xref: /linux/kernel/bpf/core.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
91 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
92 {
93 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
94 	struct bpf_prog_aux *aux;
95 	struct bpf_prog *fp;
96 
97 	size = round_up(size, PAGE_SIZE);
98 	fp = __vmalloc(size, gfp_flags);
99 	if (fp == NULL)
100 		return NULL;
101 
102 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
103 	if (aux == NULL) {
104 		vfree(fp);
105 		return NULL;
106 	}
107 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (!fp->active) {
109 		vfree(fp);
110 		kfree(aux);
111 		return NULL;
112 	}
113 
114 	fp->pages = size / PAGE_SIZE;
115 	fp->aux = aux;
116 	fp->aux->prog = fp;
117 	fp->jit_requested = ebpf_jit_enabled();
118 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
119 #ifdef CONFIG_CGROUP_BPF
120 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
121 #endif
122 
123 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
124 #ifdef CONFIG_FINEIBT
125 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
126 #endif
127 	mutex_init(&fp->aux->used_maps_mutex);
128 	mutex_init(&fp->aux->dst_mutex);
129 
130 	return fp;
131 }
132 
133 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
134 {
135 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
136 	struct bpf_prog *prog;
137 	int cpu;
138 
139 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
140 	if (!prog)
141 		return NULL;
142 
143 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
144 	if (!prog->stats) {
145 		free_percpu(prog->active);
146 		kfree(prog->aux);
147 		vfree(prog);
148 		return NULL;
149 	}
150 
151 	for_each_possible_cpu(cpu) {
152 		struct bpf_prog_stats *pstats;
153 
154 		pstats = per_cpu_ptr(prog->stats, cpu);
155 		u64_stats_init(&pstats->syncp);
156 	}
157 	return prog;
158 }
159 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
160 
161 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
162 {
163 	if (!prog->aux->nr_linfo || !prog->jit_requested)
164 		return 0;
165 
166 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
167 					  sizeof(*prog->aux->jited_linfo),
168 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
169 	if (!prog->aux->jited_linfo)
170 		return -ENOMEM;
171 
172 	return 0;
173 }
174 
175 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
176 {
177 	if (prog->aux->jited_linfo &&
178 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
179 		kvfree(prog->aux->jited_linfo);
180 		prog->aux->jited_linfo = NULL;
181 	}
182 
183 	kfree(prog->aux->kfunc_tab);
184 	prog->aux->kfunc_tab = NULL;
185 }
186 
187 /* The jit engine is responsible to provide an array
188  * for insn_off to the jited_off mapping (insn_to_jit_off).
189  *
190  * The idx to this array is the insn_off.  Hence, the insn_off
191  * here is relative to the prog itself instead of the main prog.
192  * This array has one entry for each xlated bpf insn.
193  *
194  * jited_off is the byte off to the end of the jited insn.
195  *
196  * Hence, with
197  * insn_start:
198  *      The first bpf insn off of the prog.  The insn off
199  *      here is relative to the main prog.
200  *      e.g. if prog is a subprog, insn_start > 0
201  * linfo_idx:
202  *      The prog's idx to prog->aux->linfo and jited_linfo
203  *
204  * jited_linfo[linfo_idx] = prog->bpf_func
205  *
206  * For i > linfo_idx,
207  *
208  * jited_linfo[i] = prog->bpf_func +
209  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
210  */
211 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
212 			       const u32 *insn_to_jit_off)
213 {
214 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
215 	const struct bpf_line_info *linfo;
216 	void **jited_linfo;
217 
218 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
219 		/* Userspace did not provide linfo */
220 		return;
221 
222 	linfo_idx = prog->aux->linfo_idx;
223 	linfo = &prog->aux->linfo[linfo_idx];
224 	insn_start = linfo[0].insn_off;
225 	insn_end = insn_start + prog->len;
226 
227 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
228 	jited_linfo[0] = prog->bpf_func;
229 
230 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
231 
232 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
233 		/* The verifier ensures that linfo[i].insn_off is
234 		 * strictly increasing
235 		 */
236 		jited_linfo[i] = prog->bpf_func +
237 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
238 }
239 
240 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
241 				  gfp_t gfp_extra_flags)
242 {
243 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
244 	struct bpf_prog *fp;
245 	u32 pages;
246 
247 	size = round_up(size, PAGE_SIZE);
248 	pages = size / PAGE_SIZE;
249 	if (pages <= fp_old->pages)
250 		return fp_old;
251 
252 	fp = __vmalloc(size, gfp_flags);
253 	if (fp) {
254 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
255 		fp->pages = pages;
256 		fp->aux->prog = fp;
257 
258 		/* We keep fp->aux from fp_old around in the new
259 		 * reallocated structure.
