xref: /linux/kernel/bpf/core.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define AX	regs[BPF_REG_AX]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
95 	if (!fp->active) {
96 		vfree(fp);
97 		kfree(aux);
98 		return NULL;
99 	}
100 
101 	fp->pages = size / PAGE_SIZE;
102 	fp->aux = aux;
103 	fp->aux->prog = fp;
104 	fp->jit_requested = ebpf_jit_enabled();
105 
106 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
107 	mutex_init(&fp->aux->used_maps_mutex);
108 	mutex_init(&fp->aux->dst_mutex);
109 
110 	return fp;
111 }
112 
113 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
114 {
115 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
116 	struct bpf_prog *prog;
117 	int cpu;
118 
119 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
120 	if (!prog)
121 		return NULL;
122 
123 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
124 	if (!prog->stats) {
125 		free_percpu(prog->active);
126 		kfree(prog->aux);
127 		vfree(prog);
128 		return NULL;
129 	}
130 
131 	for_each_possible_cpu(cpu) {
132 		struct bpf_prog_stats *pstats;
133 
134 		pstats = per_cpu_ptr(prog->stats, cpu);
135 		u64_stats_init(&pstats->syncp);
136 	}
137 	return prog;
138 }
139 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
140 
141 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
142 {
143 	if (!prog->aux->nr_linfo || !prog->jit_requested)
144 		return 0;
145 
146 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
147 					 sizeof(*prog->aux->jited_linfo),
148 					 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
149 	if (!prog->aux->jited_linfo)
150 		return -ENOMEM;
151 
152 	return 0;
153 }
154 
155 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
156 {
157 	kfree(prog->aux->jited_linfo);
158 	prog->aux->jited_linfo = NULL;
159 }
160 
161 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
162 {
163 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
164 		bpf_prog_free_jited_linfo(prog);
165 }
166 
167 /* The jit engine is responsible to provide an array
168  * for insn_off to the jited_off mapping (insn_to_jit_off).
169  *
170  * The idx to this array is the insn_off.  Hence, the insn_off
171  * here is relative to the prog itself instead of the main prog.
172  * This array has one entry for each xlated bpf insn.
173  *
174  * jited_off is the byte off to the last byte of the jited insn.
175  *
176  * Hence, with
177  * insn_start:
178  *      The first bpf insn off of the prog.  The insn off
179  *      here is relative to the main prog.
180  *      e.g. if prog is a subprog, insn_start > 0
181  * linfo_idx:
182  *      The prog's idx to prog->aux->linfo and jited_linfo
183  *
184  * jited_linfo[linfo_idx] = prog->bpf_func
185  *
186  * For i > linfo_idx,
187  *
188  * jited_linfo[i] = prog->bpf_func +
189  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
190  */
191 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
192 			       const u32 *insn_to_jit_off)
193 {
194 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
195 	const struct bpf_line_info *linfo;
196 	void **jited_linfo;
197 
198 	if (!prog->aux->jited_linfo)
199 		/* Userspace did not provide linfo */
200 		return;
201 
202 	linfo_idx = prog->aux->linfo_idx;
203 	linfo = &prog->aux->linfo[linfo_idx];
204 	insn_start = linfo[0].insn_off;
205 	insn_end = insn_start + prog->len;
206 
207 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
208 	jited_linfo[0] = prog->bpf_func;
209 
210 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
211 
212 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
213 		/* The verifier ensures that linfo[i].insn_off is
214 		 * strictly increasing
215 		 */
216 		jited_linfo[i] = prog->bpf_func +
217 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
218 }
219 
220 void bpf_prog_free_linfo(struct bpf_prog *prog)
221 {
222 	bpf_prog_free_jited_linfo(prog);
223 	kvfree(prog->aux->linfo);
224 }
225 
226 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
227 				  gfp_t gfp_extra_flags)
228 {
229 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
230 	struct bpf_prog *fp;
231 	u32 pages;
232 
233 	size = round_up(size, PAGE_SIZE);
234 	pages = size / PAGE_SIZE;
235 	if (pages <= fp_old->pages)
236 		return fp_old;
237 
238 	fp = __vmalloc(size, gfp_flags);
239 	if (fp) {
240 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
241 		fp->pages = pages;
242 		fp->aux->prog = fp;
243 
244 		/* We keep fp->aux from fp_old around in the new
245 		 * reallocated structure.
246 		 */
247 		fp_old->aux = NULL;
248 		fp_old->stats = NULL;
249 		fp_old->active = NULL;
250 		__bpf_prog_free(fp_old);
251 	}
252 
253 	return fp;
254 }
255 
256 void __bpf_prog_free(struct bpf_prog *fp)
257 {
258 	if (fp->aux) {
259 		mutex_destroy(&fp->aux->used_maps_mutex);
260 		mutex_destroy(&fp->aux->dst_mutex);
261 		kfree(fp->aux->poke_tab);
262 		kfree(fp->aux);
263 	}
264 	free_percpu(fp->stats);
265 	free_percpu(fp->active);
266 	vfree(fp);
267 }
268 
269 int bpf_prog_calc_tag(struct bpf_prog *fp)
270 {
271 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
272 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
273 	u32 digest[SHA1_DIGEST_WORDS];
274 	u32 ws[SHA1_WORKSPACE_WORDS];
275 	u32 i, bsize, psize, blocks;
276 	struct bpf_insn *dst;
277 	bool was_ld_map;
278 	u8 *raw, *todo;
279 	__be32 *result;
280 	__be64 *bits;
281 
282 	raw = vmalloc(raw_size);
283 	if (!raw)
284 		return -ENOMEM;
285 
286 	sha1_init(digest);
287 	memset(ws, 0, sizeof(ws));
288 
289 	/* We need to take out the map fd for the digest calculation
290 	 * since they are unstable from user space side.
291 	 */
292 	dst = (void *)raw;
293 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
294 		dst[i] = fp->insnsi[i];
295 		if (!was_ld_map &&
296 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
297 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
298 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
299 			was_ld_map = true;
300 			dst[i].imm = 0;
301 		} else if (was_ld_map &&
302 			   dst[i].code == 0 &&
303 			   dst[i].dst_reg == 0 &&
304 			   dst[i].src_reg == 0 &&
305 			   dst[i].off == 0) {
306 			was_ld_map = false;
307 			dst[i].imm = 0;
308 		} else {
309 			was_ld_map = false;
310 		}
311 	}
312 
313 	psize = bpf_prog_insn_size(fp);
314 	memset(&raw[psize], 0, raw_size - psize);
315 	raw[psize++] = 0x80;
316 
317 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
318 	blocks = bsize / SHA1_BLOCK_SIZE;
319 	todo   = raw;
320 	if (bsize - psize >= sizeof(__be64)) {
321 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
322 	} else {
323 		bits = (__be64 *)(todo + bsize + bits_offset);
324 		blocks++;
325 	}
326 	*bits = cpu_to_be64((psize - 1) << 3);
327 
328 	while (blocks--) {
329 		sha1_transform(digest, todo, ws);
330 		todo += SHA1_BLOCK_SIZE;
331 	}
332 
333 	result = (__force __be32 *)digest;
334 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
335 		result[i] = cpu_to_be32(digest[i]);
336 	memcpy(fp->tag, result, sizeof(fp->tag));
337 
338 	vfree(raw);
339 	return 0;
340 }
341 
342 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
343 				s32 end_new, s32 curr, const bool probe_pass)
344 {
345 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
346 	s32 delta = end_new - end_old;
347 	s64 imm = insn->imm;
348 
349 	if (curr < pos && curr + imm + 1 >= end_old)
350 		imm += delta;
351 	else if (curr >= end_new && curr + imm + 1 < end_new)
352 		imm -= delta;
353 	if (imm < imm_min || imm > imm_max)
354 		return -ERANGE;
355 	if (!probe_pass)
356 		insn->imm = imm;
357 	return 0;
358 }
359 
360 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
361 				s32 end_new, s32 curr, const bool probe_pass)
362 {
363 	const s32 off_min = S16_MIN, off_max = S16_MAX;
364 	s32 delta = end_new - end_old;
365 	s32 off = insn->off;
366 
367 	if (curr < pos && curr + off + 1 >= end_old)
368 		off += delta;
369 	else if (curr >= end_new && curr + off + 1 < end_new)
370 		off -= delta;
371 	if (off < off_min || off > off_max)
372 		return -ERANGE;
373 	if (!probe_pass)
374 		insn->off = off;
375 	return 0;
376 }
377 
378 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
379 			    s32 end_new, const bool probe_pass)
380 {
381 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
382 	struct bpf_insn *insn = prog->insnsi;
383 	int ret = 0;
384 
385 	for (i = 0; i < insn_cnt; i++, insn++) {
386 		u8 code;
387 
388 		/* In the probing pass we still operate on the original,
389 		 * unpatched image in order to check overflows before we
390 		 * do any other adjustments. Therefore skip the patchlet.
