1 /* 2 * Linux Socket Filter - Kernel level socket filtering 3 * 4 * Based on the design of the Berkeley Packet Filter. The new 5 * internal format has been designed by PLUMgrid: 6 * 7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 8 * 9 * Authors: 10 * 11 * Jay Schulist <jschlst@samba.org> 12 * Alexei Starovoitov <ast@plumgrid.com> 13 * Daniel Borkmann <dborkman@redhat.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 * 20 * Andi Kleen - Fix a few bad bugs and races. 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 22 */ 23 24 #include <linux/filter.h> 25 #include <linux/skbuff.h> 26 #include <linux/vmalloc.h> 27 #include <linux/random.h> 28 #include <linux/moduleloader.h> 29 #include <asm/unaligned.h> 30 #include <linux/bpf.h> 31 32 /* Registers */ 33 #define BPF_R0 regs[BPF_REG_0] 34 #define BPF_R1 regs[BPF_REG_1] 35 #define BPF_R2 regs[BPF_REG_2] 36 #define BPF_R3 regs[BPF_REG_3] 37 #define BPF_R4 regs[BPF_REG_4] 38 #define BPF_R5 regs[BPF_REG_5] 39 #define BPF_R6 regs[BPF_REG_6] 40 #define BPF_R7 regs[BPF_REG_7] 41 #define BPF_R8 regs[BPF_REG_8] 42 #define BPF_R9 regs[BPF_REG_9] 43 #define BPF_R10 regs[BPF_REG_10] 44 45 /* Named registers */ 46 #define DST regs[insn->dst_reg] 47 #define SRC regs[insn->src_reg] 48 #define FP regs[BPF_REG_FP] 49 #define ARG1 regs[BPF_REG_ARG1] 50 #define CTX regs[BPF_REG_CTX] 51 #define IMM insn->imm 52 53 /* No hurry in this branch 54 * 55 * Exported for the bpf jit load helper. 56 */ 57 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) 58 { 59 u8 *ptr = NULL; 60 61 if (k >= SKF_NET_OFF) 62 ptr = skb_network_header(skb) + k - SKF_NET_OFF; 63 else if (k >= SKF_LL_OFF) 64 ptr = skb_mac_header(skb) + k - SKF_LL_OFF; 65 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) 66 return ptr; 67 68 return NULL; 69 } 70 71 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) 72 { 73 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO | 74 gfp_extra_flags; 75 struct bpf_prog_aux *aux; 76 struct bpf_prog *fp; 77 78 size = round_up(size, PAGE_SIZE); 79 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); 80 if (fp == NULL) 81 return NULL; 82 83 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags); 84 if (aux == NULL) { 85 vfree(fp); 86 return NULL; 87 } 88 89 fp->pages = size / PAGE_SIZE; 90 fp->aux = aux; 91 92 return fp; 93 } 94 EXPORT_SYMBOL_GPL(bpf_prog_alloc); 95 96 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 97 gfp_t gfp_extra_flags) 98 { 99 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO | 100 gfp_extra_flags; 101 struct bpf_prog *fp; 102 103 BUG_ON(fp_old == NULL); 104 105 size = round_up(size, PAGE_SIZE); 106 if (size <= fp_old->pages * PAGE_SIZE) 107 return fp_old; 108 109 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); 110 if (fp != NULL) { 111 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); 112 fp->pages = size / PAGE_SIZE; 113 114 /* We keep fp->aux from fp_old around in the new 115 * reallocated structure. 116 */ 117 fp_old->aux = NULL; 118 __bpf_prog_free(fp_old); 119 } 120 121 return fp; 122 } 123 EXPORT_SYMBOL_GPL(bpf_prog_realloc); 124 125 void __bpf_prog_free(struct bpf_prog *fp) 126 { 127 kfree(fp->aux); 128 vfree(fp); 129 } 130 EXPORT_SYMBOL_GPL(__bpf_prog_free); 131 132 #ifdef CONFIG_BPF_JIT 133 struct bpf_binary_header * 134 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 135 unsigned int alignment, 136 bpf_jit_fill_hole_t bpf_fill_ill_insns) 137 { 138 struct bpf_binary_header *hdr; 139 unsigned int size, hole, start; 140 141 /* Most of BPF filters are really small, but if some of them 142 * fill a page, allow at least 128 extra bytes to insert a 143 * random section of illegal instructions. 144 */ 145 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); 146 hdr = module_alloc(size); 147 if (hdr == NULL) 148 return NULL; 149 150 /* Fill space with illegal/arch-dep instructions. */ 151 bpf_fill_ill_insns(hdr, size); 152 153 hdr->pages = size / PAGE_SIZE; 154 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), 155 PAGE_SIZE - sizeof(*hdr)); 156 start = (prandom_u32() % hole) & ~(alignment - 1); 157 158 /* Leave a random number of instructions before BPF code. */ 159 *image_ptr = &hdr->image[start]; 160 161 return hdr; 162 } 163 164 void bpf_jit_binary_free(struct bpf_binary_header *hdr) 165 { 166 module_free(NULL, hdr); 167 } 168 #endif /* CONFIG_BPF_JIT */ 169 170 /* Base function for offset calculation. Needs to go into .text section, 171 * therefore keeping it non-static as well; will also be used by JITs 172 * anyway later on, so do not let the compiler omit it. 173 */ 174 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 175 { 176 return 0; 177 } 178 179 /** 180 * __bpf_prog_run - run eBPF program on a given context 181 * @ctx: is the data we are operating on 182 * @insn: is the array of eBPF instructions 183 * 184 * Decode and execute eBPF instructions. 