xref: /linux/kernel/bpf/core.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <uapi/linux/btf.h>
25 #include <linux/filter.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/random.h>
29 #include <linux/moduleloader.h>
30 #include <linux/bpf.h>
31 #include <linux/btf.h>
32 #include <linux/frame.h>
33 #include <linux/rbtree_latch.h>
34 #include <linux/kallsyms.h>
35 #include <linux/rcupdate.h>
36 #include <linux/perf_event.h>
37 
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define AX	regs[BPF_REG_AX]
58 #define ARG1	regs[BPF_REG_ARG1]
59 #define CTX	regs[BPF_REG_CTX]
60 #define IMM	insn->imm
61 
62 /* No hurry in this branch
63  *
64  * Exported for the bpf jit load helper.
65  */
66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 	u8 *ptr = NULL;
69 
70 	if (k >= SKF_NET_OFF)
71 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 	else if (k >= SKF_LL_OFF)
73 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 
75 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 		return ptr;
77 
78 	return NULL;
79 }
80 
81 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
82 {
83 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
84 	struct bpf_prog_aux *aux;
85 	struct bpf_prog *fp;
86 
87 	size = round_up(size, PAGE_SIZE);
88 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
89 	if (fp == NULL)
90 		return NULL;
91 
92 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
93 	if (aux == NULL) {
94 		vfree(fp);
95 		return NULL;
96 	}
97 
98 	fp->pages = size / PAGE_SIZE;
99 	fp->aux = aux;
100 	fp->aux->prog = fp;
101 	fp->jit_requested = ebpf_jit_enabled();
102 
103 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
104 
105 	return fp;
106 }
107 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
108 
109 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
110 {
111 	if (!prog->aux->nr_linfo || !prog->jit_requested)
112 		return 0;
113 
114 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
115 					 sizeof(*prog->aux->jited_linfo),
116 					 GFP_KERNEL | __GFP_NOWARN);
117 	if (!prog->aux->jited_linfo)
118 		return -ENOMEM;
119 
120 	return 0;
121 }
122 
123 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
124 {
125 	kfree(prog->aux->jited_linfo);
126 	prog->aux->jited_linfo = NULL;
127 }
128 
129 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
130 {
131 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
132 		bpf_prog_free_jited_linfo(prog);
133 }
134 
135 /* The jit engine is responsible to provide an array
136  * for insn_off to the jited_off mapping (insn_to_jit_off).
137  *
138  * The idx to this array is the insn_off.  Hence, the insn_off
139  * here is relative to the prog itself instead of the main prog.
140  * This array has one entry for each xlated bpf insn.
141  *
142  * jited_off is the byte off to the last byte of the jited insn.
143  *
144  * Hence, with
145  * insn_start:
146  *      The first bpf insn off of the prog.  The insn off
147  *      here is relative to the main prog.
148  *      e.g. if prog is a subprog, insn_start > 0
149  * linfo_idx:
150  *      The prog's idx to prog->aux->linfo and jited_linfo
151  *
152  * jited_linfo[linfo_idx] = prog->bpf_func
153  *
154  * For i > linfo_idx,
155  *
156  * jited_linfo[i] = prog->bpf_func +
157  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
158  */
159 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
160 			       const u32 *insn_to_jit_off)
161 {
162 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
163 	const struct bpf_line_info *linfo;
164 	void **jited_linfo;
165 
166 	if (!prog->aux->jited_linfo)
167 		/* Userspace did not provide linfo */
168 		return;
169 
170 	linfo_idx = prog->aux->linfo_idx;
171 	linfo = &prog->aux->linfo[linfo_idx];
172 	insn_start = linfo[0].insn_off;
173 	insn_end = insn_start + prog->len;
174 
175 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
176 	jited_linfo[0] = prog->bpf_func;
177 
178 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
179 
180 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
181 		/* The verifier ensures that linfo[i].insn_off is
182 		 * strictly increasing
183 		 */
184 		jited_linfo[i] = prog->bpf_func +
185 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
186 }
187 
188 void bpf_prog_free_linfo(struct bpf_prog *prog)
189 {
190 	bpf_prog_free_jited_linfo(prog);
191 	kvfree(prog->aux->linfo);
192 }
193 
194 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
195 				  gfp_t gfp_extra_flags)
196 {
197 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
198 	struct bpf_prog *fp;
199 	u32 pages, delta;
200 	int ret;
201 
202 	BUG_ON(fp_old == NULL);
203 
204 	size = round_up(size, PAGE_SIZE);
205 	pages = size / PAGE_SIZE;
206 	if (pages <= fp_old->pages)
207 		return fp_old;
208 
209 	delta = pages - fp_old->pages;
210 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
211 	if (ret)
212 		return NULL;
213 
214 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
215 	if (fp == NULL) {
216 		__bpf_prog_uncharge(fp_old->aux->user, delta);
217 	} else {
218 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
219 		fp->pages = pages;
220 		fp->aux->prog = fp;
221 
222 		/* We keep fp->aux from fp_old around in the new
223 		 * reallocated structure.
224 		 */
225 		fp_old->aux = NULL;
226 		__bpf_prog_free(fp_old);
227 	}
228 
229 	return fp;
230 }
231 
232 void __bpf_prog_free(struct bpf_prog *fp)
233 {
234 	kfree(fp->aux);
235 	vfree(fp);
236 }
237 
238 int bpf_prog_calc_tag(struct bpf_prog *fp)
239 {
240 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
241 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
242 	u32 digest[SHA_DIGEST_WORDS];
243 	u32 ws[SHA_WORKSPACE_WORDS];
244 	u32 i, bsize, psize, blocks;
245 	struct bpf_insn *dst;
246 	bool was_ld_map;
247 	u8 *raw, *todo;
248 	__be32 *result;
249 	__be64 *bits;
250 
251 	raw = vmalloc(raw_size);
252 	if (!raw)
253 		return -ENOMEM;
254 
255 	sha_init(digest);
256 	memset(ws, 0, sizeof(ws));
257 
258 	/* We need to take out the map fd for the digest calculation
259 	 * since they are unstable from user space side.
260 	 */
261 	dst = (void *)raw;
262 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
263 		dst[i] = fp->insnsi[i];
264 		if (!was_ld_map &&
265 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
266 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
267 			was_ld_map = true;
268 			dst[i].imm = 0;
269 		} else if (was_ld_map &&
270 			   dst[i].code == 0 &&
271 			   dst[i].dst_reg == 0 &&
272 			   dst[i].src_reg == 0 &&
273 			   dst[i].off == 0) {
274 			was_ld_map = false;
275 			dst[i].imm = 0;
276 		} else {
277 			was_ld_map = false;
278 		}
279 	}
280 
281 	psize = bpf_prog_insn_size(fp);
282 	memset(&raw[psize], 0, raw_size - psize);
283 	raw[psize++] = 0x80;
284 
285 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
286 	blocks = bsize / SHA_MESSAGE_BYTES;
287 	todo   = raw;
288 	if (bsize - psize >= sizeof(__be64)) {
289 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
290 	} else {
291 		bits = (__be64 *)(todo + bsize + bits_offset);
292 		blocks++;
293 	}
294 	*bits = cpu_to_be64((psize - 1) << 3);
295 
296 	while (blocks--) {
297 		sha_transform(digest, todo, ws);
298 		todo += SHA_MESSAGE_BYTES;
299 	}
300 
301 	result = (__force __be32 *)digest;
302 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
303 		result[i] = cpu_to_be32(digest[i]);
304 	memcpy(fp->tag, result, sizeof(fp->tag));
305 
306 	vfree(raw);
307 	return 0;
308 }
309 
310 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
311 				s32 end_new, u32 curr, const bool probe_pass)
312 {
313 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
314 	s32 delta = end_new - end_old;
315 	s64 imm = insn->imm;
316 
317 	if (curr < pos && curr + imm + 1 >= end_old)
318 		imm += delta;
319 	else if (curr >= end_new && curr + imm + 1 < end_new)
320 		imm -= delta;
321 	if (imm < imm_min || imm > imm_max)
322 		return -ERANGE;
323 	if (!probe_pass)
324 		insn->imm = imm;
325 	return 0;
326 }
327 
328 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
329 				s32 end_new, u32 curr, const bool probe_pass)
330 {
331 	const s32 off_min = S16_MIN, off_max = S16_MAX;
332 	s32 delta = end_new - end_old;
333 	s32 off = insn->off;
334 
335 	if (curr < pos && curr + off + 1 >= end_old)
336 		off += delta;
337 	else if (curr >= end_new && curr + off + 1 < end_new)
338 		off -= delta;
339 	if (off < off_min || off > off_max)
340 		return -ERANGE;
341 	if (!probe_pass)
342 		insn->off = off;
343 	return 0;
344 }
345 
346 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
347 			    s32 end_new, const bool probe_pass)
348 {
349 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
350 	struct bpf_insn *insn = prog->insnsi;
351 	int ret = 0;
352 
353 	for (i = 0; i < insn_cnt; i++, insn++) {
354 		u8 code;
355 
356 		/* In the probing pass we still operate on the original,
357 		 * unpatched image in order to check overflows before we
358 		 * do any other adjustments. Therefore skip the patchlet.