391 		 */
392 		if (probe_pass && i == pos) {
393 			i = end_new;
394 			insn = prog->insnsi + end_old;
395 		}
396 		code = insn->code;
397 		if ((BPF_CLASS(code) != BPF_JMP &&
398 		     BPF_CLASS(code) != BPF_JMP32) ||
399 		    BPF_OP(code) == BPF_EXIT)
400 			continue;
401 		/* Adjust offset of jmps if we cross patch boundaries. */
402 		if (BPF_OP(code) == BPF_CALL) {
403 			if (insn->src_reg != BPF_PSEUDO_CALL)
404 				continue;
405 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
406 						   end_new, i, probe_pass);
407 		} else {
408 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
409 						   end_new, i, probe_pass);
410 		}
411 		if (ret)
412 			break;
413 	}
414 
415 	return ret;
416 }
417 
418 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
419 {
420 	struct bpf_line_info *linfo;
421 	u32 i, nr_linfo;
422 
423 	nr_linfo = prog->aux->nr_linfo;
424 	if (!nr_linfo || !delta)
425 		return;
426 
427 	linfo = prog->aux->linfo;
428 
429 	for (i = 0; i < nr_linfo; i++)
430 		if (off < linfo[i].insn_off)
431 			break;
432 
433 	/* Push all off < linfo[i].insn_off by delta */
434 	for (; i < nr_linfo; i++)
435 		linfo[i].insn_off += delta;
436 }
437 
438 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
439 				       const struct bpf_insn *patch, u32 len)
440 {
441 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
442 	const u32 cnt_max = S16_MAX;
443 	struct bpf_prog *prog_adj;
444 	int err;
445 
446 	/* Since our patchlet doesn't expand the image, we're done. */
447 	if (insn_delta == 0) {
448 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
449 		return prog;
450 	}
451 
452 	insn_adj_cnt = prog->len + insn_delta;
453 
454 	/* Reject anything that would potentially let the insn->off
455 	 * target overflow when we have excessive program expansions.
456 	 * We need to probe here before we do any reallocation where
457 	 * we afterwards may not fail anymore.
458 	 */
459 	if (insn_adj_cnt > cnt_max &&
460 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
461 		return ERR_PTR(err);
462 
463 	/* Several new instructions need to be inserted. Make room
464 	 * for them. Likely, there's no need for a new allocation as
465 	 * last page could have large enough tailroom.
466 	 */
467 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
468 				    GFP_USER);
469 	if (!prog_adj)
470 		return ERR_PTR(-ENOMEM);
471 
472 	prog_adj->len = insn_adj_cnt;
473 
474 	/* Patching happens in 3 steps:
475 	 *
476 	 * 1) Move over tail of insnsi from next instruction onwards,
477 	 *    so we can patch the single target insn with one or more
478 	 *    new ones (patching is always from 1 to n insns, n > 0).
479 	 * 2) Inject new instructions at the target location.
480 	 * 3) Adjust branch offsets if necessary.
481 	 */
482 	insn_rest = insn_adj_cnt - off - len;
483 
484 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
485 		sizeof(*patch) * insn_rest);
486 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
487 
488 	/* We are guaranteed to not fail at this point, otherwise
489 	 * the ship has sailed to reverse to the original state. An
490 	 * overflow cannot happen at this point.
491 	 */
492 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
493 
494 	bpf_adj_linfo(prog_adj, off, insn_delta);
495 
496 	return prog_adj;
497 }
498 
499 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
500 {
501 	/* Branch offsets can't overflow when program is shrinking, no need
502 	 * to call bpf_adj_branches(..., true) here
503 	 */
504 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
505 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
506 	prog->len -= cnt;
507 
508 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
509 }
510 
511 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
512 {
513 	int i;
514 
515 	for (i = 0; i < fp->aux->func_cnt; i++)
516 		bpf_prog_kallsyms_del(fp->aux->func[i]);
517 }
518 
519 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
520 {
521 	bpf_prog_kallsyms_del_subprogs(fp);
522 	bpf_prog_kallsyms_del(fp);
523 }
524 
525 #ifdef CONFIG_BPF_JIT
526 /* All BPF JIT sysctl knobs here. */
527 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
528 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
529 int bpf_jit_harden   __read_mostly;
530 long bpf_jit_limit   __read_mostly;
531 
532 static void
533 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
534 {
535 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
536 	unsigned long addr = (unsigned long)hdr;
537 
538 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
539 
540 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
541 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
542 }
543 
544 static void
545 bpf_prog_ksym_set_name(struct bpf_prog *prog)
546 {
547 	char *sym = prog->aux->ksym.name;
548 	const char *end = sym + KSYM_NAME_LEN;
549 	const struct btf_type *type;
550 	const char *func_name;
551 
552 	BUILD_BUG_ON(sizeof("bpf_prog_") +
553 		     sizeof(prog->tag) * 2 +
554 		     /* name has been null terminated.
555 		      * We should need +1 for the '_' preceding
556 		      * the name.  However, the null character
557 		      * is double counted between the name and the
558 		      * sizeof("bpf_prog_") above, so we omit
559 		      * the +1 here.
560 		      */
561 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
562 
563 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
564 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
565 
566 	/* prog->aux->name will be ignored if full btf name is available */
567 	if (prog->aux->func_info_cnt) {
568 		type = btf_type_by_id(prog->aux->btf,
569 				      prog->aux->func_info[prog->aux->func_idx].type_id);
570 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
571 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
572 		return;
573 	}
574 
575 	if (prog->aux->name[0])
576 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
577 	else
578 		*sym = 0;
579 }
580 
581 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
582 {
583 	return container_of(n, struct bpf_ksym, tnode)->start;
584 }
585 
586 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
587 					  struct latch_tree_node *b)
588 {
589 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
590 }
591 
592 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
593 {
594 	unsigned long val = (unsigned long)key;
595 	const struct bpf_ksym *ksym;
596 
597 	ksym = container_of(n, struct bpf_ksym, tnode);
598 
599 	if (val < ksym->start)
600 		return -1;
601 	if (val >= ksym->end)
602 		return  1;
603 
604 	return 0;
605 }
606 
607 static const struct latch_tree_ops bpf_tree_ops = {
608 	.less	= bpf_tree_less,
609 	.comp	= bpf_tree_comp,
610 };
611 
612 static DEFINE_SPINLOCK(bpf_lock);
613 static LIST_HEAD(bpf_kallsyms);
614 static struct latch_tree_root bpf_tree __cacheline_aligned;
615 
616 void bpf_ksym_add(struct bpf_ksym *ksym)
617 {
618 	spin_lock_bh(&bpf_lock);
619 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
620 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
621 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
622 	spin_unlock_bh(&bpf_lock);
623 }
624 
625 static void __bpf_ksym_del(struct bpf_ksym *ksym)
626 {
627 	if (list_empty(&ksym->lnode))
628 		return;
629 
630 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
631 	list_del_rcu(&ksym->lnode);
632 }
633 
634 void bpf_ksym_del(struct bpf_ksym *ksym)
635 {
636 	spin_lock_bh(&bpf_lock);
637 	__bpf_ksym_del(ksym);
638 	spin_unlock_bh(&bpf_lock);
639 }
640 
641 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
642 {
643 	return fp->jited && !bpf_prog_was_classic(fp);
644 }
645 
646 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
647 {
648 	return list_empty(&fp->aux->ksym.lnode) ||
649 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
650 }
651 
652 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
653 {
654 	if (!bpf_prog_kallsyms_candidate(fp) ||
655 	    !bpf_capable())
656 		return;
657 
658 	bpf_prog_ksym_set_addr(fp);
659 	bpf_prog_ksym_set_name(fp);
660 	fp->aux->ksym.prog = true;
661 
662 	bpf_ksym_add(&fp->aux->ksym);
663 }
664 
665 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
666 {
667 	if (!bpf_prog_kallsyms_candidate(fp))
668 		return;
669 
670 	bpf_ksym_del(&fp->aux->ksym);
671 }
672 
673 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
674 {
675 	struct latch_tree_node *n;
676 
677 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
678 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
679 }
680 
681 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
682 				 unsigned long *off, char *sym)
683 {
684 	struct bpf_ksym *ksym;
685 	char *ret = NULL;
686 
687 	rcu_read_lock();
688 	ksym = bpf_ksym_find(addr);
689 	if (ksym) {
690 		unsigned long symbol_start = ksym->start;
691 		unsigned long symbol_end = ksym->end;
692 
693 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
694 
695 		ret = sym;
696 		if (size)
697 			*size = symbol_end - symbol_start;
698 		if (off)
699 			*off  = addr - symbol_start;
700 	}
701 	rcu_read_unlock();
702 
703 	return ret;
704 }
705 
706 bool is_bpf_text_address(unsigned long addr)
707 {
708 	bool ret;
709 
710 	rcu_read_lock();
711 	ret = bpf_ksym_find(addr) != NULL;
712 	rcu_read_unlock();
713 
714 	return ret;
715 }
716 
717 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
718 {
719 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
720 
721 	return ksym && ksym->prog ?