260 		 */
261 		fp_old->aux = NULL;
262 		fp_old->stats = NULL;
263 		fp_old->active = NULL;
264 		__bpf_prog_free(fp_old);
265 	}
266 
267 	return fp;
268 }
269 
270 void __bpf_prog_free(struct bpf_prog *fp)
271 {
272 	if (fp->aux) {
273 		mutex_destroy(&fp->aux->used_maps_mutex);
274 		mutex_destroy(&fp->aux->dst_mutex);
275 		kfree(fp->aux->poke_tab);
276 		kfree(fp->aux);
277 	}
278 	free_percpu(fp->stats);
279 	free_percpu(fp->active);
280 	vfree(fp);
281 }
282 
283 int bpf_prog_calc_tag(struct bpf_prog *fp)
284 {
285 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
286 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
287 	u32 digest[SHA1_DIGEST_WORDS];
288 	u32 ws[SHA1_WORKSPACE_WORDS];
289 	u32 i, bsize, psize, blocks;
290 	struct bpf_insn *dst;
291 	bool was_ld_map;
292 	u8 *raw, *todo;
293 	__be32 *result;
294 	__be64 *bits;
295 
296 	raw = vmalloc(raw_size);
297 	if (!raw)
298 		return -ENOMEM;
299 
300 	sha1_init(digest);
301 	memset(ws, 0, sizeof(ws));
302 
303 	/* We need to take out the map fd for the digest calculation
304 	 * since they are unstable from user space side.
305 	 */
306 	dst = (void *)raw;
307 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
308 		dst[i] = fp->insnsi[i];
309 		if (!was_ld_map &&
310 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
311 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
312 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
313 			was_ld_map = true;
314 			dst[i].imm = 0;
315 		} else if (was_ld_map &&
316 			   dst[i].code == 0 &&
317 			   dst[i].dst_reg == 0 &&
318 			   dst[i].src_reg == 0 &&
319 			   dst[i].off == 0) {
320 			was_ld_map = false;
321 			dst[i].imm = 0;
322 		} else {
323 			was_ld_map = false;
324 		}
325 	}
326 
327 	psize = bpf_prog_insn_size(fp);
328 	memset(&raw[psize], 0, raw_size - psize);
329 	raw[psize++] = 0x80;
330 
331 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
332 	blocks = bsize / SHA1_BLOCK_SIZE;
333 	todo   = raw;
334 	if (bsize - psize >= sizeof(__be64)) {
335 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
336 	} else {
337 		bits = (__be64 *)(todo + bsize + bits_offset);
338 		blocks++;
339 	}
340 	*bits = cpu_to_be64((psize - 1) << 3);
341 
342 	while (blocks--) {
343 		sha1_transform(digest, todo, ws);
344 		todo += SHA1_BLOCK_SIZE;
345 	}
346 
347 	result = (__force __be32 *)digest;
348 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
349 		result[i] = cpu_to_be32(digest[i]);
350 	memcpy(fp->tag, result, sizeof(fp->tag));
351 
352 	vfree(raw);
353 	return 0;
354 }
355 
356 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
357 				s32 end_new, s32 curr, const bool probe_pass)
358 {
359 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
360 	s32 delta = end_new - end_old;
361 	s64 imm = insn->imm;
362 
363 	if (curr < pos && curr + imm + 1 >= end_old)
364 		imm += delta;
365 	else if (curr >= end_new && curr + imm + 1 < end_new)
366 		imm -= delta;
367 	if (imm < imm_min || imm > imm_max)
368 		return -ERANGE;
369 	if (!probe_pass)
370 		insn->imm = imm;
371 	return 0;
372 }
373 
374 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
375 				s32 end_new, s32 curr, const bool probe_pass)
376 {
377 	s64 off_min, off_max, off;
378 	s32 delta = end_new - end_old;
379 
380 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
381 		off = insn->imm;
382 		off_min = S32_MIN;
383 		off_max = S32_MAX;
384 	} else {
385 		off = insn->off;
386 		off_min = S16_MIN;
387 		off_max = S16_MAX;
388 	}
389 
390 	if (curr < pos && curr + off + 1 >= end_old)
391 		off += delta;
392 	else if (curr >= end_new && curr + off + 1 < end_new)
393 		off -= delta;
394 	if (off < off_min || off > off_max)
395 		return -ERANGE;
396 	if (!probe_pass) {
397 		if (insn->code == (BPF_JMP32 | BPF_JA))
398 			insn->imm = off;
399 		else
400 			insn->off = off;
401 	}
402 	return 0;
403 }
404 
405 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
406 			    s32 end_new, const bool probe_pass)
407 {
408 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
409 	struct bpf_insn *insn = prog->insnsi;
410 	int ret = 0;
411 
412 	for (i = 0; i < insn_cnt; i++, insn++) {
413 		u8 code;
414 
415 		/* In the probing pass we still operate on the original,
416 		 * unpatched image in order to check overflows before we
417 		 * do any other adjustments. Therefore skip the patchlet.