359 		 */
360 		if (probe_pass && i == pos) {
361 			i = end_new;
362 			insn = prog->insnsi + end_old;
363 		}
364 		code = insn->code;
365 		if ((BPF_CLASS(code) != BPF_JMP &&
366 		     BPF_CLASS(code) != BPF_JMP32) ||
367 		    BPF_OP(code) == BPF_EXIT)
368 			continue;
369 		/* Adjust offset of jmps if we cross patch boundaries. */
370 		if (BPF_OP(code) == BPF_CALL) {
371 			if (insn->src_reg != BPF_PSEUDO_CALL)
372 				continue;
373 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
374 						   end_new, i, probe_pass);
375 		} else {
376 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
377 						   end_new, i, probe_pass);
378 		}
379 		if (ret)
380 			break;
381 	}
382 
383 	return ret;
384 }
385 
386 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
387 {
388 	struct bpf_line_info *linfo;
389 	u32 i, nr_linfo;
390 
391 	nr_linfo = prog->aux->nr_linfo;
392 	if (!nr_linfo || !delta)
393 		return;
394 
395 	linfo = prog->aux->linfo;
396 
397 	for (i = 0; i < nr_linfo; i++)
398 		if (off < linfo[i].insn_off)
399 			break;
400 
401 	/* Push all off < linfo[i].insn_off by delta */
402 	for (; i < nr_linfo; i++)
403 		linfo[i].insn_off += delta;
404 }
405 
406 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
407 				       const struct bpf_insn *patch, u32 len)
408 {
409 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
410 	const u32 cnt_max = S16_MAX;
411 	struct bpf_prog *prog_adj;
412 
413 	/* Since our patchlet doesn't expand the image, we're done. */
414 	if (insn_delta == 0) {
415 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
416 		return prog;
417 	}
418 
419 	insn_adj_cnt = prog->len + insn_delta;
420 
421 	/* Reject anything that would potentially let the insn->off
422 	 * target overflow when we have excessive program expansions.
423 	 * We need to probe here before we do any reallocation where
424 	 * we afterwards may not fail anymore.
425 	 */
426 	if (insn_adj_cnt > cnt_max &&
427 	    bpf_adj_branches(prog, off, off + 1, off + len, true))
428 		return NULL;
429 
430 	/* Several new instructions need to be inserted. Make room
431 	 * for them. Likely, there's no need for a new allocation as
432 	 * last page could have large enough tailroom.
433 	 */
434 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
435 				    GFP_USER);
436 	if (!prog_adj)
437 		return NULL;
438 
439 	prog_adj->len = insn_adj_cnt;
440 
441 	/* Patching happens in 3 steps:
442 	 *
443 	 * 1) Move over tail of insnsi from next instruction onwards,
444 	 *    so we can patch the single target insn with one or more
445 	 *    new ones (patching is always from 1 to n insns, n > 0).
446 	 * 2) Inject new instructions at the target location.
447 	 * 3) Adjust branch offsets if necessary.
448 	 */
449 	insn_rest = insn_adj_cnt - off - len;
450 
451 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
452 		sizeof(*patch) * insn_rest);
453 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
454 
455 	/* We are guaranteed to not fail at this point, otherwise
456 	 * the ship has sailed to reverse to the original state. An
457 	 * overflow cannot happen at this point.
458 	 */
459 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
460 
461 	bpf_adj_linfo(prog_adj, off, insn_delta);
462 
463 	return prog_adj;
464 }
465 
466 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
467 {
468 	/* Branch offsets can't overflow when program is shrinking, no need
469 	 * to call bpf_adj_branches(..., true) here
470 	 */
471 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
472 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
473 	prog->len -= cnt;
474 
475 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
476 }
477 
478 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
479 {
480 	int i;
481 
482 	for (i = 0; i < fp->aux->func_cnt; i++)
483 		bpf_prog_kallsyms_del(fp->aux->func[i]);
484 }
485 
486 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
487 {
488 	bpf_prog_kallsyms_del_subprogs(fp);
489 	bpf_prog_kallsyms_del(fp);
490 }
491 
492 #ifdef CONFIG_BPF_JIT
493 /* All BPF JIT sysctl knobs here. */
494 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
495 int bpf_jit_harden   __read_mostly;
496 int bpf_jit_kallsyms __read_mostly;
497 long bpf_jit_limit   __read_mostly;
498 
499 static __always_inline void
500 bpf_get_prog_addr_region(const struct bpf_prog *prog,
501 			 unsigned long *symbol_start,
502 			 unsigned long *symbol_end)
503 {
504 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
505 	unsigned long addr = (unsigned long)hdr;
506 
507 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
508 
509 	*symbol_start = addr;
510 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
511 }
512 
513 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
514 {
515 	const char *end = sym + KSYM_NAME_LEN;
516 	const struct btf_type *type;
517 	const char *func_name;
518 
519 	BUILD_BUG_ON(sizeof("bpf_prog_") +
520 		     sizeof(prog->tag) * 2 +
521 		     /* name has been null terminated.
522 		      * We should need +1 for the '_' preceding
523 		      * the name.  However, the null character
524 		      * is double counted between the name and the
525 		      * sizeof("bpf_prog_") above, so we omit
526 		      * the +1 here.
527 		      */
528 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
529 
530 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
531 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
532 
533 	/* prog->aux->name will be ignored if full btf name is available */
534 	if (prog->aux->func_info_cnt) {
535 		type = btf_type_by_id(prog->aux->btf,
536 				      prog->aux->func_info[prog->aux->func_idx].type_id);
537 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
538 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
539 		return;
540 	}
541 
542 	if (prog->aux->name[0])
543 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
544 	else
545 		*sym = 0;
546 }
547 
548 static __always_inline unsigned long
549 bpf_get_prog_addr_start(struct latch_tree_node *n)
550 {
551 	unsigned long symbol_start, symbol_end;
552 	const struct bpf_prog_aux *aux;
553 
554 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
555 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
556 
557 	return symbol_start;
558 }
559 
560 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
561 					  struct latch_tree_node *b)
562 {
563 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
564 }
565 
566 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
567 {
568 	unsigned long val = (unsigned long)key;
569 	unsigned long symbol_start, symbol_end;
570 	const struct bpf_prog_aux *aux;
571 
572 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
573 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
574 
575 	if (val < symbol_start)
576 		return -1;
577 	if (val >= symbol_end)
578 		return  1;
579 
580 	return 0;
581 }
582 
583 static const struct latch_tree_ops bpf_tree_ops = {
584 	.less	= bpf_tree_less,
585 	.comp	= bpf_tree_comp,
586 };
587 
588 static DEFINE_SPINLOCK(bpf_lock);
589 static LIST_HEAD(bpf_kallsyms);
590 static struct latch_tree_root bpf_tree __cacheline_aligned;
591 
592 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
593 {
594 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
595 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
596 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
597 }
598 
599 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
600 {
601 	if (list_empty(&aux->ksym_lnode))
602 		return;
603 
604 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
605 	list_del_rcu(&aux->ksym_lnode);
606 }
607 
608 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
609 {
610 	return fp->jited && !bpf_prog_was_classic(fp);
611 }
612 
613 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
614 {
615 	return list_empty(&fp->aux->ksym_lnode) ||
616 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
617 }
618 
619 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
620 {
621 	if (!bpf_prog_kallsyms_candidate(fp) ||
622 	    !capable(CAP_SYS_ADMIN))
623 		return;
624 
625 	spin_lock_bh(&bpf_lock);
626 	bpf_prog_ksym_node_add(fp->aux);
627 	spin_unlock_bh(&bpf_lock);
628 }
629 
630 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
631 {
632 	if (!bpf_prog_kallsyms_candidate(fp))
633 		return;
634 
635 	spin_lock_bh(&bpf_lock);
636 	bpf_prog_ksym_node_del(fp->aux);
637 	spin_unlock_bh(&bpf_lock);
638 }
639 
640 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
641 {
642 	struct latch_tree_node *n;
643 
644 	if (!bpf_jit_kallsyms_enabled())
645 		return NULL;
646 
647 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
648 	return n ?
