * It will not be modified the caller of bpf_prog_array_alloc()
1583  * (since caller requested prog_cnt == 0)
1584  * that pointer should be 'freed' by bpf_prog_array_free()
1585  */
1586 static struct {
1587 	struct bpf_prog_array hdr;
1588 	struct bpf_prog *null_prog;
1589 } empty_prog_array = {
1590 	.null_prog = NULL,
1591 };
1592 
1593 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1594 {
1595 	if (prog_cnt)
1596 		return kzalloc(sizeof(struct bpf_prog_array) +
1597 			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
1598 			       flags);
1599 
1600 	return &empty_prog_array.hdr;
1601 }
1602 
1603 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1604 {
1605 	if (!progs ||
1606 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1607 		return;
1608 	kfree_rcu(progs, rcu);
1609 }
1610 
1611 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1612 {
1613 	struct bpf_prog **prog;
1614 	u32 cnt = 0;
1615 
1616 	rcu_read_lock();
1617 	prog = rcu_dereference(progs)->progs;
1618 	for (; *prog; prog++)
1619 		if (*prog != &dummy_bpf_prog.prog)
1620 			cnt++;
1621 	rcu_read_unlock();
1622 	return cnt;
1623 }
1624 
1625 static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1626 				     u32 *prog_ids,
1627 				     u32 request_cnt)
1628 {
1629 	int i = 0;
1630 
1631 	for (; *prog; prog++) {
1632 		if (*prog == &dummy_bpf_prog.prog)
1633 			continue;
1634 		prog_ids[i] = (*prog)->aux->id;
1635 		if (++i == request_cnt) {
1636 			prog++;
1637 			break;
1638 		}
1639 	}
1640 
1641 	return !!(*prog);
1642 }
1643 
1644 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1645 				__u32 __user *prog_ids, u32 cnt)
1646 {
1647 	struct bpf_prog **prog;
1648 	unsigned long err = 0;
1649 	bool nospc;
1650 	u32 *ids;
1651 
1652 	/* users of this function are doing:
1653 	 * cnt = bpf_prog_array_length();
1654 	 * if (cnt > 0)
1655 	 *     bpf_prog_array_copy_to_user(..., cnt);
1656 	 * so below kcalloc doesn't need extra cnt > 0 check, but
1657 	 * bpf_prog_array_length() releases rcu lock and
1658 	 * prog array could have been swapped with empty or larger array,
1659 	 * so always copy 'cnt' prog_ids to the user.
1660 	 * In a rare race the user will see zero prog_ids
1661 	 */
1662 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1663 	if (!ids)
1664 		return -ENOMEM;
1665 	rcu_read_lock();
1666 	prog = rcu_dereference(progs)->progs;
1667 	nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1668 	rcu_read_unlock();
1669 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1670 	kfree(ids);
1671 	if (err)
1672 		return -EFAULT;
1673 	if (nospc)
1674 		return -ENOSPC;
1675 	return 0;
1676 }
1677 
1678 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1679 				struct bpf_prog *old_prog)
1680 {
1681 	struct bpf_prog **prog = progs->progs;
1682 
1683 	for (; *prog; prog++)
1684 		if (*prog == old_prog) {
1685 			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1686 			break;
1687 		}
1688 }
1689 
1690 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1691 			struct bpf_prog *exclude_prog,
1692 			struct bpf_prog *include_prog,
1693 			struct bpf_prog_array **new_array)
1694 {
1695 	int new_prog_cnt, carry_prog_cnt = 0;
1696 	struct bpf_prog **existing_prog;
1697 	struct bpf_prog_array *array;
1698 	int new_prog_idx = 0;
1699 
1700 	/* Figure out how many existing progs we need to carry over to
1701 	 * the new array.