722 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
723 	       NULL;
724 }
725 
726 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
727 {
728 	const struct exception_table_entry *e = NULL;
729 	struct bpf_prog *prog;
730 
731 	rcu_read_lock();
732 	prog = bpf_prog_ksym_find(addr);
733 	if (!prog)
734 		goto out;
735 	if (!prog->aux->num_exentries)
736 		goto out;
737 
738 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
739 out:
740 	rcu_read_unlock();
741 	return e;
742 }
743 
744 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
745 		    char *sym)
746 {
747 	struct bpf_ksym *ksym;
748 	unsigned int it = 0;
749 	int ret = -ERANGE;
750 
751 	if (!bpf_jit_kallsyms_enabled())
752 		return ret;
753 
754 	rcu_read_lock();
755 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
756 		if (it++ != symnum)
757 			continue;
758 
759 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
760 
761 		*value = ksym->start;
762 		*type  = BPF_SYM_ELF_TYPE;
763 
764 		ret = 0;
765 		break;
766 	}
767 	rcu_read_unlock();
768 
769 	return ret;
770 }
771 
772 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
773 				struct bpf_jit_poke_descriptor *poke)
774 {
775 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
776 	static const u32 poke_tab_max = 1024;
777 	u32 slot = prog->aux->size_poke_tab;
778 	u32 size = slot + 1;
779 
780 	if (size > poke_tab_max)
781 		return -ENOSPC;
782 	if (poke->tailcall_target || poke->tailcall_target_stable ||
783 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
784 		return -EINVAL;
785 
786 	switch (poke->reason) {
787 	case BPF_POKE_REASON_TAIL_CALL:
788 		if (!poke->tail_call.map)
789 			return -EINVAL;
790 		break;
791 	default:
792 		return -EINVAL;
793 	}
794 
795 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
796 	if (!tab)
797 		return -ENOMEM;
798 
799 	memcpy(&tab[slot], poke, sizeof(*poke));
800 	prog->aux->size_poke_tab = size;
801 	prog->aux->poke_tab = tab;
802 
803 	return slot;
804 }
805 
806 static atomic_long_t bpf_jit_current;
807 
808 /* Can be overridden by an arch's JIT compiler if it has a custom,
809  * dedicated BPF backend memory area, or if neither of the two
810  * below apply.
811  */
812 u64 __weak bpf_jit_alloc_exec_limit(void)
813 {
814 #if defined(MODULES_VADDR)
815 	return MODULES_END - MODULES_VADDR;
816 #else
817 	return VMALLOC_END - VMALLOC_START;
818 #endif
819 }
820 
821 static int __init bpf_jit_charge_init(void)
822 {
823 	/* Only used as heuristic here to derive limit. */
824 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
825 					    PAGE_SIZE), LONG_MAX);
826 	return 0;
827 }
828 pure_initcall(bpf_jit_charge_init);
829 
830 static int bpf_jit_charge_modmem(u32 pages)
831 {
832 	if (atomic_long_add_return(pages, &bpf_jit_current) >
833 	    (bpf_jit_limit >> PAGE_SHIFT)) {
834 		if (!capable(CAP_SYS_ADMIN)) {
835 			atomic_long_sub(pages, &bpf_jit_current);
836 			return -EPERM;
837 		}
838 	}
839 
840 	return 0;
841 }
842 
843 static void bpf_jit_uncharge_modmem(u32 pages)
844 {
845 	atomic_long_sub(pages, &bpf_jit_current);
846 }
847 
848 void *__weak bpf_jit_alloc_exec(unsigned long size)
849 {
850 	return module_alloc(size);
851 }
852 
853 void __weak bpf_jit_free_exec(void *addr)
854 {
855 	module_memfree(addr);
856 }
857 
858 struct bpf_binary_header *
859 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
860 		     unsigned int alignment,
861 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
862 {
863 	struct bpf_binary_header *hdr;
864 	u32 size, hole, start, pages;
865 
866 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
867 		     alignment > BPF_IMAGE_ALIGNMENT);
868 
869 	/* Most of BPF filters are really small, but if some of them
870 	 * fill a page, allow at least 128 extra bytes to insert a
871 	 * random section of illegal instructions.
872 	 */
873 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
874 	pages = size / PAGE_SIZE;
875 
876 	if (bpf_jit_charge_modmem(pages))
877 		return NULL;
878 	hdr = bpf_jit_alloc_exec(size);
879 	if (!hdr) {
880 		bpf_jit_uncharge_modmem(pages);
881 		return NULL;
882 	}
883 
884 	/* Fill space with illegal/arch-dep instructions. */
885 	bpf_fill_ill_insns(hdr, size);
886 
887 	hdr->pages = pages;
888 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
889 		     PAGE_SIZE - sizeof(*hdr));
890 	start = (get_random_int() % hole) & ~(alignment - 1);
891 
892 	/* Leave a random number of instructions before BPF code. */
893 	*image_ptr = &hdr->image[start];
894 
895 	return hdr;
896 }
897 
898 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
899 {
900 	u32 pages = hdr->pages;
901 
902 	bpf_jit_free_exec(hdr);
903 	bpf_jit_uncharge_modmem(pages);
904 }
905 
906 /* This symbol is only overridden by archs that have different
907  * requirements than the usual eBPF JITs, f.e. when they only
908  * implement cBPF JIT, do not set images read-only, etc.
909  */
910 void __weak bpf_jit_free(struct bpf_prog *fp)
911 {
912 	if (fp->jited) {
913 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
914 
915 		bpf_jit_binary_free(hdr);
916 
917 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
918 	}
919 
920 	bpf_prog_unlock_free(fp);
921 }
922 
923 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
924 			  const struct bpf_insn *insn, bool extra_pass,
925 			  u64 *func_addr, bool *func_addr_fixed)
926 {
927 	s16 off = insn->off;
928 	s32 imm = insn->imm;
929 	u8 *addr;
930 
931 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
932 	if (!*func_addr_fixed) {
933 		/* Place-holder address till the last pass has collected
934 		 * all addresses for JITed subprograms in which case we
935 		 * can pick them up from prog->aux.
936 		 */
937 		if (!extra_pass)
938 			addr = NULL;
939 		else if (prog->aux->func &&
940 			 off >= 0 && off < prog->aux->func_cnt)
941 			addr = (u8 *)prog->aux->func[off]->bpf_func;
942 		else
943 			return -EINVAL;
944 	} else {
945 		/* Address of a BPF helper call. Since part of the core
946 		 * kernel, it's always at a fixed location. __bpf_call_base
947 		 * and the helper with imm relative to it are both in core
948 		 * kernel.
949 		 */
950 		addr = (u8 *)__bpf_call_base + imm;
951 	}
952 
953 	*func_addr = (unsigned long)addr;
954 	return 0;
955 }
956 
957 static int bpf_jit_blind_insn(const struct bpf_insn *from,
958 			      const struct bpf_insn *aux,
959 			      struct bpf_insn *to_buff,
960 			      bool emit_zext)
961 {
962 	struct bpf_insn *to = to_buff;
963 	u32 imm_rnd = get_random_int();
964 	s16 off;
965 
966 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
967 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
968 
969 	/* Constraints on AX register:
970 	 *
971 	 * AX register is inaccessible from user space. It is mapped in
972 	 * all JITs, and used here for constant blinding rewrites. It is
973 	 * typically "stateless" meaning its contents are only valid within
974 	 * the executed instruction, but not across several instructions.
975 	 * There are a few exceptions however which are further detailed
976 	 * below.
977 	 *
978 	 * Constant blinding is only used by JITs, not in the interpreter.
979 	 * The interpreter uses AX in some occasions as a local temporary
980 	 * register e.g. in DIV or MOD instructions.
981 	 *
982 	 * In restricted circumstances, the verifier can also use the AX
983 	 * register for rewrites as long as they do not interfere with
984 	 * the above cases!