649 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
650 	       NULL;
651 }
652 
653 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
654 				 unsigned long *off, char *sym)
655 {
656 	unsigned long symbol_start, symbol_end;
657 	struct bpf_prog *prog;
658 	char *ret = NULL;
659 
660 	rcu_read_lock();
661 	prog = bpf_prog_kallsyms_find(addr);
662 	if (prog) {
663 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
664 		bpf_get_prog_name(prog, sym);
665 
666 		ret = sym;
667 		if (size)
668 			*size = symbol_end - symbol_start;
669 		if (off)
670 			*off  = addr - symbol_start;
671 	}
672 	rcu_read_unlock();
673 
674 	return ret;
675 }
676 
677 bool is_bpf_text_address(unsigned long addr)
678 {
679 	bool ret;
680 
681 	rcu_read_lock();
682 	ret = bpf_prog_kallsyms_find(addr) != NULL;
683 	rcu_read_unlock();
684 
685 	return ret;
686 }
687 
688 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
689 		    char *sym)
690 {
691 	struct bpf_prog_aux *aux;
692 	unsigned int it = 0;
693 	int ret = -ERANGE;
694 
695 	if (!bpf_jit_kallsyms_enabled())
696 		return ret;
697 
698 	rcu_read_lock();
699 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
700 		if (it++ != symnum)
701 			continue;
702 
703 		bpf_get_prog_name(aux->prog, sym);
704 
705 		*value = (unsigned long)aux->prog->bpf_func;
706 		*type  = BPF_SYM_ELF_TYPE;
707 
708 		ret = 0;
709 		break;
710 	}
711 	rcu_read_unlock();
712 
713 	return ret;
714 }
715 
716 static atomic_long_t bpf_jit_current;
717 
718 /* Can be overridden by an arch's JIT compiler if it has a custom,
719  * dedicated BPF backend memory area, or if neither of the two
720  * below apply.
721  */
722 u64 __weak bpf_jit_alloc_exec_limit(void)
723 {
724 #if defined(MODULES_VADDR)
725 	return MODULES_END - MODULES_VADDR;
726 #else
727 	return VMALLOC_END - VMALLOC_START;
728 #endif
729 }
730 
731 static int __init bpf_jit_charge_init(void)
732 {
733 	/* Only used as heuristic here to derive limit. */
734 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
735 					    PAGE_SIZE), LONG_MAX);
736 	return 0;
737 }
738 pure_initcall(bpf_jit_charge_init);
739 
740 static int bpf_jit_charge_modmem(u32 pages)
741 {
742 	if (atomic_long_add_return(pages, &bpf_jit_current) >
743 	    (bpf_jit_limit >> PAGE_SHIFT)) {
744 		if (!capable(CAP_SYS_ADMIN)) {
745 			atomic_long_sub(pages, &bpf_jit_current);
746 			return -EPERM;
747 		}
748 	}
749 
750 	return 0;
751 }
752 
753 static void bpf_jit_uncharge_modmem(u32 pages)
754 {
755 	atomic_long_sub(pages, &bpf_jit_current);
756 }
757 
758 void *__weak bpf_jit_alloc_exec(unsigned long size)
759 {
760 	return module_alloc(size);
761 }
762 
763 void __weak bpf_jit_free_exec(void *addr)
764 {
765 	module_memfree(addr);
766 }
767 
768 struct bpf_binary_header *
769 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
770 		     unsigned int alignment,
771 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
772 {
773 	struct bpf_binary_header *hdr;
774 	u32 size, hole, start, pages;
775 
776 	/* Most of BPF filters are really small, but if some of them
777 	 * fill a page, allow at least 128 extra bytes to insert a
778 	 * random section of illegal instructions.
779 	 */
780 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
781 	pages = size / PAGE_SIZE;
782 
783 	if (bpf_jit_charge_modmem(pages))
784 		return NULL;
785 	hdr = bpf_jit_alloc_exec(size);
786 	if (!hdr) {
787 		bpf_jit_uncharge_modmem(pages);
788 		return NULL;
789 	}
790 
791 	/* Fill space with illegal/arch-dep instructions. */
792 	bpf_fill_ill_insns(hdr, size);
793 
794 	hdr->pages = pages;
795 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
796 		     PAGE_SIZE - sizeof(*hdr));
797 	start = (get_random_int() % hole) & ~(alignment - 1);
798 
799 	/* Leave a random number of instructions before BPF code. */
800 	*image_ptr = &hdr->image[start];
801 
802 	return hdr;
803 }
804 
805 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
806 {
807 	u32 pages = hdr->pages;
808 
809 	bpf_jit_free_exec(hdr);
810 	bpf_jit_uncharge_modmem(pages);
811 }
812 
813 /* This symbol is only overridden by archs that have different
814  * requirements than the usual eBPF JITs, f.e. when they only
815  * implement cBPF JIT, do not set images read-only, etc.
816  */
817 void __weak bpf_jit_free(struct bpf_prog *fp)
818 {
819 	if (fp->jited) {
820 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
821 
822 		bpf_jit_binary_unlock_ro(hdr);
823 		bpf_jit_binary_free(hdr);
824 
825 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
826 	}
827 
828 	bpf_prog_unlock_free(fp);
829 }
830 
831 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
832 			  const struct bpf_insn *insn, bool extra_pass,
833 			  u64 *func_addr, bool *func_addr_fixed)
834 {
835 	s16 off = insn->off;
836 	s32 imm = insn->imm;
837 	u8 *addr;
838 
839 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
840 	if (!*func_addr_fixed) {
841 		/* Place-holder address till the last pass has collected
842 		 * all addresses for JITed subprograms in which case we
843 		 * can pick them up from prog->aux.
844 		 */
845 		if (!extra_pass)
846 			addr = NULL;
847 		else if (prog->aux->func &&
848 			 off >= 0 && off < prog->aux->func_cnt)
849 			addr = (u8 *)prog->aux->func[off]->bpf_func;
850 		else
851 			return -EINVAL;
852 	} else {
853 		/* Address of a BPF helper call. Since part of the core
854 		 * kernel, it's always at a fixed location. __bpf_call_base
855 		 * and the helper with imm relative to it are both in core
856 		 * kernel.
857 		 */
858 		addr = (u8 *)__bpf_call_base + imm;
859 	}
860 
861 	*func_addr = (unsigned long)addr;
862 	return 0;
863 }
864 
865 static int bpf_jit_blind_insn(const struct bpf_insn *from,
866 			      const struct bpf_insn *aux,
867 			      struct bpf_insn *to_buff)
868 {
869 	struct bpf_insn *to = to_buff;
870 	u32 imm_rnd = get_random_int();
871 	s16 off;
872 
873 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
874 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
875 
876 	/* Constraints on AX register:
877 	 *
878 	 * AX register is inaccessible from user space. It is mapped in
879 	 * all JITs, and used here for constant blinding rewrites. It is
880 	 * typically "stateless" meaning its contents are only valid within
881 	 * the executed instruction, but not across several instructions.
882 	 * There are a few exceptions however which are further detailed
883 	 * below.
884 	 *
885 	 * Constant blinding is only used by JITs, not in the interpreter.
886 	 * The interpreter uses AX in some occasions as a local temporary
887 	 * register e.g. in DIV or MOD instructions.
888 	 *
889 	 * In restricted circumstances, the verifier can also use the AX
890 	 * register for rewrites as long as they do not interfere with
891 	 * the above cases!