418 		 */
419 		if (probe_pass && i == pos) {
420 			i = end_new;
421 			insn = prog->insnsi + end_old;
422 		}
423 		if (bpf_pseudo_func(insn)) {
424 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
425 						   end_new, i, probe_pass);
426 			if (ret)
427 				return ret;
428 			continue;
429 		}
430 		code = insn->code;
431 		if ((BPF_CLASS(code) != BPF_JMP &&
432 		     BPF_CLASS(code) != BPF_JMP32) ||
433 		    BPF_OP(code) == BPF_EXIT)
434 			continue;
435 		/* Adjust offset of jmps if we cross patch boundaries. */
436 		if (BPF_OP(code) == BPF_CALL) {
437 			if (insn->src_reg != BPF_PSEUDO_CALL)
438 				continue;
439 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
440 						   end_new, i, probe_pass);
441 		} else {
442 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
443 						   end_new, i, probe_pass);
444 		}
445 		if (ret)
446 			break;
447 	}
448 
449 	return ret;
450 }
451 
452 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
453 {
454 	struct bpf_line_info *linfo;
455 	u32 i, nr_linfo;
456 
457 	nr_linfo = prog->aux->nr_linfo;
458 	if (!nr_linfo || !delta)
459 		return;
460 
461 	linfo = prog->aux->linfo;
462 
463 	for (i = 0; i < nr_linfo; i++)
464 		if (off < linfo[i].insn_off)
465 			break;
466 
467 	/* Push all off < linfo[i].insn_off by delta */
468 	for (; i < nr_linfo; i++)
469 		linfo[i].insn_off += delta;
470 }
471 
472 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
473 				       const struct bpf_insn *patch, u32 len)
474 {
475 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
476 	const u32 cnt_max = S16_MAX;
477 	struct bpf_prog *prog_adj;
478 	int err;
479 
480 	/* Since our patchlet doesn't expand the image, we're done. */
481 	if (insn_delta == 0) {
482 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
483 		return prog;
484 	}
485 
486 	insn_adj_cnt = prog->len + insn_delta;
487 
488 	/* Reject anything that would potentially let the insn->off
489 	 * target overflow when we have excessive program expansions.
490 	 * We need to probe here before we do any reallocation where
491 	 * we afterwards may not fail anymore.
492 	 */
493 	if (insn_adj_cnt > cnt_max &&
494 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
495 		return ERR_PTR(err);
496 
497 	/* Several new instructions need to be inserted. Make room
498 	 * for them. Likely, there's no need for a new allocation as
499 	 * last page could have large enough tailroom.
500 	 */
501 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
502 				    GFP_USER);
503 	if (!prog_adj)
504 		return ERR_PTR(-ENOMEM);
505 
506 	prog_adj->len = insn_adj_cnt;
507 
508 	/* Patching happens in 3 steps:
509 	 *
510 	 * 1) Move over tail of insnsi from next instruction onwards,
511 	 *    so we can patch the single target insn with one or more
512 	 *    new ones (patching is always from 1 to n insns, n > 0).
513 	 * 2) Inject new instructions at the target location.
514 	 * 3) Adjust branch offsets if necessary.
515 	 */
516 	insn_rest = insn_adj_cnt - off - len;
517 
518 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
519 		sizeof(*patch) * insn_rest);
520 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
521 
522 	/* We are guaranteed to not fail at this point, otherwise
523 	 * the ship has sailed to reverse to the original state. An
524 	 * overflow cannot happen at this point.