1702 	 */
1703 	if (old_array) {
1704 		existing_prog = old_array->progs;
1705 		for (; *existing_prog; existing_prog++) {
1706 			if (*existing_prog != exclude_prog &&
1707 			    *existing_prog != &dummy_bpf_prog.prog)
1708 				carry_prog_cnt++;
1709 			if (*existing_prog == include_prog)
1710 				return -EEXIST;
1711 		}
1712 	}
1713 
1714 	/* How many progs (not NULL) will be in the new array? */
1715 	new_prog_cnt = carry_prog_cnt;
1716 	if (include_prog)
1717 		new_prog_cnt += 1;
1718 
1719 	/* Do we have any prog (not NULL) in the new array? */
1720 	if (!new_prog_cnt) {
1721 		*new_array = NULL;
1722 		return 0;
1723 	}
1724 
1725 	/* +1 as the end of prog_array is marked with NULL */
1726 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1727 	if (!array)
1728 		return -ENOMEM;
1729 
1730 	/* Fill in the new prog array */
1731 	if (carry_prog_cnt) {
1732 		existing_prog = old_array->progs;
1733 		for (; *existing_prog; existing_prog++)
1734 			if (*existing_prog != exclude_prog &&
1735 			    *existing_prog != &dummy_bpf_prog.prog)
1736 				array->progs[new_prog_idx++] = *existing_prog;
1737 	}
1738 	if (include_prog)
1739 		array->progs[new_prog_idx++] = include_prog;
1740 	array->progs[new_prog_idx] = NULL;
1741 	*new_array = array;
1742 	return 0;
1743 }
1744 
1745 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1746 			     u32 *prog_ids, u32 request_cnt,
1747 			     u32 *prog_cnt)
1748 {
1749 	struct bpf_prog **prog;
1750 	u32 cnt = 0;
1751 
1752 	if (array)
1753 		cnt = bpf_prog_array_length(array);
1754 
1755 	*prog_cnt = cnt;
1756 
1757 	/* return early if user requested only program count or nothing to copy */
1758 	if (!request_cnt || !cnt)
1759 		return 0;
1760 
1761 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1762 	prog = rcu_dereference_check(array, 1)->progs;
1763 	return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1764 								     : 0;
1765 }
1766 
1767 static void bpf_prog_free_deferred(struct work_struct *work)
1768 {
1769 	struct bpf_prog_aux *aux;
1770 	int i;
1771 
1772 	aux = container_of(work, struct bpf_prog_aux, work);
1773 	if (bpf_prog_is_dev_bound(aux))
1774 		bpf_prog_offload_destroy(aux->prog);
1775 	for (i = 0; i < aux->func_cnt; i++)
1776 		bpf_jit_free(aux->func[i]);
1777 	if (aux->func_cnt) {
1778 		kfree(aux->func);
1779 		bpf_prog_unlock_free(aux->prog);
1780 	} else {
1781 		bpf_jit_free(aux->prog);
1782 	}
1783 }
1784 
1785 /* Free internal BPF program */
1786 void bpf_prog_free(struct bpf_prog *fp)
1787 {
1788 	struct bpf_prog_aux *aux = fp->aux;
1789 
1790 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1791 	schedule_work(&aux->work);
1792 }
1793 EXPORT_SYMBOL_GPL(bpf_prog_free);
1794 
1795 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1796 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1797 
1798 void bpf_user_rnd_init_once(void)
1799 {
1800 	prandom_init_once(&bpf_user_rnd_state);
1801 }
1802 
1803 BPF_CALL_0(bpf_user_rnd_u32)
1804 {
1805 	/* Should someone ever have the rather unwise idea to use some
1806 	 * of the registers passed into this function, then note that
1807 	 * this function is called from native eBPF and classic-to-eBPF
1808 	 * transformations. Register assignments from both sides are
1809 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1810 	 */
1811 	struct rnd_state *state;
1812 	u32 res;
1813 
1814 	state = &get_cpu_var(bpf_user_rnd_state);
1815 	res = prandom_u32_state(state);
1816 	put_cpu_var(bpf_user_rnd_state);
1817 
1818 	return res;
1819 }
1820 
1821 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1822 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1823 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1824 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1825 
1826 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1827 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1828 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1829 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1830 
1831 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1832 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1833 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1834 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1835 
1836 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1837 {
1838 	return NULL;
1839 }
1840 
1841 u64 __weak
1842 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1843 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1844 {
1845 	return -ENOTSUPP;
1846 }
1847 
1848 /* Always built-in helper functions. */
1849 const struct bpf_func_proto bpf_tail_call_proto = {
1850 	.func		= NULL,
1851 	.gpl_only	= false,
1852 	.ret_type	= RET_VOID,
1853 	.arg1_type	= ARG_PTR_TO_CTX,
1854 	.arg2_type	= ARG_CONST_MAP_PTR,
1855 	.arg3_type	= ARG_ANYTHING,
1856 };
1857 
1858 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1859  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1860  * eBPF and implicitly also cBPF can get JITed!
1861  */
1862 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1863 {
1864 	return prog;
1865 }
1866 
1867 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1868  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1869  */
1870 void __weak bpf_jit_compile(struct bpf_prog *prog)
1871 {
1872 }
1873 
1874 bool __weak bpf_helper_changes_pkt_data(void *func)
1875 {
1876 	return false;
1877 }
1878 
1879 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1880  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1881  */
1882 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1883 			 int len)
1884 {
1885 	return -EFAULT;
1886 }
1887 
1888 /* All definitions of tracepoints related to BPF. */
1889 #define CREATE_TRACE_POINTS
1890 #include <linux/bpf_trace.h>
1891 
1892 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1893 
1894 /* These are only used within the BPF_SYSCALL code */
1895 #ifdef CONFIG_BPF_SYSCALL
1896 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1897 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1898 #endif
1899