892 	 */
893 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
894 		goto out;
895 
896 	if (from->imm == 0 &&
897 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
898 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
899 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
900 		goto out;
901 	}
902 
903 	switch (from->code) {
904 	case BPF_ALU | BPF_ADD | BPF_K:
905 	case BPF_ALU | BPF_SUB | BPF_K:
906 	case BPF_ALU | BPF_AND | BPF_K:
907 	case BPF_ALU | BPF_OR  | BPF_K:
908 	case BPF_ALU | BPF_XOR | BPF_K:
909 	case BPF_ALU | BPF_MUL | BPF_K:
910 	case BPF_ALU | BPF_MOV | BPF_K:
911 	case BPF_ALU | BPF_DIV | BPF_K:
912 	case BPF_ALU | BPF_MOD | BPF_K:
913 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
914 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
915 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
916 		break;
917 
918 	case BPF_ALU64 | BPF_ADD | BPF_K:
919 	case BPF_ALU64 | BPF_SUB | BPF_K:
920 	case BPF_ALU64 | BPF_AND | BPF_K:
921 	case BPF_ALU64 | BPF_OR  | BPF_K:
922 	case BPF_ALU64 | BPF_XOR | BPF_K:
923 	case BPF_ALU64 | BPF_MUL | BPF_K:
924 	case BPF_ALU64 | BPF_MOV | BPF_K:
925 	case BPF_ALU64 | BPF_DIV | BPF_K:
926 	case BPF_ALU64 | BPF_MOD | BPF_K:
927 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
928 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
929 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
930 		break;
931 
932 	case BPF_JMP | BPF_JEQ  | BPF_K:
933 	case BPF_JMP | BPF_JNE  | BPF_K:
934 	case BPF_JMP | BPF_JGT  | BPF_K:
935 	case BPF_JMP | BPF_JLT  | BPF_K:
936 	case BPF_JMP | BPF_JGE  | BPF_K:
937 	case BPF_JMP | BPF_JLE  | BPF_K:
938 	case BPF_JMP | BPF_JSGT | BPF_K:
939 	case BPF_JMP | BPF_JSLT | BPF_K:
940 	case BPF_JMP | BPF_JSGE | BPF_K:
941 	case BPF_JMP | BPF_JSLE | BPF_K:
942 	case BPF_JMP | BPF_JSET | BPF_K:
943 		/* Accommodate for extra offset in case of a backjump. */
944 		off = from->off;
945 		if (off < 0)
946 			off -= 2;
947 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
948 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
949 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
950 		break;
951 
952 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
953 	case BPF_JMP32 | BPF_JNE  | BPF_K:
954 	case BPF_JMP32 | BPF_JGT  | BPF_K:
955 	case BPF_JMP32 | BPF_JLT  | BPF_K:
956 	case BPF_JMP32 | BPF_JGE  | BPF_K:
957 	case BPF_JMP32 | BPF_JLE  | BPF_K:
958 	case BPF_JMP32 | BPF_JSGT | BPF_K:
959 	case BPF_JMP32 | BPF_JSLT | BPF_K:
960 	case BPF_JMP32 | BPF_JSGE | BPF_K:
961 	case BPF_JMP32 | BPF_JSLE | BPF_K:
962 	case BPF_JMP32 | BPF_JSET | BPF_K:
963 		/* Accommodate for extra offset in case of a backjump. */
964 		off = from->off;
965 		if (off < 0)
966 			off -= 2;
967 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
968 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
969 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
970 				      off);
971 		break;
972 
973 	case BPF_LD | BPF_IMM | BPF_DW:
974 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
975 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
976 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
977 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
978 		break;
979 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
980 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
981 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
982 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
983 		break;
984 
985 	case BPF_ST | BPF_MEM | BPF_DW:
986 	case BPF_ST | BPF_MEM | BPF_W:
987 	case BPF_ST | BPF_MEM | BPF_H:
988 	case BPF_ST | BPF_MEM | BPF_B:
989 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
990 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
991 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
992 		break;
993 	}
994 out:
995 	return to - to_buff;
996 }
997 
998 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
999 					      gfp_t gfp_extra_flags)
1000 {
1001 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1002 	struct bpf_prog *fp;
1003 
1004 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1005 	if (fp != NULL) {
1006 		/* aux->prog still points to the fp_other one, so
1007 		 * when promoting the clone to the real program,
1008 		 * this still needs to be adapted.
1009 		 */
1010 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1011 	}
1012 
1013 	return fp;
1014 }
1015 
1016 static void bpf_prog_clone_free(struct bpf_prog *fp)
1017 {
1018 	/* aux was stolen by the other clone, so we cannot free
1019 	 * it from this path! It will be freed eventually by the
1020 	 * other program on release.
1021 	 *
1022 	 * At this point, we don't need a deferred release since
1023 	 * clone is guaranteed to not be locked.
1024 	 */
1025 	fp->aux = NULL;
1026 	__bpf_prog_free(fp);
1027 }
1028 
1029 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1030 {
1031 	/* We have to repoint aux->prog to self, as we don't
1032 	 * know whether fp here is the clone or the original.
1033 	 */
1034 	fp->aux->prog = fp;
1035 	bpf_prog_clone_free(fp_other);
1036 }
1037 
1038 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1039 {
1040 	struct bpf_insn insn_buff[16], aux[2];
1041 	struct bpf_prog *clone, *tmp;
1042 	int insn_delta, insn_cnt;
1043 	struct bpf_insn *insn;
1044 	int i, rewritten;
1045 
1046 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1047 		return prog;
1048 
1049 	clone = bpf_prog_clone_create(prog, GFP_USER);
1050 	if (!clone)
1051 		return ERR_PTR(-ENOMEM);
1052 
1053 	insn_cnt = clone->len;
1054 	insn = clone->insnsi;
1055 
1056 	for (i = 0; i < insn_cnt; i++, insn++) {
1057 		/* We temporarily need to hold the original ld64 insn
1058 		 * so that we can still access the first part in the
1059 		 * second blinding run.
1060 		 */
1061 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1062 		    insn[1].code == 0)
1063 			memcpy(aux, insn, sizeof(aux));
1064 
1065 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
1066 		if (!rewritten)
1067 			continue;
1068 
1069 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1070 		if (!tmp) {
1071 			/* Patching may have repointed aux->prog during
1072 			 * realloc from the original one, so we need to
1073 			 * fix it up here on error.
1074 			 */
1075 			bpf_jit_prog_release_other(prog, clone);
1076 			return ERR_PTR(-ENOMEM);
1077 		}
1078 
1079 		clone = tmp;
1080 		insn_delta = rewritten - 1;
1081 
1082 		/* Walk new program and skip insns we just inserted. */
1083 		insn = clone->insnsi + i + insn_delta;
1084 		insn_cnt += insn_delta;
1085 		i        += insn_delta;
1086 	}
1087 
1088 	clone->blinded = 1;
1089 	return clone;
1090 }
1091 #endif /* CONFIG_BPF_JIT */
1092 
1093 /* Base function for offset calculation. Needs to go into .text section,
1094  * therefore keeping it non-static as well; will also be used by JITs
1095  * anyway later on, so do not let the compiler omit it. This also needs
1096  * to go into kallsyms for correlation from e.g. bpftool, so naming
1097  * must not change.