525 	 */
526 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
527 
528 	bpf_adj_linfo(prog_adj, off, insn_delta);
529 
530 	return prog_adj;
531 }
532 
533 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
534 {
535 	/* Branch offsets can't overflow when program is shrinking, no need
536 	 * to call bpf_adj_branches(..., true) here
537 	 */
538 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
539 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
540 	prog->len -= cnt;
541 
542 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
543 }
544 
545 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
546 {
547 	int i;
548 
549 	for (i = 0; i < fp->aux->real_func_cnt; i++)
550 		bpf_prog_kallsyms_del(fp->aux->func[i]);
551 }
552 
553 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
554 {
555 	bpf_prog_kallsyms_del_subprogs(fp);
556 	bpf_prog_kallsyms_del(fp);
557 }
558 
559 #ifdef CONFIG_BPF_JIT
560 /* All BPF JIT sysctl knobs here. */
561 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
562 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
563 int bpf_jit_harden   __read_mostly;
564 long bpf_jit_limit   __read_mostly;
565 long bpf_jit_limit_max __read_mostly;
566 
567 static void
568 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
569 {
570 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
571 
572 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
573 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
574 }
575 
576 static void
577 bpf_prog_ksym_set_name(struct bpf_prog *prog)
578 {
579 	char *sym = prog->aux->ksym.name;
580 	const char *end = sym + KSYM_NAME_LEN;
581 	const struct btf_type *type;
582 	const char *func_name;
583 
584 	BUILD_BUG_ON(sizeof("bpf_prog_") +
585 		     sizeof(prog->tag) * 2 +
586 		     /* name has been null terminated.
587 		      * We should need +1 for the '_' preceding
588 		      * the name.  However, the null character
589 		      * is double counted between the name and the
590 		      * sizeof("bpf_prog_") above, so we omit
591 		      * the +1 here.
592 		      */
593 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
594 
595 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
596 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
597 
598 	/* prog->aux->name will be ignored if full btf name is available */
599 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
600 		type = btf_type_by_id(prog->aux->btf,
601 				      prog->aux->func_info[prog->aux->func_idx].type_id);
602 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
603 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
604 		return;
605 	}
606 
607 	if (prog->aux->name[0])
608 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
609 	else
610 		*sym = 0;
611 }
612 
613 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
614 {
615 	return container_of(n, struct bpf_ksym, tnode)->start;
616 }
617 
618 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
619 					  struct latch_tree_node *b)
620 {
621 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
622 }
623 
624 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
625 {
626 	unsigned long val = (unsigned long)key;
627 	const struct bpf_ksym *ksym;
628 
629 	ksym = container_of(n, struct bpf_ksym, tnode);
630 
631 	if (val < ksym->start)
632 		return -1;
633 	/* Ensure that we detect return addresses as part of the program, when
634 	 * the final instruction is a call for a program part of the stack
635 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
636 	 */
637 	if (val > ksym->end)
638 		return  1;
639 
640 	return 0;
641 }
642 
643 static const struct latch_tree_ops bpf_tree_ops = {
644 	.less	= bpf_tree_less,
645 	.comp	= bpf_tree_comp,
646 };
647 
648 static DEFINE_SPINLOCK(bpf_lock);
649 static LIST_HEAD(bpf_kallsyms);
650 static struct latch_tree_root bpf_tree __cacheline_aligned;
651 
652 void bpf_ksym_add(struct bpf_ksym *ksym)
653 {
654 	spin_lock_bh(&bpf_lock);
655 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
656 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
657 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
658 	spin_unlock_bh(&bpf_lock);
659 }
660 
661 static void __bpf_ksym_del(struct bpf_ksym *ksym)
662 {
663 	if (list_empty(&ksym->lnode))
664 		return;
665 
666 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
667 	list_del_rcu(&ksym->lnode);
668 }
669 
670 void bpf_ksym_del(struct bpf_ksym *ksym)
671 {
672 	spin_lock_bh(&bpf_lock);
673 	__bpf_ksym_del(ksym);
674 	spin_unlock_bh(&bpf_lock);
675 }
676 
677 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
678 {
679 	return fp->jited && !bpf_prog_was_classic(fp);
680 }
681 
682 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
683 {
684 	if (!bpf_prog_kallsyms_candidate(fp) ||
685 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
686 		return;
687 
688 	bpf_prog_ksym_set_addr(fp);
689 	bpf_prog_ksym_set_name(fp);
690 	fp->aux->ksym.prog = true;
691 
692 	bpf_ksym_add(&fp->aux->ksym);
693 
694 #ifdef CONFIG_FINEIBT
695 	/*
696 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
697 	 * and hence unwinder needs help.