185 */ 186 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn) 187 { 188 u64 stack[MAX_BPF_STACK / sizeof(u64)]; 189 u64 regs[MAX_BPF_REG], tmp; 190 static const void *jumptable[256] = { 191 [0 ... 255] = &&default_label, 192 /* Now overwrite non-defaults ... */ 193 /* 32 bit ALU operations */ 194 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X, 195 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K, 196 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X, 197 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K, 198 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X, 199 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K, 200 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X, 201 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K, 202 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X, 203 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K, 204 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X, 205 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K, 206 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X, 207 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K, 208 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X, 209 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K, 210 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X, 211 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K, 212 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X, 213 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K, 214 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X, 215 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K, 216 [BPF_ALU | BPF_NEG] = &&ALU_NEG, 217 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE, 218 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE, 219 /* 64 bit ALU operations */ 220 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X, 221 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K, 222 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X, 223 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K, 224 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X, 225 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K, 226 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X, 227 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K, 228 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X, 229 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K, 230 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X, 231 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K, 232 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X, 233 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K, 234 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X, 235 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K, 236 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X, 237 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K, 238 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X, 239 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K, 240 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X, 241 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K, 242 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X, 243 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K, 244 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG, 245 /* Call instruction */ 246 [BPF_JMP | BPF_CALL] = &&JMP_CALL, 247 /* Jumps */ 248 [BPF_JMP | BPF_JA] = &&JMP_JA, 249 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X, 250 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K, 251 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X, 252 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K, 253 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X, 254 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K, 255 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X, 256 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K, 257 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X, 258 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K, 259 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X, 260 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K, 261 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X, 262 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K, 263 /* Program return */ 264 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT, 265 /* Store instructions */ 266 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B, 267 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H, 268 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W, 269 