1098  */
1099 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1100 {
1101 	return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(__bpf_call_base);
1104 
1105 /* All UAPI available opcodes. */
1106 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1107 	/* 32 bit ALU operations. */		\
1108 	/*   Register based. */			\
1109 	INSN_3(ALU, ADD,  X),			\
1110 	INSN_3(ALU, SUB,  X),			\
1111 	INSN_3(ALU, AND,  X),			\
1112 	INSN_3(ALU, OR,   X),			\
1113 	INSN_3(ALU, LSH,  X),			\
1114 	INSN_3(ALU, RSH,  X),			\
1115 	INSN_3(ALU, XOR,  X),			\
1116 	INSN_3(ALU, MUL,  X),			\
1117 	INSN_3(ALU, MOV,  X),			\
1118 	INSN_3(ALU, ARSH, X),			\
1119 	INSN_3(ALU, DIV,  X),			\
1120 	INSN_3(ALU, MOD,  X),			\
1121 	INSN_2(ALU, NEG),			\
1122 	INSN_3(ALU, END, TO_BE),		\
1123 	INSN_3(ALU, END, TO_LE),		\
1124 	/*   Immediate based. */		\
1125 	INSN_3(ALU, ADD,  K),			\
1126 	INSN_3(ALU, SUB,  K),			\
1127 	INSN_3(ALU, AND,  K),			\
1128 	INSN_3(ALU, OR,   K),			\
1129 	INSN_3(ALU, LSH,  K),			\
1130 	INSN_3(ALU, RSH,  K),			\
1131 	INSN_3(ALU, XOR,  K),			\
1132 	INSN_3(ALU, MUL,  K),			\
1133 	INSN_3(ALU, MOV,  K),			\
1134 	INSN_3(ALU, ARSH, K),			\
1135 	INSN_3(ALU, DIV,  K),			\
1136 	INSN_3(ALU, MOD,  K),			\
1137 	/* 64 bit ALU operations. */		\
1138 	/*   Register based. */			\
1139 	INSN_3(ALU64, ADD,  X),			\
1140 	INSN_3(ALU64, SUB,  X),			\
1141 	INSN_3(ALU64, AND,  X),			\
1142 	INSN_3(ALU64, OR,   X),			\
1143 	INSN_3(ALU64, LSH,  X),			\
1144 	INSN_3(ALU64, RSH,  X),			\
1145 	INSN_3(ALU64, XOR,  X),			\
1146 	INSN_3(ALU64, MUL,  X),			\
1147 	INSN_3(ALU64, MOV,  X),			\
1148 	INSN_3(ALU64, ARSH, X),			\
1149 	INSN_3(ALU64, DIV,  X),			\
1150 	INSN_3(ALU64, MOD,  X),			\
1151 	INSN_2(ALU64, NEG),			\
1152 	/*   Immediate based. */		\
1153 	INSN_3(ALU64, ADD,  K),			\
1154 	INSN_3(ALU64, SUB,  K),			\
1155 	INSN_3(ALU64, AND,  K),			\
1156 	INSN_3(ALU64, OR,   K),			\
1157 	INSN_3(ALU64, LSH,  K),			\
1158 	INSN_3(ALU64, RSH,  K),			\
1159 	INSN_3(ALU64, XOR,  K),			\
1160 	INSN_3(ALU64, MUL,  K),			\
1161 	INSN_3(ALU64, MOV,  K),			\
1162 	INSN_3(ALU64, ARSH, K),			\
1163 	INSN_3(ALU64, DIV,  K),			\
1164 	INSN_3(ALU64, MOD,  K),			\
1165 	/* Call instruction. */			\
1166 	INSN_2(JMP, CALL),			\
1167 	/* Exit instruction. */			\
1168 	INSN_2(JMP, EXIT),			\
1169 	/* 32-bit Jump instructions. */		\
1170 	/*   Register based. */			\
1171 	INSN_3(JMP32, JEQ,  X),			\
1172 	INSN_3(JMP32, JNE,  X),			\
1173 	INSN_3(JMP32, JGT,  X),			\
1174 	INSN_3(JMP32, JLT,  X),			\
1175 	INSN_3(JMP32, JGE,  X),			\
1176 	INSN_3(JMP32, JLE,  X),			\
1177 	INSN_3(JMP32, JSGT, X),			\
1178 	INSN_3(JMP32, JSLT, X),			\
1179 	INSN_3(JMP32, JSGE, X),			\
1180 	INSN_3(JMP32, JSLE, X),			\
1181 	INSN_3(JMP32, JSET, X),			\
1182 	/*   Immediate based. */		\
1183 	INSN_3(JMP32, JEQ,  K),			\
1184 	INSN_3(JMP32, JNE,  K),			\
1185 	INSN_3(JMP32, JGT,  K),			\
1186 	INSN_3(JMP32, JLT,  K),			\
1187 	INSN_3(JMP32, JGE,  K),			\
1188 	INSN_3(JMP32, JLE,  K),			\
1189 	INSN_3(JMP32, JSGT, K),			\
1190 	INSN_3(JMP32, JSLT, K),			\
1191 	INSN_3(JMP32, JSGE, K),			\
1192 	INSN_3(JMP32, JSLE, K),			\
1193 	INSN_3(JMP32, JSET, K),			\
1194 	/* Jump instructions. */		\
1195 	/*   Register based. */			\
1196 	INSN_3(JMP, JEQ,  X),			\
1197 	INSN_3(JMP, JNE,  X),			\
1198 	INSN_3(JMP, JGT,  X),			\
1199 	INSN_3(JMP, JLT,  X),			\
1200 	INSN_3(JMP, JGE,  X),			\
1201 	INSN_3(JMP, JLE,  X),			\
1202 	INSN_3(JMP, JSGT, X),			\
1203 	INSN_3(JMP, JSLT, X),			\
1204 	INSN_3(JMP, JSGE, X),			\
1205 	INSN_3(JMP, JSLE, X),			\
1206 	INSN_3(JMP, JSET, X),			\
1207 	/*   Immediate based. */		\
1208 	INSN_3(JMP, JEQ,  K),			\
1209 	INSN_3(JMP, JNE,  K),			\
1210 	INSN_3(JMP, JGT,  K),			\
1211 	INSN_3(JMP, JLT,  K),			\
1212 	INSN_3(JMP, JGE,  K),			\
1213 	INSN_3(JMP, JLE,  K),			\
1214 	INSN_3(JMP, JSGT, K),			\
1215 	INSN_3(JMP, JSLT, K),			\
1216 	INSN_3(JMP, JSGE, K),			\
1217 	INSN_3(JMP, JSLE, K),			\
1218 	INSN_3(JMP, JSET, K),			\
1219 	INSN_2(JMP, JA),			\
1220 	/* Store instructions. */		\
1221 	/*   Register based. */			\
1222 	INSN_3(STX, MEM,  B),			\
1223 	INSN_3(STX, MEM,  H),			\
1224 	INSN_3(STX, MEM,  W),			\
1225 	INSN_3(STX, MEM,  DW),			\
1226 	INSN_3(STX, XADD, W),			\
1227 	INSN_3(STX, XADD, DW),			\
1228 	/*   Immediate based. */		\
1229 	INSN_3(ST, MEM, B),			\
1230 	INSN_3(ST, MEM, H),			\
1231 	INSN_3(ST, MEM, W),			\
1232 	INSN_3(ST, MEM, DW),			\
1233 	/* Load instructions. */		\
1234 	/*   Register based. */			\
1235 	INSN_3(LDX, MEM, B),			\
1236 	INSN_3(LDX, MEM, H),			\
1237 	INSN_3(LDX, MEM, W),			\
1238 	INSN_3(LDX, MEM, DW),			\
1239 	/*   Immediate based. */		\
1240 	INSN_3(LD, IMM, DW)
1241 
1242 bool bpf_opcode_in_insntable(u8 code)
1243 {
1244 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1245 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1246 	static const bool public_insntable[256] = {
1247 		[0 ... 255] = false,
1248 		/* Now overwrite non-defaults ... */
1249 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1250 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1251 		[BPF_LD | BPF_ABS | BPF_B] = true,
1252 		[BPF_LD | BPF_ABS | BPF_H] = true,
1253 		[BPF_LD | BPF_ABS | BPF_W] = true,
1254 		[BPF_LD | BPF_IND | BPF_B] = true,
1255 		[BPF_LD | BPF_IND | BPF_H] = true,
1256 		[BPF_LD | BPF_IND | BPF_W] = true,
1257 	};
1258 #undef BPF_INSN_3_TBL
1259 #undef BPF_INSN_2_TBL
1260 	return public_insntable[code];
1261 }
1262 
1263 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1264 /**
1265  *	__bpf_prog_run - run eBPF program on a given context
1266  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1267  *	@insn: is the array of eBPF instructions
1268  *	@stack: is the eBPF storage stack
1269  *
1270  * Decode and execute eBPF instructions.