698 	 */
699 	if (cfi_mode != CFI_FINEIBT)
700 		return;
701 
702 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
703 		 "__cfi_%s", fp->aux->ksym.name);
704 
705 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
706 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
707 
708 	bpf_ksym_add(&fp->aux->ksym_prefix);
709 #endif
710 }
711 
712 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
713 {
714 	if (!bpf_prog_kallsyms_candidate(fp))
715 		return;
716 
717 	bpf_ksym_del(&fp->aux->ksym);
718 #ifdef CONFIG_FINEIBT
719 	if (cfi_mode != CFI_FINEIBT)
720 		return;
721 	bpf_ksym_del(&fp->aux->ksym_prefix);
722 #endif
723 }
724 
725 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
726 {
727 	struct latch_tree_node *n;
728 
729 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
730 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
731 }
732 
733 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
734 				 unsigned long *off, char *sym)
735 {
736 	struct bpf_ksym *ksym;
737 	char *ret = NULL;
738 
739 	rcu_read_lock();
740 	ksym = bpf_ksym_find(addr);
741 	if (ksym) {
742 		unsigned long symbol_start = ksym->start;
743 		unsigned long symbol_end = ksym->end;
744 
745 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
746 
747 		ret = sym;
748 		if (size)
749 			*size = symbol_end - symbol_start;
750 		if (off)
751 			*off  = addr - symbol_start;
752 	}
753 	rcu_read_unlock();
754 
755 	return ret;
756 }
757 
758 bool is_bpf_text_address(unsigned long addr)
759 {
760 	bool ret;
761 
762 	rcu_read_lock();
763 	ret = bpf_ksym_find(addr) != NULL;
764 	rcu_read_unlock();
765 
766 	return ret;
767 }
768 
769 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
770 {
771 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
772 
773 	return ksym && ksym->prog ?
774 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
775 	       NULL;
776 }
777 
778 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
779 {
780 	const struct exception_table_entry *e = NULL;
781 	struct bpf_prog *prog;
782 
783 	rcu_read_lock();
784 	prog = bpf_prog_ksym_find(addr);
785 	if (!prog)
786 		goto out;
787 	if (!prog->aux->num_exentries)
788 		goto out;
789 
790 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
791 out:
792 	rcu_read_unlock();
793 	return e;
794 }
795 
796 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
797 		    char *sym)
798 {
799 	struct bpf_ksym *ksym;
800 	unsigned int it = 0;
801 	int ret = -ERANGE;
802 
803 	if (!bpf_jit_kallsyms_enabled())
804 		return ret;
805 
806 	rcu_read_lock();
807 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
808 		if (it++ != symnum)
809 			continue;
810 
811 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
812 
813 		*value = ksym->start;
814 		*type  = BPF_SYM_ELF_TYPE;
815 
816 		ret = 0;
817 		break;
818 	}
819 	rcu_read_unlock();
820 
821 	return ret;
822 }
823 
824 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
825 				struct bpf_jit_poke_descriptor *poke)
826 {
827 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
828 	static const u32 poke_tab_max = 1024;
829 	u32 slot = prog->aux->size_poke_tab;
830 	u32 size = slot + 1;
831 
832 	if (size > poke_tab_max)
833 		return -ENOSPC;
834 	if (poke->tailcall_target || poke->tailcall_target_stable ||
835 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
836 		return -EINVAL;
837 
838 	switch (poke->reason) {
839 	case BPF_POKE_REASON_TAIL_CALL:
840 		if (!poke->tail_call.map)
841 			return -EINVAL;
842 		break;
843 	default:
844 		return -EINVAL;
845 	}
846 
847 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
848 	if (!tab)
849 		return -ENOMEM;
850 
851 	memcpy(&tab[slot], poke, sizeof(*poke));
852 	prog->aux->size_poke_tab = size;
853 	prog->aux->poke_tab = tab;
854 
855 	return slot;
856 }
857 
858 /*
859  * BPF program pack allocator.