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW, 270 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W, 271 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW, 272 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B, 273 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H, 274 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W, 275 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW, 276 /* Load instructions */ 277 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B, 278 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H, 279 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W, 280 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW, 281 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W, 282 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H, 283 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B, 284 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W, 285 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H, 286 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B, 287 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW, 288 }; 289 void *ptr; 290 int off; 291 292 #define CONT ({ insn++; goto select_insn; }) 293 #define CONT_JMP ({ insn++; goto select_insn; }) 294 295 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; 296 ARG1 = (u64) (unsigned long) ctx; 297 298 /* Registers used in classic BPF programs need to be reset first. */ 299 regs[BPF_REG_A] = 0; 300 regs[BPF_REG_X] = 0; 301 302 select_insn: 303 goto *jumptable[insn->code]; 304 305 /* ALU */ 306 #define ALU(OPCODE, OP) \ 307 ALU64_##OPCODE##_X: \ 308 DST = DST OP SRC; \ 309 CONT; \ 310 ALU_##OPCODE##_X: \ 311 DST = (u32) DST OP (u32) SRC; \ 312 CONT; \ 313 ALU64_##OPCODE##_K: \ 314 DST = DST OP IMM; \ 315 CONT; \ 316 ALU_##OPCODE##_K: \ 317 DST = (u32) DST OP (u32) IMM; \ 318 CONT; 319 320 ALU(ADD, +) 321 ALU(SUB, -) 322 ALU(AND, &) 323 ALU(OR, |) 324 ALU(LSH, <<) 325 ALU(RSH, >>) 326 ALU(XOR, ^) 327 ALU(MUL, *) 328 #undef ALU 329 ALU_NEG: 330 DST = (u32) -DST; 331 CONT; 332 ALU64_NEG: 333 DST = -DST; 334 CONT; 335 ALU_MOV_X: 336 DST = (u32) SRC; 337 CONT; 338 ALU_MOV_K: 339 DST = (u32) IMM; 340 CONT; 341 ALU64_MOV_X: 342 DST = SRC; 343 CONT; 344 ALU64_MOV_K: 345 DST = IMM; 346 CONT; 347 LD_IMM_DW: 348 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; 349 insn++; 350 CONT; 351 ALU64_ARSH_X: 352 (*(s64 *) &DST) >>= SRC; 353 CONT; 354 ALU64_ARSH_K: 355 (*(s64 *) &DST) >>= IMM; 356 CONT; 357 ALU64_MOD_X: 358 if (unlikely(SRC == 0)) 359 return 0; 360 tmp = DST; 361 DST = do_div(tmp, SRC); 362 CONT; 363 ALU_MOD_X: 364 if (unlikely(SRC == 0)) 365 return 0; 366 tmp = (u32) DST; 367 DST = do_div(tmp, (u32) SRC); 368 CONT; 369 ALU64_MOD_K: 370 tmp = DST; 371 DST = do_div(tmp, IMM); 372 CONT; 373 ALU_MOD_K: 374 tmp = (u32) DST; 375 DST = do_div(tmp, (u32) IMM); 376 CONT; 377 ALU64_DIV_X: 378 if (unlikely(SRC == 0)) 379 return 0; 380 do_div(DST, SRC); 381 CONT; 382 ALU_DIV_X: 383 if (unlikely(SRC == 0)) 384 return 0; 385 tmp = (u32) DST; 386 do_div(tmp, (u32) SRC); 387 DST = (u32) tmp; 388 CONT; 389 ALU64_DIV_K: 390 do_div(DST, IMM); 391 CONT; 392 ALU_DIV_K: 393 tmp = (u32) DST; 394 do_div(tmp, (u32) IMM); 395 DST = (u32) tmp; 396 CONT; 397 ALU_END_TO_BE: 398 switch (IMM) { 399 case 16: 400 DST = (__force u16) cpu_to_be16(DST); 401 break; 402 case 32: 403 DST = (__force u32) cpu_to_be32(DST); 404 break; 405 case 64: 406 DST = (__force u64) cpu_to_be64(DST); 407 break; 408 } 409 CONT; 410 ALU_END_TO_LE: 411 switch (IMM) { 412 case 16: 413 DST = (__force u16) cpu_to_le16(DST); 414 break; 415 case 32: 416 DST = (__force u32) cpu_to_le32(DST); 417 break; 418 case 64: 419 DST = (__force u64) cpu_to_le64(DST); 420 break; 421 } 422 CONT; 423 424 /* CALL */ 425 JMP_CALL: 426 /* Function call scratches BPF_R1-BPF_R5 registers, 427 * preserves BPF_R6-BPF_R9, and stores return value 428 * into BPF_R0. 429 */ 430 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, 431 BPF_R4, BPF_R5); 432 CONT; 433 434 /* JMP */ 435 JMP_JA: 436 insn += insn->off; 437 CONT; 438 JMP_JEQ_X: 439 if (DST == SRC) { 440 insn += insn->off; 441 CONT_JMP; 442 } 443 CONT; 444 JMP_JEQ_K: 445 if (DST == IMM) { 446 insn += insn->off; 447 CONT_JMP; 448 } 449 CONT; 450 JMP_JNE_X: 451 if (DST != SRC) { 452 insn += insn->off; 453 CONT_JMP; 454 } 455 CONT; 456 JMP_JNE_K: 457 if (DST != IMM) { 458 insn += insn->off; 459 CONT_JMP; 460 } 461 CONT; 462 JMP_JGT_X: 463 if (DST > SRC) { 464 insn += insn->off; 465 CONT_JMP; 466 } 467 CONT; 468 JMP_JGT_K: 469 if (DST > IMM) { 470 insn += insn->off; 471 CONT_JMP; 472 } 473 CONT; 474 JMP_JGE_X: 475 if (DST >= SRC) { 476 insn += insn->off; 477 CONT_JMP; 478 } 479 CONT; 480 JMP_JGE_K: 481 if (DST >= IMM) { 482 insn += insn->off; 483 CONT_JMP; 484 } 485 CONT; 