1271  */
1272 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1273 {
1274 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1275 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1276 	static const void *jumptable[256] = {
1277 		[0 ... 255] = &&default_label,
1278 		/* Now overwrite non-defaults ... */
1279 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1280 		/* Non-UAPI available opcodes. */
1281 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1282 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1283 	};
1284 #undef BPF_INSN_3_LBL
1285 #undef BPF_INSN_2_LBL
1286 	u32 tail_call_cnt = 0;
1287 
1288 #define CONT	 ({ insn++; goto select_insn; })
1289 #define CONT_JMP ({ insn++; goto select_insn; })
1290 
1291 select_insn:
1292 	goto *jumptable[insn->code];
1293 
1294 	/* ALU */
1295 #define ALU(OPCODE, OP)			\
1296 	ALU64_##OPCODE##_X:		\
1297 		DST = DST OP SRC;	\
1298 		CONT;			\
1299 	ALU_##OPCODE##_X:		\
1300 		DST = (u32) DST OP (u32) SRC;	\
1301 		CONT;			\
1302 	ALU64_##OPCODE##_K:		\
1303 		DST = DST OP IMM;		\
1304 		CONT;			\
1305 	ALU_##OPCODE##_K:		\
1306 		DST = (u32) DST OP (u32) IMM;	\
1307 		CONT;
1308 
1309 	ALU(ADD,  +)
1310 	ALU(SUB,  -)
1311 	ALU(AND,  &)
1312 	ALU(OR,   |)
1313 	ALU(LSH, <<)
1314 	ALU(RSH, >>)
1315 	ALU(XOR,  ^)
1316 	ALU(MUL,  *)
1317 #undef ALU
1318 	ALU_NEG:
1319 		DST = (u32) -DST;
1320 		CONT;
1321 	ALU64_NEG:
1322 		DST = -DST;
1323 		CONT;
1324 	ALU_MOV_X:
1325 		DST = (u32) SRC;
1326 		CONT;
1327 	ALU_MOV_K:
1328 		DST = (u32) IMM;
1329 		CONT;
1330 	ALU64_MOV_X:
1331 		DST = SRC;
1332 		CONT;
1333 	ALU64_MOV_K:
1334 		DST = IMM;
1335 		CONT;
1336 	LD_IMM_DW:
1337 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1338 		insn++;
1339 		CONT;
1340 	ALU_ARSH_X:
1341 		DST = (u64) (u32) ((*(s32 *) &DST) >> SRC);
1342 		CONT;
1343 	ALU_ARSH_K:
1344 		DST = (u64) (u32) ((*(s32 *) &DST) >> IMM);
1345 		CONT;
1346 	ALU64_ARSH_X:
1347 		(*(s64 *) &DST) >>= SRC;
1348 		CONT;
1349 	ALU64_ARSH_K:
1350 		(*(s64 *) &DST) >>= IMM;
1351 		CONT;
1352 	ALU64_MOD_X:
1353 		div64_u64_rem(DST, SRC, &AX);
1354 		DST = AX;
1355 		CONT;
1356 	ALU_MOD_X:
1357 		AX = (u32) DST;
1358 		DST = do_div(AX, (u32) SRC);
1359 		CONT;
1360 	ALU64_MOD_K:
1361 		div64_u64_rem(DST, IMM, &AX);
1362 		DST = AX;
1363 		CONT;
1364 	ALU_MOD_K:
1365 		AX = (u32) DST;
1366 		DST = do_div(AX, (u32) IMM);
1367 		CONT;
1368 	ALU64_DIV_X:
1369 		DST = div64_u64(DST, SRC);
1370 		CONT;
1371 	ALU_DIV_X:
1372 		AX = (u32) DST;
1373 		do_div(AX, (u32) SRC);
1374 		DST = (u32) AX;
1375 		CONT;
1376 	ALU64_DIV_K:
1377 		DST = div64_u64(DST, IMM);
1378 		CONT;
1379 	ALU_DIV_K:
1380 		AX = (u32) DST;
1381 		do_div(AX, (u32) IMM);
1382 		DST = (u32) AX;
1383 		CONT;
1384 	ALU_END_TO_BE:
1385 		switch (IMM) {
1386 		case 16:
1387 			DST = (__force u16) cpu_to_be16(DST);
1388 			break;
1389 		case 32:
1390 			DST = (__force u32) cpu_to_be32(DST);
1391 			break;
1392 		case 64:
1393 			DST = (__force u64) cpu_to_be64(DST);
1394 			break;
1395 		}
1396 		CONT;
1397 	ALU_END_TO_LE:
1398 		switch (IMM) {
1399 		case 16:
1400 			DST = (__force u16) cpu_to_le16(DST);
1401 			break;
1402 		case 32:
1403 			DST = (__force u32) cpu_to_le32(DST);
1404 			break;
1405 		case 64:
1406 			DST = (__force u64) cpu_to_le64(DST);
1407 			break;
1408 		}
1409 		CONT;
1410 
1411 	/* CALL */
1412 	JMP_CALL:
1413 		/* Function call scratches BPF_R1-BPF_R5 registers,
1414 		 * preserves BPF_R6-BPF_R9, and stores return value
1415 		 * into BPF_R0.
1416 		 */
1417 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1418 						       BPF_R4, BPF_R5);
1419 		CONT;
1420 
1421 	JMP_CALL_ARGS:
1422 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1423 							    BPF_R3, BPF_R4,
1424 							    BPF_R5,
1425 							    insn + insn->off + 1);
1426 		CONT;
1427 
1428 	JMP_TAIL_CALL: {
1429 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1430 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1431 		struct bpf_prog *prog;
1432 		u32 index = BPF_R3;
1433 
1434 		if (unlikely(index >= array->map.max_entries))
1435 			goto out;
1436 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1437 			goto out;
1438 
1439 		tail_call_cnt++;
1440 
1441 		prog = READ_ONCE(array->ptrs[index]);
1442 		if (!prog)
1443 			goto out;
1444 
1445 		/* ARG1 at this point is guaranteed to point to CTX from
1446 		 * the verifier side due to the fact that the tail call is
1447 		 * handeled like a helper, that is, bpf_tail_call_proto,
1448 		 * where arg1_type is ARG_PTR_TO_CTX.
1449 		 */
1450 		insn = prog->insnsi;
1451 		goto select_insn;
1452 out:
1453 		CONT;
1454 	}
1455 	JMP_JA:
1456 		insn += insn->off;
1457 		CONT;
1458 	JMP_EXIT:
1459 		return BPF_R0;
1460 	/* JMP */
1461 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1462 	JMP_##OPCODE##_X:					\
1463 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1464 			insn += insn->off;			\
1465 			CONT_JMP;				\
1466 		}						\
1467 		CONT;						\
1468 	JMP32_##OPCODE##_X:					\
1469 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1470 			insn += insn->off;			\
1471 			CONT_JMP;				\
1472 		}						\
1473 		CONT;						\
1474 	JMP_##OPCODE##_K:					\
1475 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1476 			insn += insn->off;			\
1477 			CONT_JMP;				\
1478 		}						\
1479 		CONT;						\
1480 	JMP32_##OPCODE##_K:					\
1481 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1482 			insn += insn->off;			\
1483 			CONT_JMP;				\
1484 		}						\
1485 		CONT;
1486 	COND_JMP(u, JEQ, ==)
1487 	COND_JMP(u, JNE, !=)
1488 	COND_JMP(u, JGT, >)
1489 	COND_JMP(u, JLT, <)
1490 	COND_JMP(u, JGE, >=)
1491 	COND_JMP(u, JLE, <=)
1492 	COND_JMP(u, JSET, &)
1493 	COND_JMP(s, JSGT, >)
1494 	COND_JMP(s, JSLT, <)
1495 	COND_JMP(s, JSGE, >=)
1496 	COND_JMP(s, JSLE, <=)
1497 #undef COND_JMP
1498 	/* STX and ST and LDX*/
1499 #define LDST(SIZEOP, SIZE)						\
1500 	STX_MEM_##SIZEOP:						\
1501 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1502 		CONT;							\
1503 	ST_MEM_##SIZEOP:						\
1504 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1505 		CONT;							\
1506 	LDX_MEM_##SIZEOP:						\
1507 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1508 		CONT;
1509 
1510 	LDST(B,   u8)
1511 	LDST(H,  u16)
1512 	LDST(W,  u32)
1513 	LDST(DW, u64)
1514 #undef LDST
1515 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1516 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1517 			   (DST + insn->off));
1518 		CONT;
1519 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1520 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1521 			     (DST + insn->off));
1522 		CONT;
1523 
1524 	default_label:
1525 		/* If we ever reach this, we have a bug somewhere. Die hard here
1526 		 * instead of just returning 0; we could be somewhere in a subprog,
1527 		 * so execution could continue otherwise which we do /not/ want.