860  *
861  * Most BPF programs are pretty small. Allocating a hole page for each
862  * program is sometime a waste. Many small bpf program also adds pressure
863  * to instruction TLB. To solve this issue, we introduce a BPF program pack
864  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
865  * to host BPF programs.
866  */
867 #define BPF_PROG_CHUNK_SHIFT	6
868 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
869 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
870 
871 struct bpf_prog_pack {
872 	struct list_head list;
873 	void *ptr;
874 	unsigned long bitmap[];
875 };
876 
877 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
878 {
879 	memset(area, 0, size);
880 }
881 
882 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
883 
884 static DEFINE_MUTEX(pack_mutex);
885 static LIST_HEAD(pack_list);
886 
887 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
888  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
889  */
890 #ifdef PMD_SIZE
891 #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
892 #else
893 #define BPF_PROG_PACK_SIZE PAGE_SIZE
894 #endif
895 
896 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
897 
898 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
899 {
900 	struct bpf_prog_pack *pack;
901 
902 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
903 		       GFP_KERNEL);
904 	if (!pack)
905 		return NULL;
906 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
907 	if (!pack->ptr) {
908 		kfree(pack);
909 		return NULL;
910 	}
911 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
912 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
913 	list_add_tail(&pack->list, &pack_list);
914 
915 	set_vm_flush_reset_perms(pack->ptr);
916 	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
917 	return pack;
918 }
919 
920 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
921 {
922 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
923 	struct bpf_prog_pack *pack;
924 	unsigned long pos;
925 	void *ptr = NULL;
926 
927 	mutex_lock(&pack_mutex);
928 	if (size > BPF_PROG_PACK_SIZE) {
929 		size = round_up(size, PAGE_SIZE);
930 		ptr = bpf_jit_alloc_exec(size);
931 		if (ptr) {
932 			bpf_fill_ill_insns(ptr, size);
933 			set_vm_flush_reset_perms(ptr);
934 			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
935 		}
936 		goto out;
937 	}
938 	list_for_each_entry(pack, &pack_list, list) {
939 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
940 						 nbits, 0);
941 		if (pos < BPF_PROG_CHUNK_COUNT)
942 			goto found_free_area;
943 	}
944 
945 	pack = alloc_new_pack(bpf_fill_ill_insns);
946 	if (!pack)
947 		goto out;
948 
949 	pos = 0;
950 
951 found_free_area:
952 	bitmap_set(pack->bitmap, pos, nbits);
953 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
954 
955 out:
956 	mutex_unlock(&pack_mutex);
957 	return ptr;
958 }
959 
960 void bpf_prog_pack_free(void *ptr, u32 size)
961 {
962 	struct bpf_prog_pack *pack = NULL, *tmp;
963 	unsigned int nbits;
964 	unsigned long pos;
965 
966 	mutex_lock(&pack_mutex);
967 	if (size > BPF_PROG_PACK_SIZE) {
968 		bpf_jit_free_exec(ptr);
969 		goto out;
970 	}
971 
972 	list_for_each_entry(tmp, &pack_list, list) {
973 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
974 			pack = tmp;
975 			break;
976 		}
977 	}
978 
979 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
980 		goto out;
981 
982 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
983 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
984 
985 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
986 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
987 
988 	bitmap_clear(pack->bitmap, pos, nbits);
989 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
990 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
991 		list_del(&pack->list);
992 		bpf_jit_free_exec(pack->ptr);
993 		kfree(pack);
994 	}
995 out:
996 	mutex_unlock(&pack_mutex);
997 }
998 
999 static atomic_long_t bpf_jit_current;
1000 
1001 /* Can be overridden by an arch's JIT compiler if it has a custom,
1002  * dedicated BPF backend memory area, or if neither of the two
1003  * below apply.