985 	 */
986 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
987 		goto out;
988 
989 	if (from->imm == 0 &&
990 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
991 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
992 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
993 		goto out;
994 	}
995 
996 	switch (from->code) {
997 	case BPF_ALU | BPF_ADD | BPF_K:
998 	case BPF_ALU | BPF_SUB | BPF_K:
999 	case BPF_ALU | BPF_AND | BPF_K:
1000 	case BPF_ALU | BPF_OR  | BPF_K:
1001 	case BPF_ALU | BPF_XOR | BPF_K:
1002 	case BPF_ALU | BPF_MUL | BPF_K:
1003 	case BPF_ALU | BPF_MOV | BPF_K:
1004 	case BPF_ALU | BPF_DIV | BPF_K:
1005 	case BPF_ALU | BPF_MOD | BPF_K:
1006 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1007 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1008 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1009 		break;
1010 
1011 	case BPF_ALU64 | BPF_ADD | BPF_K:
1012 	case BPF_ALU64 | BPF_SUB | BPF_K:
1013 	case BPF_ALU64 | BPF_AND | BPF_K:
1014 	case BPF_ALU64 | BPF_OR  | BPF_K:
1015 	case BPF_ALU64 | BPF_XOR | BPF_K:
1016 	case BPF_ALU64 | BPF_MUL | BPF_K:
1017 	case BPF_ALU64 | BPF_MOV | BPF_K:
1018 	case BPF_ALU64 | BPF_DIV | BPF_K:
1019 	case BPF_ALU64 | BPF_MOD | BPF_K:
1020 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1021 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1022 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1023 		break;
1024 
1025 	case BPF_JMP | BPF_JEQ  | BPF_K:
1026 	case BPF_JMP | BPF_JNE  | BPF_K:
1027 	case BPF_JMP | BPF_JGT  | BPF_K:
1028 	case BPF_JMP | BPF_JLT  | BPF_K:
1029 	case BPF_JMP | BPF_JGE  | BPF_K:
1030 	case BPF_JMP | BPF_JLE  | BPF_K:
1031 	case BPF_JMP | BPF_JSGT | BPF_K:
1032 	case BPF_JMP | BPF_JSLT | BPF_K:
1033 	case BPF_JMP | BPF_JSGE | BPF_K:
1034 	case BPF_JMP | BPF_JSLE | BPF_K:
1035 	case BPF_JMP | BPF_JSET | BPF_K:
1036 		/* Accommodate for extra offset in case of a backjump. */
1037 		off = from->off;
1038 		if (off < 0)
1039 			off -= 2;
1040 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1041 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1042 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1043 		break;
1044 
1045 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1046 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1047 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1048 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1049 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1050 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1051 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1052 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1053 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1054 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1055 	case BPF_JMP32 | BPF_JSET | BPF_K:
1056 		/* Accommodate for extra offset in case of a backjump. */
1057 		off = from->off;
1058 		if (off < 0)
1059 			off -= 2;
1060 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1061 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1063 				      off);
1064 		break;
1065 
1066 	case BPF_LD | BPF_IMM | BPF_DW:
1067 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1068 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1069 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1070 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1071 		break;
1072 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1073 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1074 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1075 		if (emit_zext)
1076 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1077 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1078 		break;
1079 
1080 	case BPF_ST | BPF_MEM | BPF_DW:
1081 	case BPF_ST | BPF_MEM | BPF_W:
1082 	case BPF_ST | BPF_MEM | BPF_H:
1083 	case BPF_ST | BPF_MEM | BPF_B:
1084 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1085 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1086 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1087 		break;
1088 	}
1089 out:
1090 	return to - to_buff;
1091 }
1092 
1093 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1094 					      gfp_t gfp_extra_flags)
1095 {
1096 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1097 	struct bpf_prog *fp;
1098 
1099 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1100 	if (fp != NULL) {
1101 		/* aux->prog still points to the fp_other one, so
1102 		 * when promoting the clone to the real program,
1103 		 * this still needs to be adapted.
1104 		 */
1105 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1106 	}
1107 
1108 	return fp;
1109 }
1110 
1111 static void bpf_prog_clone_free(struct bpf_prog *fp)
1112 {
1113 	/* aux was stolen by the other clone, so we cannot free
1114 	 * it from this path! It will be freed eventually by the
1115 	 * other program on release.
1116 	 *
1117 	 * At this point, we don't need a deferred release since
1118 	 * clone is guaranteed to not be locked.
1119 	 */
1120 	fp->aux = NULL;
1121 	__bpf_prog_free(fp);
1122 }
1123 
1124 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1125 {
1126 	/* We have to repoint aux->prog to self, as we don't
1127 	 * know whether fp here is the clone or the original.
1128 	 */
1129 	fp->aux->prog = fp;
1130 	bpf_prog_clone_free(fp_other);
1131 }
1132 
1133 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1134 {
1135 	struct bpf_insn insn_buff[16], aux[2];
1136 	struct bpf_prog *clone, *tmp;
1137 	int insn_delta, insn_cnt;
1138 	struct bpf_insn *insn;
1139 	int i, rewritten;
1140 
1141 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1142 		return prog;
1143 
1144 	clone = bpf_prog_clone_create(prog, GFP_USER);
1145 	if (!clone)
1146 		return ERR_PTR(-ENOMEM);
1147 
1148 	insn_cnt = clone->len;
1149 	insn = clone->insnsi;
1150 
1151 	for (i = 0; i < insn_cnt; i++, insn++) {
1152 		/* We temporarily need to hold the original ld64 insn
1153 		 * so that we can still access the first part in the
1154 		 * second blinding run.
1155 		 */
1156 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1157 		    insn[1].code == 0)
1158 			memcpy(aux, insn, sizeof(aux));
1159 
1160 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1161 						clone->aux->verifier_zext);
1162 		if (!rewritten)
1163 			continue;
1164 
1165 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1166 		if (IS_ERR(tmp)) {
1167 			/* Patching may have repointed aux->prog during
1168 			 * realloc from the original one, so we need to
1169 			 * fix it up here on error.
1170 			 */
1171 			bpf_jit_prog_release_other(prog, clone);
1172 			return tmp;
1173 		}
1174 
1175 		clone = tmp;
1176 		insn_delta = rewritten - 1;
1177 
1178 		/* Walk new program and skip insns we just inserted. */
1179 		insn = clone->insnsi + i + insn_delta;
1180 		insn_cnt += insn_delta;
1181 		i        += insn_delta;
1182 	}
1183 
1184 	clone->blinded = 1;
1185 	return clone;
1186 }
1187 #endif /* CONFIG_BPF_JIT */
1188 
1189 /* Base function for offset calculation. Needs to go into .text section,
1190  * therefore keeping it non-static as well; will also be used by JITs
1191  * anyway later on, so do not let the compiler omit it. This also needs
1192  * to go into kallsyms for correlation from e.g. bpftool, so naming
1193  * must not change.
1194  */
1195 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1196 {
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(__bpf_call_base);
1200 
1201 /* All UAPI available opcodes. */
1202 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1203 	/* 32 bit ALU operations. */		\
1204 	/*   Register based. */			\
1205 	INSN_3(ALU, ADD,  X),			\
1206 	INSN_3(ALU, SUB,  X),			\
1207 	INSN_3(ALU, AND,  X),			\
1208 	INSN_3(ALU, OR,   X),			\
1209 	INSN_3(ALU, LSH,  X),			\
1210 	INSN_3(ALU, RSH,  X),			\
1211 	INSN_3(ALU, XOR,  X),			\
1212 	INSN_3(ALU, MUL,  X),			\
1213 	INSN_3(ALU, MOV,  X),			\
1214 	INSN_3(ALU, ARSH, X),			\
1215 	INSN_3(ALU, DIV,  X),			\
1216 	INSN_3(ALU, MOD,  X),			\
1217 	INSN_2(ALU, NEG),			\
1218 	INSN_3(ALU, END, TO_BE),		\
1219 	INSN_3(ALU, END, TO_LE),		\
1220 	/*   Immediate based. */		\
1221 	INSN_3(ALU, ADD,  K),			\
1222 	INSN_3(ALU, SUB,  K),			\
1223 	INSN_3(ALU, AND,  K),			\
1224 	INSN_3(ALU, OR,   K),			\
1225 	INSN_3(ALU, LSH,  K),			\
1226 	INSN_3(ALU, RSH,  K),			\
1227 	INSN_3(ALU, XOR,  K),			\
1228 	INSN_3(ALU, MUL,  K),			\
1229 	INSN_3(ALU, MOV,  K),			\
1230 	INSN_3(ALU, ARSH, K),			\
1231 	INSN_3(ALU, DIV,  K),			\