1528 		 *
1529 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1530 		 */
1531 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1532 		BUG_ON(1);
1533 		return 0;
1534 }
1535 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1536 
1537 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1538 #define DEFINE_BPF_PROG_RUN(stack_size) \
1539 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1540 { \
1541 	u64 stack[stack_size / sizeof(u64)]; \
1542 	u64 regs[MAX_BPF_EXT_REG]; \
1543 \
1544 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1545 	ARG1 = (u64) (unsigned long) ctx; \
1546 	return ___bpf_prog_run(regs, insn, stack); \
1547 }
1548 
1549 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1550 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1551 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1552 				      const struct bpf_insn *insn) \
1553 { \
1554 	u64 stack[stack_size / sizeof(u64)]; \
1555 	u64 regs[MAX_BPF_EXT_REG]; \
1556 \
1557 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1558 	BPF_R1 = r1; \
1559 	BPF_R2 = r2; \
1560 	BPF_R3 = r3; \
1561 	BPF_R4 = r4; \
1562 	BPF_R5 = r5; \
1563 	return ___bpf_prog_run(regs, insn, stack); \
1564 }
1565 
1566 #define EVAL1(FN, X) FN(X)
1567 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1568 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1569 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1570 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1571 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1572 
1573 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1574 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1575 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1576 
1577 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1578 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1579 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1580 
1581 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1582 
1583 static unsigned int (*interpreters[])(const void *ctx,
1584 				      const struct bpf_insn *insn) = {
1585 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1586 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1587 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1588 };
1589 #undef PROG_NAME_LIST
1590 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1591 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1592 				  const struct bpf_insn *insn) = {
1593 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1594 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1595 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1596 };
1597 #undef PROG_NAME_LIST
1598 
1599 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1600 {
1601 	stack_depth = max_t(u32, stack_depth, 1);
1602 	insn->off = (s16) insn->imm;
1603 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1604 		__bpf_call_base_args;
1605 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1606 }
1607 
1608 #else
1609 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1610 					 const struct bpf_insn *insn)
1611 {
1612 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1613 	 * is not working properly, so warn about it!
1614 	 */
1615 	WARN_ON_ONCE(1);
1616 	return 0;
1617 }
1618 #endif
1619 
1620 bool bpf_prog_array_compatible(struct bpf_array *array,
1621 			       const struct bpf_prog *fp)
1622 {
1623 	if (fp->kprobe_override)
1624 		return false;
1625 
1626 	if (!array->owner_prog_type) {
1627 		/* There's no owner yet where we could check for
1628 		 * compatibility.
1629 		 */
1630 		array->owner_prog_type = fp->type;
1631 		array->owner_jited = fp->jited;
1632 
1633 		return true;
1634 	}
1635 
1636 	return array->owner_prog_type == fp->type &&
1637 	       array->owner_jited == fp->jited;
1638 }
1639 
1640 static int bpf_check_tail_call(const struct bpf_prog *fp)
1641 {
1642 	struct bpf_prog_aux *aux = fp->aux;
1643 	int i;
1644 
1645 	for (i = 0; i < aux->used_map_cnt; i++) {
1646 		struct bpf_map *map = aux->used_maps[i];
1647 		struct bpf_array *array;
1648 
1649 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1650 			continue;
1651 
1652 		array = container_of(map, struct bpf_array, map);
1653 		if (!bpf_prog_array_compatible(array, fp))
1654 			return -EINVAL;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static void bpf_prog_select_func(struct bpf_prog *fp)
1661 {
1662 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1663 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1664 
1665 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1666 #else
1667 	fp->bpf_func = __bpf_prog_ret0_warn;
1668 #endif
1669 }
1670 
1671 /**
1672  *	bpf_prog_select_runtime - select exec runtime for BPF program
1673  *	@fp: bpf_prog populated with internal BPF program
1674  *	@err: pointer to error variable
1675  *
1676  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1677  * The BPF program will be executed via BPF_PROG_RUN() macro.
1678  */
1679 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1680 {
1681 	/* In case of BPF to BPF calls, verifier did all the prep
1682 	 * work with regards to JITing, etc.
1683 	 */
1684 	if (fp->bpf_func)
1685 		goto finalize;
1686 
1687 	bpf_prog_select_func(fp);
1688 
1689 	/* eBPF JITs can rewrite the program in case constant
1690 	 * blinding is active. However, in case of error during
1691 	 * blinding, bpf_int_jit_compile() must always return a
1692 	 * valid program, which in this case would simply not
1693 	 * be JITed, but falls back to the interpreter.
1694 	 */
1695 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1696 		*err = bpf_prog_alloc_jited_linfo(fp);
1697 		if (*err)
1698 			return fp;
1699 
1700 		fp = bpf_int_jit_compile(fp);
1701 		if (!fp->jited) {
1702 			bpf_prog_free_jited_linfo(fp);
1703 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1704 			*err = -ENOTSUPP;
1705 			return fp;
1706 #endif
1707 		} else {
1708 			bpf_prog_free_unused_jited_linfo(fp);
1709 		}
1710 	} else {
1711 		*err = bpf_prog_offload_compile(fp);
1712 		if (*err)
1713 			return fp;
1714 	}
1715 
1716 finalize:
1717 	bpf_prog_lock_ro(fp);
1718 
1719 	/* The tail call compatibility check can only be done at
1720 	 * this late stage as we need to determine, if we deal
1721 	 * with JITed or non JITed program concatenations and not
1722 	 * all eBPF JITs might immediately support all features.
1723 	 */
1724 	*err = bpf_check_tail_call(fp);
1725 
1726 	return fp;
1727 }
1728 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1729 
1730 static unsigned int __bpf_prog_ret1(const void *ctx,
1731 				    const struct bpf_insn *insn)
1732 {
1733 	return 1;
1734 }
1735 
1736 static struct bpf_prog_dummy {
1737 	struct bpf_prog prog;
1738 } dummy_bpf_prog = {
1739 	.prog = {
1740 		.bpf_func = __bpf_prog_ret1,
1741 	},
1742 };
1743 
1744 /* to avoid allocating empty bpf_prog_array for cgroups that
1745  * don't have bpf program attached use one global 'empty_prog_array'
1746  * It will not be modified the caller of bpf_prog_array_alloc()
1747  * (since caller requested prog_cnt == 0)
1748  * that pointer should be 'freed' by bpf_prog_array_free()
1749  */
1750 static struct {
1751 	struct bpf_prog_array hdr;
1752 	struct bpf_prog *null_prog;
1753 } empty_prog_array = {
1754 	.null_prog = NULL,
1755 };
1756 
1757 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1758 {
1759 	if (prog_cnt)
1760 		return kzalloc(sizeof(struct bpf_prog_array) +
1761 			       sizeof(struct bpf_prog_array_item) *
1762 			       (prog_cnt + 1),
1763 			       flags);
1764 
1765 	return &empty_prog_array.hdr;
1766 }
1767 
1768 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1769 {
1770 	if (!progs ||
1771 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1772 		return;
1773 	kfree_rcu(progs, rcu);
1774 }
1775 
1776 int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
1777 {
1778 	struct bpf_prog_array_item *item;
1779 	u32 cnt = 0;
1780 
1781 	rcu_read_lock();
1782 	item = rcu_dereference(array)->items;
1783 	for (; item->prog; item++)
1784 		if (item->prog != &dummy_bpf_prog.prog)
1785 			cnt++;
1786 	rcu_read_unlock();
1787 	return cnt;
1788 }
1789 
1790 
1791 static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
1792 				     u32 *prog_ids,
1793 				     u32 request_cnt)
1794 {
1795 	struct bpf_prog_array_item *item;
1796 	int i = 0;
1797 
1798 	item = rcu_dereference_check(array, 1)->items;
1799 	for (; item->prog; item++) {
1800 		if (item->prog == &dummy_bpf_prog.prog)
1801 			continue;
1802 		prog_ids[i] = item->prog->aux->id;
1803 		if (++i == request_cnt) {
1804 			item++;
1805 			break;
1806 		}
1807 	}
1808 
1809 	return !!(item->prog);
1810 }
1811 
1812 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
1813 				__u32 __user *prog_ids, u32 cnt)
1814 {
1815 	unsigned long err = 0;
1816 	bool nospc;
1817 	u32 *ids;
1818 
1819 	/* users of this function are doing:
1820 	 * cnt = bpf_prog_array_length();
1821 	 * if (cnt > 0)
1822 	 *     bpf_prog_array_copy_to_user(..., cnt);
1823 	 * so below kcalloc doesn't need extra cnt > 0 check, but
1824 	 * bpf_prog_array_length() releases rcu lock and
1825 	 * prog array could have been swapped with empty or larger array,
1826 	 * so always copy 'cnt' prog_ids to the user.