486 JMP_JSGT_X: 487 if (((s64) DST) > ((s64) SRC)) { 488 insn += insn->off; 489 CONT_JMP; 490 } 491 CONT; 492 JMP_JSGT_K: 493 if (((s64) DST) > ((s64) IMM)) { 494 insn += insn->off; 495 CONT_JMP; 496 } 497 CONT; 498 JMP_JSGE_X: 499 if (((s64) DST) >= ((s64) SRC)) { 500 insn += insn->off; 501 CONT_JMP; 502 } 503 CONT; 504 JMP_JSGE_K: 505 if (((s64) DST) >= ((s64) IMM)) { 506 insn += insn->off; 507 CONT_JMP; 508 } 509 CONT; 510 JMP_JSET_X: 511 if (DST & SRC) { 512 insn += insn->off; 513 CONT_JMP; 514 } 515 CONT; 516 JMP_JSET_K: 517 if (DST & IMM) { 518 insn += insn->off; 519 CONT_JMP; 520 } 521 CONT; 522 JMP_EXIT: 523 return BPF_R0; 524 525 /* STX and ST and LDX*/ 526 #define LDST(SIZEOP, SIZE) \ 527 STX_MEM_##SIZEOP: \ 528 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ 529 CONT; \ 530 ST_MEM_##SIZEOP: \ 531 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ 532 CONT; \ 533 LDX_MEM_##SIZEOP: \ 534 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 535 CONT; 536 537 LDST(B, u8) 538 LDST(H, u16) 539 LDST(W, u32) 540 LDST(DW, u64) 541 #undef LDST 542 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */ 543 atomic_add((u32) SRC, (atomic_t *)(unsigned long) 544 (DST + insn->off)); 545 CONT; 546 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */ 547 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long) 548 (DST + insn->off)); 549 CONT; 550 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */ 551 off = IMM; 552 load_word: 553 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are 554 * only appearing in the programs where ctx == 555 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX] 556 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6, 557 * internal BPF verifier will check that BPF_R6 == 558 * ctx. 559 * 560 * BPF_ABS and BPF_IND are wrappers of function calls, 561 * so they scratch BPF_R1-BPF_R5 registers, preserve 562 * BPF_R6-BPF_R9, and store return value into BPF_R0. 563 * 564 * Implicit input: 565 * ctx == skb == BPF_R6 == CTX 566 * 567 * Explicit input: 568 * SRC == any register 569 * IMM == 32-bit immediate 570 * 571 * Output: 572 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness 573 */ 574 575 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp); 576 if (likely(ptr != NULL)) { 577 BPF_R0 = get_unaligned_be32(ptr); 578 CONT; 579 } 580 581 return 0; 582 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */ 583 off = IMM; 584 load_half: 585 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp); 586 if (likely(ptr != NULL)) { 587 BPF_R0 = get_unaligned_be16(ptr); 588 CONT; 589 } 590 591 return 0; 592 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */ 593 off = IMM; 594 load_byte: 595 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp); 596 if (likely(ptr != NULL)) { 597 BPF_R0 = *(u8 *)ptr; 598 CONT; 599 } 600 601 return 0; 602 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */ 603 off = IMM + SRC; 604 goto load_word; 605 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */ 606 off = IMM + SRC; 607 goto load_half; 608 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */ 609 off = IMM + SRC; 610 goto load_byte; 611 612 default_label: 613 /* If we ever reach this, we have a bug somewhere. */ 614 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code); 615 return 0; 616 } 617 618 void __weak bpf_int_jit_compile(struct bpf_prog *prog) 619 { 620 } 621 622 /** 623 * bpf_prog_select_runtime - select execution runtime for BPF program 624 * @fp: bpf_prog populated with internal BPF program 625 * 626 * try to JIT internal BPF program, if JIT is not available select interpreter 627 * BPF program will be executed via BPF_PROG_RUN() macro 628 */ 629 void bpf_prog_select_runtime(struct bpf_prog *fp) 630 { 631 fp->bpf_func = (void *) __bpf_prog_run; 632 633 /* Probe if internal BPF can be JITed */ 634 bpf_int_jit_compile(fp); 635 /* Lock whole bpf_prog as read-only */ 636 bpf_prog_lock_ro(fp); 637 } 638 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); 639 640 static void bpf_prog_free_deferred(struct work_struct *work) 641 { 642 struct bpf_prog_aux *aux; 643 644 aux = container_of(work, struct bpf_prog_aux, work); 645 bpf_jit_free(aux->prog); 646 } 647 648 /* Free internal BPF program */ 649 void bpf_prog_free(struct bpf_prog *fp) 650 { 651 struct bpf_prog_aux *aux = fp->aux; 652 653 INIT_WORK(&aux->work, bpf_prog_free_deferred); 654 aux->prog = fp; 655 schedule_work(&aux->work); 656 } 657 EXPORT_SYMBOL_GPL(bpf_prog_free); 658 659 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call 660 * skb_copy_bits(), so provide a weak definition of it for NET-less config. 661 */ 662 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, 663 int len) 664 { 665 return -EFAULT; 666 } 667