1232 	INSN_3(ALU, MOD,  K),			\
1233 	/* 64 bit ALU operations. */		\
1234 	/*   Register based. */			\
1235 	INSN_3(ALU64, ADD,  X),			\
1236 	INSN_3(ALU64, SUB,  X),			\
1237 	INSN_3(ALU64, AND,  X),			\
1238 	INSN_3(ALU64, OR,   X),			\
1239 	INSN_3(ALU64, LSH,  X),			\
1240 	INSN_3(ALU64, RSH,  X),			\
1241 	INSN_3(ALU64, XOR,  X),			\
1242 	INSN_3(ALU64, MUL,  X),			\
1243 	INSN_3(ALU64, MOV,  X),			\
1244 	INSN_3(ALU64, ARSH, X),			\
1245 	INSN_3(ALU64, DIV,  X),			\
1246 	INSN_3(ALU64, MOD,  X),			\
1247 	INSN_2(ALU64, NEG),			\
1248 	/*   Immediate based. */		\
1249 	INSN_3(ALU64, ADD,  K),			\
1250 	INSN_3(ALU64, SUB,  K),			\
1251 	INSN_3(ALU64, AND,  K),			\
1252 	INSN_3(ALU64, OR,   K),			\
1253 	INSN_3(ALU64, LSH,  K),			\
1254 	INSN_3(ALU64, RSH,  K),			\
1255 	INSN_3(ALU64, XOR,  K),			\
1256 	INSN_3(ALU64, MUL,  K),			\
1257 	INSN_3(ALU64, MOV,  K),			\
1258 	INSN_3(ALU64, ARSH, K),			\
1259 	INSN_3(ALU64, DIV,  K),			\
1260 	INSN_3(ALU64, MOD,  K),			\
1261 	/* Call instruction. */			\
1262 	INSN_2(JMP, CALL),			\
1263 	/* Exit instruction. */			\
1264 	INSN_2(JMP, EXIT),			\
1265 	/* 32-bit Jump instructions. */		\
1266 	/*   Register based. */			\
1267 	INSN_3(JMP32, JEQ,  X),			\
1268 	INSN_3(JMP32, JNE,  X),			\
1269 	INSN_3(JMP32, JGT,  X),			\
1270 	INSN_3(JMP32, JLT,  X),			\
1271 	INSN_3(JMP32, JGE,  X),			\
1272 	INSN_3(JMP32, JLE,  X),			\
1273 	INSN_3(JMP32, JSGT, X),			\
1274 	INSN_3(JMP32, JSLT, X),			\
1275 	INSN_3(JMP32, JSGE, X),			\
1276 	INSN_3(JMP32, JSLE, X),			\
1277 	INSN_3(JMP32, JSET, X),			\
1278 	/*   Immediate based. */		\
1279 	INSN_3(JMP32, JEQ,  K),			\
1280 	INSN_3(JMP32, JNE,  K),			\
1281 	INSN_3(JMP32, JGT,  K),			\
1282 	INSN_3(JMP32, JLT,  K),			\
1283 	INSN_3(JMP32, JGE,  K),			\
1284 	INSN_3(JMP32, JLE,  K),			\
1285 	INSN_3(JMP32, JSGT, K),			\
1286 	INSN_3(JMP32, JSLT, K),			\
1287 	INSN_3(JMP32, JSGE, K),			\
1288 	INSN_3(JMP32, JSLE, K),			\
1289 	INSN_3(JMP32, JSET, K),			\
1290 	/* Jump instructions. */		\
1291 	/*   Register based. */			\
1292 	INSN_3(JMP, JEQ,  X),			\
1293 	INSN_3(JMP, JNE,  X),			\
1294 	INSN_3(JMP, JGT,  X),			\
1295 	INSN_3(JMP, JLT,  X),			\
1296 	INSN_3(JMP, JGE,  X),			\
1297 	INSN_3(JMP, JLE,  X),			\
1298 	INSN_3(JMP, JSGT, X),			\
1299 	INSN_3(JMP, JSLT, X),			\
1300 	INSN_3(JMP, JSGE, X),			\
1301 	INSN_3(JMP, JSLE, X),			\
1302 	INSN_3(JMP, JSET, X),			\
1303 	/*   Immediate based. */		\
1304 	INSN_3(JMP, JEQ,  K),			\
1305 	INSN_3(JMP, JNE,  K),			\
1306 	INSN_3(JMP, JGT,  K),			\
1307 	INSN_3(JMP, JLT,  K),			\
1308 	INSN_3(JMP, JGE,  K),			\
1309 	INSN_3(JMP, JLE,  K),			\
1310 	INSN_3(JMP, JSGT, K),			\
1311 	INSN_3(JMP, JSLT, K),			\
1312 	INSN_3(JMP, JSGE, K),			\
1313 	INSN_3(JMP, JSLE, K),			\
1314 	INSN_3(JMP, JSET, K),			\
1315 	INSN_2(JMP, JA),			\
1316 	/* Store instructions. */		\
1317 	/*   Register based. */			\
1318 	INSN_3(STX, MEM,  B),			\
1319 	INSN_3(STX, MEM,  H),			\
1320 	INSN_3(STX, MEM,  W),			\
1321 	INSN_3(STX, MEM,  DW),			\
1322 	INSN_3(STX, ATOMIC, W),			\
1323 	INSN_3(STX, ATOMIC, DW),		\
1324 	/*   Immediate based. */		\
1325 	INSN_3(ST, MEM, B),			\
1326 	INSN_3(ST, MEM, H),			\
1327 	INSN_3(ST, MEM, W),			\
1328 	INSN_3(ST, MEM, DW),			\
1329 	/* Load instructions. */		\
1330 	/*   Register based. */			\
1331 	INSN_3(LDX, MEM, B),			\
1332 	INSN_3(LDX, MEM, H),			\
1333 	INSN_3(LDX, MEM, W),			\
1334 	INSN_3(LDX, MEM, DW),			\
1335 	/*   Immediate based. */		\
1336 	INSN_3(LD, IMM, DW)
1337 
1338 bool bpf_opcode_in_insntable(u8 code)
1339 {
1340 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1341 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1342 	static const bool public_insntable[256] = {
1343 		[0 ... 255] = false,
1344 		/* Now overwrite non-defaults ... */
1345 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1346 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1347 		[BPF_LD | BPF_ABS | BPF_B] = true,
1348 		[BPF_LD | BPF_ABS | BPF_H] = true,
1349 		[BPF_LD | BPF_ABS | BPF_W] = true,
1350 		[BPF_LD | BPF_IND | BPF_B] = true,
1351 		[BPF_LD | BPF_IND | BPF_H] = true,
1352 		[BPF_LD | BPF_IND | BPF_W] = true,
1353 	};
1354 #undef BPF_INSN_3_TBL
1355 #undef BPF_INSN_2_TBL
1356 	return public_insntable[code];
1357 }
1358 
1359 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1360 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1361 {
1362 	memset(dst, 0, size);
1363 	return -EFAULT;
1364 }
1365 
1366 /**
1367  *	__bpf_prog_run - run eBPF program on a given context
1368  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1369  *	@insn: is the array of eBPF instructions
1370  *	@stack: is the eBPF storage stack
1371  *
1372  * Decode and execute eBPF instructions.
1373  */
1374 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1375 {
1376 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1377 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1378 	static const void * const jumptable[256] __annotate_jump_table = {
1379 		[0 ... 255] = &&default_label,
1380 		/* Now overwrite non-defaults ... */
1381 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1382 		/* Non-UAPI available opcodes. */
1383 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1384 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1385 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1386 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1387 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1388 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1389 	};
1390 #undef BPF_INSN_3_LBL
1391 #undef BPF_INSN_2_LBL
1392 	u32 tail_call_cnt = 0;
1393 
1394 #define CONT	 ({ insn++; goto select_insn; })
1395 #define CONT_JMP ({ insn++; goto select_insn; })
1396 
1397 select_insn:
1398 	goto *jumptable[insn->code];
1399 
1400 	/* ALU */
1401 #define ALU(OPCODE, OP)			\
1402 	ALU64_##OPCODE##_X:		\
1403 		DST = DST OP SRC;	\
1404 		CONT;			\
1405 	ALU_##OPCODE##_X:		\
1406 		DST = (u32) DST OP (u32) SRC;	\
1407 		CONT;			\
1408 	ALU64_##OPCODE##_K:		\
1409 		DST = DST OP IMM;		\
1410 		CONT;			\
1411 	ALU_##OPCODE##_K:		\
1412 		DST = (u32) DST OP (u32) IMM;	\
1413 		CONT;
1414 
1415 	ALU(ADD,  +)
1416 	ALU(SUB,  -)
1417 	ALU(AND,  &)
1418 	ALU(OR,   |)
1419 	ALU(LSH, <<)
1420 	ALU(RSH, >>)
1421 	ALU(XOR,  ^)
1422 	ALU(MUL,  *)
1423 #undef ALU
1424 	ALU_NEG:
1425 		DST = (u32) -DST;
1426 		CONT;
1427 	ALU64_NEG:
1428 		DST = -DST;
1429 		CONT;
1430 	ALU_MOV_X:
1431 		DST = (u32) SRC;
1432 		CONT;
1433 	ALU_MOV_K:
1434 		DST = (u32) IMM;
1435 		CONT;
1436 	ALU64_MOV_X:
1437 		DST = SRC;
1438 		CONT;
1439 	ALU64_MOV_K:
1440 		DST = IMM;
1441 		CONT;
1442 	LD_IMM_DW:
1443 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1444 		insn++;
1445 		CONT;
1446 	ALU_ARSH_X:
1447 		DST = (u64) (u32) (((s32) DST) >> SRC);
1448 		CONT;
1449 	ALU_ARSH_K:
1450 		DST = (u64) (u32) (((s32) DST) >> IMM);
1451 		CONT;
1452 	ALU64_ARSH_X:
1453 		(*(s64 *) &DST) >>= SRC;
1454 		CONT;
1455 	ALU64_ARSH_K:
1456 		(*(s64 *) &DST) >>= IMM;
1457 		CONT;
1458 	ALU64_MOD_X:
1459 		div64_u64_rem(DST, SRC, &AX);
1460 		DST = AX;
1461 		CONT;
1462 	ALU_MOD_X:
1463 		AX = (u32) DST;
1464 		DST = do_div(AX, (u32) SRC);
1465 		CONT;
1466 	ALU64_MOD_K:
1467 		div64_u64_rem(DST, IMM, &AX);
1468 		DST = AX;
1469 		CONT;
1470 	ALU_MOD_K:
1471 		AX = (u32) DST;
1472 		DST = do_div(AX, (u32) IMM);
1473 		CONT;
1474 	ALU64_DIV_X:
1475 		DST = div64_u64(DST, SRC);
1476 		CONT;
1477 	ALU_DIV_X:
1478 		AX = (u32) DST;
1479 		do_div(AX, (u32) SRC);
1480 		DST = (u32) AX;
1481 		CONT;
1482 	ALU64_DIV_K:
1483 		DST = div64_u64(DST, IMM);
1484 		CONT;
1485 	ALU_DIV_K:
1486 		AX = (u32) DST;
1487 		do_div(AX, (u32) IMM);
1488 		DST = (u32) AX;
1489 		CONT;
1490 	ALU_END_TO_BE:
1491 		switch (IMM) {
1492 		case 16:
1493 			DST = (__force u16) cpu_to_be16(DST);
1494 			break;
1495 		case 32:
1496 			DST = (__force u32) cpu_to_be32(DST);
1497 			break;
1498 		case 64:
1499 			DST = (__force u64) cpu_to_be64(DST);
1500 			break;
1501 		}
1502 		CONT;
1503 	ALU_END_TO_LE:
1504 		switch (IMM) {
1505 		case 16:
1506 			DST = (__force u16) cpu_to_le16(DST);
1507 			break;
1508 		case 32:
1509 			DST = (__force u32) cpu_to_le32(DST);
1510 			break;
1511 		case 64:
1512 			DST = (__force u64) cpu_to_le64(DST);
1513 			break;
1514 		}
1515 		CONT;
1516 
1517 	/* CALL */
1518 	JMP_CALL:
1519 		/* Function call scratches BPF_R1-BPF_R5 registers,
1520 		 * preserves BPF_R6-BPF_R9, and stores return value
1521 		 * into BPF_R0.