1827 	 * In a rare race the user will see zero prog_ids
1828 	 */
1829 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1830 	if (!ids)
1831 		return -ENOMEM;
1832 	rcu_read_lock();
1833 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1834 	rcu_read_unlock();
1835 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1836 	kfree(ids);
1837 	if (err)
1838 		return -EFAULT;
1839 	if (nospc)
1840 		return -ENOSPC;
1841 	return 0;
1842 }
1843 
1844 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
1845 				struct bpf_prog *old_prog)
1846 {
1847 	struct bpf_prog_array_item *item = array->items;
1848 
1849 	for (; item->prog; item++)
1850 		if (item->prog == old_prog) {
1851 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1852 			break;
1853 		}
1854 }
1855 
1856 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1857 			struct bpf_prog *exclude_prog,
1858 			struct bpf_prog *include_prog,
1859 			struct bpf_prog_array **new_array)
1860 {
1861 	int new_prog_cnt, carry_prog_cnt = 0;
1862 	struct bpf_prog_array_item *existing;
1863 	struct bpf_prog_array *array;
1864 	bool found_exclude = false;
1865 	int new_prog_idx = 0;
1866 
1867 	/* Figure out how many existing progs we need to carry over to
1868 	 * the new array.
1869 	 */
1870 	if (old_array) {
1871 		existing = old_array->items;
1872 		for (; existing->prog; existing++) {
1873 			if (existing->prog == exclude_prog) {
1874 				found_exclude = true;
1875 				continue;
1876 			}
1877 			if (existing->prog != &dummy_bpf_prog.prog)
1878 				carry_prog_cnt++;
1879 			if (existing->prog == include_prog)
1880 				return -EEXIST;
1881 		}
1882 	}
1883 
1884 	if (exclude_prog && !found_exclude)
1885 		return -ENOENT;
1886 
1887 	/* How many progs (not NULL) will be in the new array? */
1888 	new_prog_cnt = carry_prog_cnt;
1889 	if (include_prog)
1890 		new_prog_cnt += 1;
1891 
1892 	/* Do we have any prog (not NULL) in the new array? */
1893 	if (!new_prog_cnt) {
1894 		*new_array = NULL;
1895 		return 0;
1896 	}
1897 
1898 	/* +1 as the end of prog_array is marked with NULL */
1899 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1900 	if (!array)
1901 		return -ENOMEM;
1902 
1903 	/* Fill in the new prog array */
1904 	if (carry_prog_cnt) {
1905 		existing = old_array->items;
1906 		for (; existing->prog; existing++)
1907 			if (existing->prog != exclude_prog &&
1908 			    existing->prog != &dummy_bpf_prog.prog) {
1909 				array->items[new_prog_idx++].prog =
1910 					existing->prog;
1911 			}
1912 	}
1913 	if (include_prog)
1914 		array->items[new_prog_idx++].prog = include_prog;
1915 	array->items[new_prog_idx].prog = NULL;
1916 	*new_array = array;
1917 	return 0;
1918 }
1919 
1920 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1921 			     u32 *prog_ids, u32 request_cnt,
1922 			     u32 *prog_cnt)
1923 {
1924 	u32 cnt = 0;
1925 
1926 	if (array)
1927 		cnt = bpf_prog_array_length(array);
1928 
1929 	*prog_cnt = cnt;
1930 
1931 	/* return early if user requested only program count or nothing to copy */
1932 	if (!request_cnt || !cnt)
1933 		return 0;
1934 
1935 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1936 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1937 								     : 0;
1938 }
1939 
1940 static void bpf_prog_free_deferred(struct work_struct *work)
1941 {
1942 	struct bpf_prog_aux *aux;
1943 	int i;
1944 
1945 	aux = container_of(work, struct bpf_prog_aux, work);
1946 	if (bpf_prog_is_dev_bound(aux))
1947 		bpf_prog_offload_destroy(aux->prog);
1948 #ifdef CONFIG_PERF_EVENTS
1949 	if (aux->prog->has_callchain_buf)
1950 		put_callchain_buffers();
1951 #endif
1952 	for (i = 0; i < aux->func_cnt; i++)
1953 		bpf_jit_free(aux->func[i]);
1954 	if (aux->func_cnt) {
1955 		kfree(aux->func);
1956 		bpf_prog_unlock_free(aux->prog);
1957 	} else {
1958 		bpf_jit_free(aux->prog);
1959 	}
1960 }
1961 
1962 /* Free internal BPF program */
1963 void bpf_prog_free(struct bpf_prog *fp)
1964 {
1965 	struct bpf_prog_aux *aux = fp->aux;
1966 
1967 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1968 	schedule_work(&aux->work);
1969 }
1970 EXPORT_SYMBOL_GPL(bpf_prog_free);
1971 
1972 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1973 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1974 
1975 void bpf_user_rnd_init_once(void)
1976 {
1977 	prandom_init_once(&bpf_user_rnd_state);
1978 }
1979 
1980 BPF_CALL_0(bpf_user_rnd_u32)
1981 {
1982 	/* Should someone ever have the rather unwise idea to use some
1983 	 * of the registers passed into this function, then note that
1984 	 * this function is called from native eBPF and classic-to-eBPF
1985 	 * transformations. Register assignments from both sides are
1986 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1987 	 */
1988 	struct rnd_state *state;
1989 	u32 res;
1990 
1991 	state = &get_cpu_var(bpf_user_rnd_state);
1992 	res = prandom_u32_state(state);
1993 	put_cpu_var(bpf_user_rnd_state);
1994 
1995 	return res;
1996 }
1997 
1998 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1999 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2000 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2001 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2002 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2003 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2004 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2005 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2006 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2007 
2008 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2009 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2010 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2011 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2012 
2013 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2014 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2015 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2016 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2017 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2018 
2019 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2020 {
2021 	return NULL;
2022 }
2023 
2024 u64 __weak
2025 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2026 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2027 {
2028 	return -ENOTSUPP;
2029 }
2030 EXPORT_SYMBOL_GPL(bpf_event_output);
2031 
2032 /* Always built-in helper functions. */
2033 const struct bpf_func_proto bpf_tail_call_proto = {
2034 	.func		= NULL,
2035 	.gpl_only	= false,
2036 	.ret_type	= RET_VOID,
2037 	.arg1_type	= ARG_PTR_TO_CTX,
2038 	.arg2_type	= ARG_CONST_MAP_PTR,
2039 	.arg3_type	= ARG_ANYTHING,
2040 };
2041 
2042 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2043  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2044  * eBPF and implicitly also cBPF can get JITed!
2045  */
2046 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2047 {
2048 	return prog;
2049 }
2050 
2051 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2052  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2053  */
2054 void __weak bpf_jit_compile(struct bpf_prog *prog)
2055 {
2056 }
2057 
2058 bool __weak bpf_helper_changes_pkt_data(void *func)
2059 {
2060 	return false;
2061 }
2062 
2063 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2064  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2065  */
2066 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2067 			 int len)
2068 {
2069 	return -EFAULT;
2070 }
2071 
2072 /* All definitions of tracepoints related to BPF. */
2073 #define CREATE_TRACE_POINTS
2074 #include <linux/bpf_trace.h>
2075 
2076 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2077