1004  */
1005 u64 __weak bpf_jit_alloc_exec_limit(void)
1006 {
1007 #if defined(MODULES_VADDR)
1008 	return MODULES_END - MODULES_VADDR;
1009 #else
1010 	return VMALLOC_END - VMALLOC_START;
1011 #endif
1012 }
1013 
1014 static int __init bpf_jit_charge_init(void)
1015 {
1016 	/* Only used as heuristic here to derive limit. */
1017 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1018 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1019 					    PAGE_SIZE), LONG_MAX);
1020 	return 0;
1021 }
1022 pure_initcall(bpf_jit_charge_init);
1023 
1024 int bpf_jit_charge_modmem(u32 size)
1025 {
1026 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1027 		if (!bpf_capable()) {
1028 			atomic_long_sub(size, &bpf_jit_current);
1029 			return -EPERM;
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 void bpf_jit_uncharge_modmem(u32 size)
1037 {
1038 	atomic_long_sub(size, &bpf_jit_current);
1039 }
1040 
1041 void *__weak bpf_jit_alloc_exec(unsigned long size)
1042 {
1043 	return module_alloc(size);
1044 }
1045 
1046 void __weak bpf_jit_free_exec(void *addr)
1047 {
1048 	module_memfree(addr);
1049 }
1050 
1051 struct bpf_binary_header *
1052 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1053 		     unsigned int alignment,
1054 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1055 {
1056 	struct bpf_binary_header *hdr;
1057 	u32 size, hole, start;
1058 
1059 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1060 		     alignment > BPF_IMAGE_ALIGNMENT);
1061 
1062 	/* Most of BPF filters are really small, but if some of them
1063 	 * fill a page, allow at least 128 extra bytes to insert a
1064 	 * random section of illegal instructions.
1065 	 */
1066 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1067 
1068 	if (bpf_jit_charge_modmem(size))
1069 		return NULL;
1070 	hdr = bpf_jit_alloc_exec(size);
1071 	if (!hdr) {
1072 		bpf_jit_uncharge_modmem(size);
1073 		return NULL;
1074 	}
1075 
1076 	/* Fill space with illegal/arch-dep instructions. */
1077 	bpf_fill_ill_insns(hdr, size);
1078 
1079 	hdr->size = size;
1080 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1081 		     PAGE_SIZE - sizeof(*hdr));
1082 	start = get_random_u32_below(hole) & ~(alignment - 1);
1083 
1084 	/* Leave a random number of instructions before BPF code. */
1085 	*image_ptr = &hdr->image[start];
1086 
1087 	return hdr;
1088 }
1089 
1090 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1091 {
1092 	u32 size = hdr->size;
1093 
1094 	bpf_jit_free_exec(hdr);
1095 	bpf_jit_uncharge_modmem(size);
1096 }
1097 
1098 /* Allocate jit binary from bpf_prog_pack allocator.
1099  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1100  * to the memory. To solve this problem, a RW buffer is also allocated at
1101  * as the same time. The JIT engine should calculate offsets based on the
1102  * RO memory address, but write JITed program to the RW buffer. Once the
1103  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1104  * the JITed program to the RO memory.
1105  */
1106 struct bpf_binary_header *
1107 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1108 			  unsigned int alignment,
1109 			  struct bpf_binary_header **rw_header,
1110 			  u8 **rw_image,
1111 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1112 {
1113 	struct bpf_binary_header *ro_header;
1114 	u32 size, hole, start;
1115 
1116 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1117 		     alignment > BPF_IMAGE_ALIGNMENT);
1118 
1119 	/* add 16 bytes for a random section of illegal instructions */
1120 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1121 
1122 	if (bpf_jit_charge_modmem(size))
1123 		return NULL;
1124 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1125 	if (!ro_header) {
1126 		bpf_jit_uncharge_modmem(size);
1127 		return NULL;
1128 	}
1129 
1130 	*rw_header = kvmalloc(size, GFP_KERNEL);
1131 	if (!*rw_header) {
1132 		bpf_prog_pack_free(ro_header, size);
1133 		bpf_jit_uncharge_modmem(size);
1134 		return NULL;
1135 	}
1136 
1137 	/* Fill space with illegal/arch-dep instructions. */
1138 	bpf_fill_ill_insns(*rw_header, size);
1139 	(*rw_header)->size = size;
1140 
1141 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1142 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1143 	start = get_random_u32_below(hole) & ~(alignment - 1);
1144 
1145 	*image_ptr = &ro_header->image[start];
1146 	*rw_image = &(*rw_header)->image[start];
1147 
1148 	return ro_header;
1149 }
1150 
1151 /* Copy JITed text from rw_header to its final location, the ro_header. */
1152 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1153 				 struct bpf_binary_header *ro_header,
1154 				 struct bpf_binary_header *rw_header)
1155 {
1156 	void *ptr;
1157 
1158 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1159 
1160 	kvfree(rw_header);
1161 
1162 	if (IS_ERR(ptr)) {
1163 		bpf_prog_pack_free(ro_header, ro_header->size);
1164 		return PTR_ERR(ptr);
1165 	}
1166 	return 0;
1167 }
1168 
1169 /* bpf_jit_binary_pack_free is called in two different scenarios:
1170  *   1) when the program is freed after;
1171  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1172  * For case 2), we need to free both the RO memory and the RW buffer.