1522 		 */
1523 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1524 						       BPF_R4, BPF_R5);
1525 		CONT;
1526 
1527 	JMP_CALL_ARGS:
1528 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1529 							    BPF_R3, BPF_R4,
1530 							    BPF_R5,
1531 							    insn + insn->off + 1);
1532 		CONT;
1533 
1534 	JMP_TAIL_CALL: {
1535 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1536 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1537 		struct bpf_prog *prog;
1538 		u32 index = BPF_R3;
1539 
1540 		if (unlikely(index >= array->map.max_entries))
1541 			goto out;
1542 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1543 			goto out;
1544 
1545 		tail_call_cnt++;
1546 
1547 		prog = READ_ONCE(array->ptrs[index]);
1548 		if (!prog)
1549 			goto out;
1550 
1551 		/* ARG1 at this point is guaranteed to point to CTX from
1552 		 * the verifier side due to the fact that the tail call is
1553 		 * handled like a helper, that is, bpf_tail_call_proto,
1554 		 * where arg1_type is ARG_PTR_TO_CTX.
1555 		 */
1556 		insn = prog->insnsi;
1557 		goto select_insn;
1558 out:
1559 		CONT;
1560 	}
1561 	JMP_JA:
1562 		insn += insn->off;
1563 		CONT;
1564 	JMP_EXIT:
1565 		return BPF_R0;
1566 	/* JMP */
1567 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1568 	JMP_##OPCODE##_X:					\
1569 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1570 			insn += insn->off;			\
1571 			CONT_JMP;				\
1572 		}						\
1573 		CONT;						\
1574 	JMP32_##OPCODE##_X:					\
1575 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1576 			insn += insn->off;			\
1577 			CONT_JMP;				\
1578 		}						\
1579 		CONT;						\
1580 	JMP_##OPCODE##_K:					\
1581 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1582 			insn += insn->off;			\
1583 			CONT_JMP;				\
1584 		}						\
1585 		CONT;						\
1586 	JMP32_##OPCODE##_K:					\
1587 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1588 			insn += insn->off;			\
1589 			CONT_JMP;				\
1590 		}						\
1591 		CONT;
1592 	COND_JMP(u, JEQ, ==)
1593 	COND_JMP(u, JNE, !=)
1594 	COND_JMP(u, JGT, >)
1595 	COND_JMP(u, JLT, <)
1596 	COND_JMP(u, JGE, >=)
1597 	COND_JMP(u, JLE, <=)
1598 	COND_JMP(u, JSET, &)
1599 	COND_JMP(s, JSGT, >)
1600 	COND_JMP(s, JSLT, <)
1601 	COND_JMP(s, JSGE, >=)
1602 	COND_JMP(s, JSLE, <=)
1603 #undef COND_JMP
1604 	/* STX and ST and LDX*/
1605 #define LDST(SIZEOP, SIZE)						\
1606 	STX_MEM_##SIZEOP:						\
1607 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1608 		CONT;							\
1609 	ST_MEM_##SIZEOP:						\
1610 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1611 		CONT;							\
1612 	LDX_MEM_##SIZEOP:						\
1613 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1614 		CONT;
1615 
1616 	LDST(B,   u8)
1617 	LDST(H,  u16)
1618 	LDST(W,  u32)
1619 	LDST(DW, u64)
1620 #undef LDST
1621 #define LDX_PROBE(SIZEOP, SIZE)							\
1622 	LDX_PROBE_MEM_##SIZEOP:							\
1623 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1624 		CONT;
1625 	LDX_PROBE(B,  1)
1626 	LDX_PROBE(H,  2)
1627 	LDX_PROBE(W,  4)
1628 	LDX_PROBE(DW, 8)
1629 #undef LDX_PROBE
1630 
1631 #define ATOMIC_ALU_OP(BOP, KOP)						\
1632 		case BOP:						\
1633 			if (BPF_SIZE(insn->code) == BPF_W)		\
1634 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1635 					     (DST + insn->off));	\
1636 			else						\
1637 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1638 					       (DST + insn->off));	\
1639 			break;						\
1640 		case BOP | BPF_FETCH:					\
1641 			if (BPF_SIZE(insn->code) == BPF_W)		\
1642 				SRC = (u32) atomic_fetch_##KOP(		\
1643 					(u32) SRC,			\
1644 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1645 			else						\
1646 				SRC = (u64) atomic64_fetch_##KOP(	\
1647 					(u64) SRC,			\
1648 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1649 			break;
1650 
1651 	STX_ATOMIC_DW:
1652 	STX_ATOMIC_W:
1653 		switch (IMM) {
1654 		ATOMIC_ALU_OP(BPF_ADD, add)
1655 		ATOMIC_ALU_OP(BPF_AND, and)
1656 		ATOMIC_ALU_OP(BPF_OR, or)
1657 		ATOMIC_ALU_OP(BPF_XOR, xor)
1658 #undef ATOMIC_ALU_OP
1659 
1660 		case BPF_XCHG:
1661 			if (BPF_SIZE(insn->code) == BPF_W)
1662 				SRC = (u32) atomic_xchg(
1663 					(atomic_t *)(unsigned long) (DST + insn->off),
1664 					(u32) SRC);
1665 			else
1666 				SRC = (u64) atomic64_xchg(
1667 					(atomic64_t *)(unsigned long) (DST + insn->off),
1668 					(u64) SRC);
1669 			break;
1670 		case BPF_CMPXCHG:
1671 			if (BPF_SIZE(insn->code) == BPF_W)
1672 				BPF_R0 = (u32) atomic_cmpxchg(
1673 					(atomic_t *)(unsigned long) (DST + insn->off),
1674 					(u32) BPF_R0, (u32) SRC);
1675 			else
1676 				BPF_R0 = (u64) atomic64_cmpxchg(
1677 					(atomic64_t *)(unsigned long) (DST + insn->off),
1678 					(u64) BPF_R0, (u64) SRC);
1679 			break;
1680 
1681 		default:
1682 			goto default_label;
1683 		}
1684 		CONT;
1685 
1686 	default_label:
1687 		/* If we ever reach this, we have a bug somewhere. Die hard here
1688 		 * instead of just returning 0; we could be somewhere in a subprog,
1689 		 * so execution could continue otherwise which we do /not/ want.
1690 		 *
1691 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1692 		 */
1693 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1694 			insn->code, insn->imm);
1695 		BUG_ON(1);
1696 		return 0;
1697 }
1698 
1699 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1700 #define DEFINE_BPF_PROG_RUN(stack_size) \
1701 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1702 { \
1703 	u64 stack[stack_size / sizeof(u64)]; \
1704 	u64 regs[MAX_BPF_EXT_REG]; \
1705 \
1706 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1707 	ARG1 = (u64) (unsigned long) ctx; \
1708 	return ___bpf_prog_run(regs, insn, stack); \
1709 }
1710 
1711 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1712 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1713 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1714 				      const struct bpf_insn *insn) \
1715 { \
1716 	u64 stack[stack_size / sizeof(u64)]; \
1717 	u64 regs[MAX_BPF_EXT_REG]; \
1718 \
1719 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1720 	BPF_R1 = r1; \
1721 	BPF_R2 = r2; \
1722 	BPF_R3 = r3; \
1723 	BPF_R4 = r4; \
1724 	BPF_R5 = r5; \
1725 	return ___bpf_prog_run(regs, insn, stack); \
1726 }
1727 
1728 #define EVAL1(FN, X) FN(X)
1729 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1730 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1731 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1732 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1733 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1734 
1735 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1736 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1737 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1738 
1739 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1740 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1741 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1742 
1743 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1744 
1745 static unsigned int (*interpreters[])(const void *ctx,
1746 				      const struct bpf_insn *insn) = {
1747 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1748 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1749 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1750 };
1751 #undef PROG_NAME_LIST
1752 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1753 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1754 				  const struct bpf_insn *insn) = {
1755 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1756 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1757 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1758 };
1759 #undef PROG_NAME_LIST
1760 
1761 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1762 {
1763 	stack_depth = max_t(u32, stack_depth, 1);
1764 	insn->off = (s16) insn->imm;
1765 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1766 		__bpf_call_base_args;
1767 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1768 }
1769 
1770 #else
1771 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1772 					 const struct bpf_insn *insn)
1773 {
1774 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1775 	 * is not working properly, so warn about it!
1776 	 */
1777 	WARN_ON_ONCE(1);
1778 	return 0;
1779 }
1780 #endif
1781 
1782 bool bpf_prog_array_compatible(struct bpf_array *array,
1783 			       const struct bpf_prog *fp)
1784 {
1785 	if (fp->kprobe_override)
1786 		return false;
1787 
1788 	if (!array->aux->type) {
1789 		/* There's no owner yet where we could check for
1790 		 * compatibility.
1791 		 */
1792 		array->aux->type  = fp->type;
1793 		array->aux->jited = fp->jited;
1794 		return true;
1795 	}
1796 
1797 	return array->aux->type  == fp->type &&
1798 	       array->aux->jited == fp->jited;
1799 }
1800 
1801 static int bpf_check_tail_call(const struct bpf_prog *fp)
1802 {
1803 	struct bpf_prog_aux *aux = fp->aux;
1804 	int i, ret = 0;
1805 
1806 	mutex_lock(&aux->used_maps_mutex);
1807 	for (i = 0; i < aux->used_map_cnt; i++) {
1808 		struct bpf_map *map = aux->used_maps[i];
1809 		struct bpf_array *array;
1810 
1811 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1812 			continue;
1813 
1814 		array = container_of(map, struct bpf_array, map);
1815 		if (!bpf_prog_array_compatible(array, fp)) {
1816 			ret = -EINVAL;
1817 			goto out;
1818 		}
1819 	}
1820 
1821 out:
1822 	mutex_unlock(&aux->used_maps_mutex);
1823 	return ret;
1824 }
1825 
1826 static void bpf_prog_select_func(struct bpf_prog *fp)
1827 {
1828 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1829 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1830 
1831 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1832 #else
1833 	fp->bpf_func = __bpf_prog_ret0_warn;
1834 #endif
1835 }
1836 
1837 /**
1838  *	bpf_prog_select_runtime - select exec runtime for BPF program
1839  *	@fp: bpf_prog populated with internal BPF program
1840  *	@err: pointer to error variable
1841  *
1842  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1843  * The BPF program will be executed via BPF_PROG_RUN() macro.
1844  */
1845 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1846 {
1847 	/* In case of BPF to BPF calls, verifier did all the prep
1848 	 * work with regards to JITing, etc.
1849 	 */
1850 	if (fp->bpf_func)
1851 		goto finalize;
1852 
1853 	bpf_prog_select_func(fp);
1854 
1855 	/* eBPF JITs can rewrite the program in case constant
1856 	 * blinding is active. However, in case of error during
1857 	 * blinding, bpf_int_jit_compile() must always return a
1858 	 * valid program, which in this case would simply not
1859 	 * be JITed, but falls back to the interpreter.
1860 	 */
1861 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1862 		*err = bpf_prog_alloc_jited_linfo(fp);
1863 		if (*err)
1864 			return fp;
1865 
1866 		fp = bpf_int_jit_compile(fp);
1867 		if (!fp->jited) {
1868 			bpf_prog_free_jited_linfo(fp);
1869 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1870 			*err = -ENOTSUPP;
1871 			return fp;
1872 #endif
1873 		} else {
1874 			bpf_prog_free_unused_jited_linfo(fp);
1875 		}
1876 	} else {
1877 		*err = bpf_prog_offload_compile(fp);
1878 		if (*err)
1879 			return fp;
1880 	}
1881 
1882 finalize:
1883 	bpf_prog_lock_ro(fp);
1884 
1885 	/* The tail call compatibility check can only be done at
1886 	 * this late stage as we need to determine, if we deal
1887 	 * with JITed or non JITed program concatenations and not
1888 	 * all eBPF JITs might immediately support all features.
1889 	 */
1890 	*err = bpf_check_tail_call(fp);
1891 
1892 	return fp;
1893 }
1894 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1895 
1896 static unsigned int __bpf_prog_ret1(const void *ctx,
1897 				    const struct bpf_insn *insn)
1898 {
1899 	return 1;
1900 }
1901 
1902 static struct bpf_prog_dummy {
1903 	struct bpf_prog prog;
1904 } dummy_bpf_prog = {
1905 	.prog = {
1906 		.bpf_func = __bpf_prog_ret1,
1907 	},
1908 };
1909 
1910 /* to avoid allocating empty bpf_prog_array for cgroups that
1911  * don't have bpf program attached use one global 'empty_prog_array'
1912  * It will not be modified the caller of bpf_prog_array_alloc()
1913  * (since caller requested prog_cnt == 0)
1914  * that pointer should be 'freed' by bpf_prog_array_free()
1915  */
1916 static struct {
1917 	struct bpf_prog_array hdr;
1918 	struct bpf_prog *null_prog;
1919 } empty_prog_array = {
1920 	.null_prog = NULL,
1921 };
1922 
1923 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1924 {
1925 	if (prog_cnt)
1926 		return kzalloc(sizeof(struct bpf_prog_array) +
1927 			       sizeof(struct bpf_prog_array_item) *
1928 			       (prog_cnt + 1),
1929 			       flags);
1930 
1931 	return &empty_prog_array.hdr;
1932 }
1933 
1934 void bpf_prog_array_free(struct bpf_prog_array *progs)
1935 {
1936 	if (!progs || progs == &empty_prog_array.hdr)
1937 		return;
1938 	kfree_rcu(progs, rcu);
1939 }
1940 
1941 int bpf_prog_array_length(struct bpf_prog_array *array)
1942 {
1943 	struct bpf_prog_array_item *item;
1944 	u32 cnt = 0;
1945 
1946 	for (item = array->items; item->prog; item++)
1947 		if (item->prog != &dummy_bpf_prog.prog)
1948 			cnt++;
1949 	return cnt;
1950 }
1951 
1952 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1953 {
1954 	struct bpf_prog_array_item *item;
1955 
1956 	for (item = array->items; item->prog; item++)
1957 		if (item->prog != &dummy_bpf_prog.prog)
1958 			return false;
1959 	return true;
1960 }
1961 
1962 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1963 				     u32 *prog_ids,
1964 				     u32 request_cnt)
1965 {
1966 	struct bpf_prog_array_item *item;
1967 	int i = 0;
1968 
1969 	for (item = array->items; item->prog; item++) {
1970 		if (item->prog == &dummy_bpf_prog.prog)
1971 			continue;
1972 		prog_ids[i] = item->prog->aux->id;
1973 		if (++i == request_cnt) {
1974 			item++;
1975 			break;
1976 		}
1977 	}
1978 
1979 	return !!(item->prog);
1980 }
1981 
1982 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1983 				__u32 __user *prog_ids, u32 cnt)
1984 {
1985 	unsigned long err = 0;
1986 	bool nospc;
1987 	u32 *ids;
1988 
1989 	/* users of this function are doing:
1990 	 * cnt = bpf_prog_array_length();
1991 	 * if (cnt > 0)
1992 	 *     bpf_prog_array_copy_to_user(..., cnt);
1993 	 * so below kcalloc doesn't need extra cnt > 0 check.
1994 	 */
1995 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1996 	if (!ids)
1997 		return -ENOMEM;
1998 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1999 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2000 	kfree(ids);
2001 	if (err)
2002 		return -EFAULT;
2003 	if (nospc)
2004 		return -ENOSPC;
2005 	return 0;
2006 }
2007 
2008 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2009 				struct bpf_prog *old_prog)
2010 {
2011 	struct bpf_prog_array_item *item;
2012 
2013 	for (item = array->items; item->prog; item++)
2014 		if (item->prog == old_prog) {
2015 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2016 			break;
2017 		}
2018 }
2019 
2020 /**
2021  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2022  *                                   index into the program array with
2023  *                                   a dummy no-op program.
2024  * @array: a bpf_prog_array
2025  * @index: the index of the program to replace
2026  *
2027  * Skips over dummy programs, by not counting them, when calculating
2028  * the position of the program to replace.
2029  *
2030  * Return:
2031  * * 0		- Success
2032  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2033  * * -ENOENT	- Index out of range
2034  */
2035 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2036 {
2037 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2038 }
2039 
2040 /**
2041  * bpf_prog_array_update_at() - Updates the program at the given index
2042  *                              into the program array.
2043  * @array: a bpf_prog_array
2044  * @index: the index of the program to update
2045  * @prog: the program to insert into the array
2046  *
2047  * Skips over dummy programs, by not counting them, when calculating
2048  * the position of the program to update.
2049  *
2050  * Return:
2051  * * 0		- Success
2052  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2053  * * -ENOENT	- Index out of range
2054  */
2055 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2056 			     struct bpf_prog *prog)
2057 {
2058 	struct bpf_prog_array_item *item;
2059 
2060 	if (unlikely(index < 0))
2061 		return -EINVAL;
2062 
2063 	for (item = array->items; item->prog; item++) {
2064 		if (item->prog == &dummy_bpf_prog.prog)
2065 			continue;
2066 		if (!index) {
2067 			WRITE_ONCE(item->prog, prog);
2068 			return 0;
2069 		}
2070 		index--;
2071 	}
2072 	return -ENOENT;
2073 }
2074 
2075 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2076 			struct bpf_prog *exclude_prog,
2077 			struct bpf_prog *include_prog,
2078 			struct bpf_prog_array **new_array)
2079 {
2080 	int new_prog_cnt, carry_prog_cnt = 0;
2081 	struct bpf_prog_array_item *existing;
2082 	struct bpf_prog_array *array;
2083 	bool found_exclude = false;
2084 	int new_prog_idx = 0;
2085 
2086 	/* Figure out how many existing progs we need to carry over to
2087 	 * the new array.
2088 	 */
2089 	if (old_array) {
2090 		existing = old_array->items;
2091 		for (; existing->prog; existing++) {
2092 			if (existing->prog == exclude_prog) {
2093 				found_exclude = true;
2094 				continue;
2095 			}
2096 			if (existing->prog != &dummy_bpf_prog.prog)
2097 				carry_prog_cnt++;
2098 			if (existing->prog == include_prog)
2099 				return -EEXIST;
2100 		}
2101 	}
2102 
2103 	if (exclude_prog && !found_exclude)
2104 		return -ENOENT;
2105 
2106 	/* How many progs (not NULL) will be in the new array? */
2107 	new_prog_cnt = carry_prog_cnt;
2108 	if (include_prog)
2109 		new_prog_cnt += 1;
2110 
2111 	/* Do we have any prog (not NULL) in the new array? */
2112 	if (!new_prog_cnt) {
2113 		*new_array = NULL;
2114 		return 0;
2115 	}
2116 
2117 	/* +1 as the end of prog_array is marked with NULL */
2118 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2119 	if (!array)
2120 		return -ENOMEM;
2121 
2122 	/* Fill in the new prog array */
2123 	if (carry_prog_cnt) {
2124 		existing = old_array->items;
2125 		for (; existing->prog; existing++)
2126 			if (existing->prog != exclude_prog &&
2127 			    existing->prog != &dummy_bpf_prog.prog) {
2128 				array->items[new_prog_idx++].prog =
2129 					existing->prog;
2130 			}
2131 	}
2132 	if (include_prog)
2133 		array->items[new_prog_idx++].prog = include_prog;
2134 	array->items[new_prog_idx].prog = NULL;
2135 	*new_array = array;
2136 	return 0;
2137 }
2138 
2139 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2140 			     u32 *prog_ids, u32 request_cnt,
2141 			     u32 *prog_cnt)
2142 {
2143 	u32 cnt = 0;
2144 
2145 	if (array)
2146 		cnt = bpf_prog_array_length(array);
2147 
2148 	*prog_cnt = cnt;
2149 
2150 	/* return early if user requested only program count or nothing to copy */
2151 	if (!request_cnt || !cnt)
2152 		return 0;
2153 
2154 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2155 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2156 								     : 0;
2157 }
2158 
2159 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2160 			  struct bpf_map **used_maps, u32 len)
2161 {
2162 	struct bpf_map *map;
2163 	u32 i;
2164 
2165 	for (i = 0; i < len; i++) {
2166 		map = used_maps[i];
2167 		if (map->ops->map_poke_untrack)
2168 			map->ops->map_poke_untrack(map, aux);
2169 		bpf_map_put(map);
2170 	}
2171 }
2172 
2173 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2174 {
2175 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2176 	kfree(aux->used_maps);
2177 }
2178 
2179 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2180 			  struct btf_mod_pair *used_btfs, u32 len)
2181 {
2182 #ifdef CONFIG_BPF_SYSCALL
2183 	struct btf_mod_pair *btf_mod;
2184 	u32 i;
2185 
2186 	for (i = 0; i < len; i++) {
2187 		btf_mod = &used_btfs[i];
2188 		if (btf_mod->module)
2189 			module_put(btf_mod->module);
2190 		btf_put(btf_mod->btf);
2191 	}
2192 #endif
2193 }
2194 
2195 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2196 {
2197 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2198 	kfree(aux->used_btfs);
2199 }
2200 
2201 static void bpf_prog_free_deferred(struct work_struct *work)
2202 {
2203 	struct bpf_prog_aux *aux;
2204 	int i;
2205 
2206 	aux = container_of(work, struct bpf_prog_aux, work);
2207 	bpf_free_used_maps(aux);
2208 	bpf_free_used_btfs(aux);
2209 	if (bpf_prog_is_dev_bound(aux))
2210 		bpf_prog_offload_destroy(aux->prog);
2211 #ifdef CONFIG_PERF_EVENTS
2212 	if (aux->prog->has_callchain_buf)
2213 		put_callchain_buffers();
2214 #endif
2215 	if (aux->dst_trampoline)
2216 		bpf_trampoline_put(aux->dst_trampoline);
2217 	for (i = 0; i < aux->func_cnt; i++)
2218 		bpf_jit_free(aux->func[i]);
2219 	if (aux->func_cnt) {
2220 		kfree(aux->func);
2221 		bpf_prog_unlock_free(aux->prog);
2222 	} else {
2223 		bpf_jit_free(aux->prog);
2224 	}
2225 }
2226 
2227 /* Free internal BPF program */
2228 void bpf_prog_free(struct bpf_prog *fp)
2229 {
2230 	struct bpf_prog_aux *aux = fp->aux;
2231 
2232 	if (aux->dst_prog)
2233 		bpf_prog_put(aux->dst_prog);
2234 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2235 	schedule_work(&aux->work);
2236 }
2237 EXPORT_SYMBOL_GPL(bpf_prog_free);
2238 
2239 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2240 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2241 
2242 void bpf_user_rnd_init_once(void)
2243 {
2244 	prandom_init_once(&bpf_user_rnd_state);
2245 }
2246 
2247 BPF_CALL_0(bpf_user_rnd_u32)
2248 {
2249 	/* Should someone ever have the rather unwise idea to use some
2250 	 * of the registers passed into this function, then note that
2251 	 * this function is called from native eBPF and classic-to-eBPF
2252 	 * transformations. Register assignments from both sides are
2253 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2254 	 */
2255 	struct rnd_state *state;
2256 	u32 res;
2257 
2258 	state = &get_cpu_var(bpf_user_rnd_state);
2259 	res = prandom_u32_state(state);
2260 	put_cpu_var(bpf_user_rnd_state);
2261 
2262 	return res;
2263 }
2264 
2265 BPF_CALL_0(bpf_get_raw_cpu_id)
2266 {
2267 	return raw_smp_processor_id();
2268 }
2269 
2270 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2271 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2272 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2273 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2274 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2275 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2276 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2277 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2278 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2279 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2280 
2281 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2282 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2283 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2284 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2285 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2286 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2287 
2288 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2289 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2290 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2291 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2292 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2293 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2294 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2295 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2296 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2297 
2298 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2299 {
2300 	return NULL;
2301 }
2302 
2303 u64 __weak
2304 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2305 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2306 {
2307 	return -ENOTSUPP;
2308 }
2309 EXPORT_SYMBOL_GPL(bpf_event_output);
2310 
2311 /* Always built-in helper functions. */
2312 const struct bpf_func_proto bpf_tail_call_proto = {
2313 	.func		= NULL,
2314 	.gpl_only	= false,
2315 	.ret_type	= RET_VOID,
2316 	.arg1_type	= ARG_PTR_TO_CTX,
2317 	.arg2_type	= ARG_CONST_MAP_PTR,
2318 	.arg3_type	= ARG_ANYTHING,
2319 };
2320 
2321 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2322  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2323  * eBPF and implicitly also cBPF can get JITed!
2324  */
2325 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2326 {
2327 	return prog;
2328 }
2329 
2330 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2331  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2332  */
2333 void __weak bpf_jit_compile(struct bpf_prog *prog)
2334 {
2335 }
2336 
2337 bool __weak bpf_helper_changes_pkt_data(void *func)
2338 {
2339 	return false;
2340 }
2341 
2342 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2343  * analysis code and wants explicit zero extension inserted by verifier.
2344  * Otherwise, return FALSE.
2345  */
2346 bool __weak bpf_jit_needs_zext(void)
2347 {
2348 	return false;
2349 }
2350 
2351 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2352  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2353  */
2354 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2355 			 int len)
2356 {
2357 	return -EFAULT;
2358 }
2359 
2360 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2361 			      void *addr1, void *addr2)
2362 {
2363 	return -ENOTSUPP;
2364 }
2365 
2366 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2367 EXPORT_SYMBOL(bpf_stats_enabled_key);
2368 
2369 /* All definitions of tracepoints related to BPF. */
2370 #define CREATE_TRACE_POINTS
2371 #include <linux/bpf_trace.h>
2372 
2373 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2374 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2375