1173  *
1174  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1175  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1176  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1177  * bpf_arch_text_copy (when jit fails).
1178  */
1179 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1180 			      struct bpf_binary_header *rw_header)
1181 {
1182 	u32 size = ro_header->size;
1183 
1184 	bpf_prog_pack_free(ro_header, size);
1185 	kvfree(rw_header);
1186 	bpf_jit_uncharge_modmem(size);
1187 }
1188 
1189 struct bpf_binary_header *
1190 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1191 {
1192 	unsigned long real_start = (unsigned long)fp->bpf_func;
1193 	unsigned long addr;
1194 
1195 	addr = real_start & BPF_PROG_CHUNK_MASK;
1196 	return (void *)addr;
1197 }
1198 
1199 static inline struct bpf_binary_header *
1200 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1201 {
1202 	unsigned long real_start = (unsigned long)fp->bpf_func;
1203 	unsigned long addr;
1204 
1205 	addr = real_start & PAGE_MASK;
1206 	return (void *)addr;
1207 }
1208 
1209 /* This symbol is only overridden by archs that have different
1210  * requirements than the usual eBPF JITs, f.e. when they only
1211  * implement cBPF JIT, do not set images read-only, etc.
1212  */
1213 void __weak bpf_jit_free(struct bpf_prog *fp)
1214 {
1215 	if (fp->jited) {
1216 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1217 
1218 		bpf_jit_binary_free(hdr);
1219 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1220 	}
1221 
1222 	bpf_prog_unlock_free(fp);
1223 }
1224 
1225 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1226 			  const struct bpf_insn *insn, bool extra_pass,
1227 			  u64 *func_addr, bool *func_addr_fixed)
1228 {
1229 	s16 off = insn->off;
1230 	s32 imm = insn->imm;
1231 	u8 *addr;
1232 	int err;
1233 
1234 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1235 	if (!*func_addr_fixed) {
1236 		/* Place-holder address till the last pass has collected
1237 		 * all addresses for JITed subprograms in which case we
1238 		 * can pick them up from prog->aux.
1239 		 */
1240 		if (!extra_pass)
1241 			addr = NULL;
1242 		else if (prog->aux->func &&
1243 			 off >= 0 && off < prog->aux->real_func_cnt)
1244 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1245 		else
1246 			return -EINVAL;
1247 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1248 		   bpf_jit_supports_far_kfunc_call()) {
1249 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1250 		if (err)
1251 			return err;
1252 	} else {
1253 		/* Address of a BPF helper call. Since part of the core
1254 		 * kernel, it's always at a fixed location. __bpf_call_base
1255 		 * and the helper with imm relative to it are both in core
1256 		 * kernel.
1257 		 */
1258 		addr = (u8 *)__bpf_call_base + imm;
1259 	}
1260 
1261 	*func_addr = (unsigned long)addr;
1262 	return 0;
1263 }
1264 
1265 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1266 			      const struct bpf_insn *aux,
1267 			      struct bpf_insn *to_buff,
1268 			      bool emit_zext)
1269 {
1270 	struct bpf_insn *to = to_buff;
1271 	u32 imm_rnd = get_random_u32();
1272 	s16 off;
1273 
1274 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1275 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1276 
1277 	/* Constraints on AX register:
1278 	 *
1279 	 * AX register is inaccessible from user space. It is mapped in
1280 	 * all JITs, and used here for constant blinding rewrites. It is
1281 	 * typically "stateless" meaning its contents are only valid within
1282 	 * the executed instruction, but not across several instructions.
1283 	 * There are a few exceptions however which are further detailed
1284 	 * below.
1285 	 *
1286 	 * Constant blinding is only used by JITs, not in the interpreter.
1287 	 * The interpreter uses AX in some occasions as a local temporary
1288 	 * register e.g. in DIV or MOD instructions.
1289 	 *
1290 	 * In restricted circumstances, the verifier can also use the AX
1291 	 * register for rewrites as long as they do not interfere with
1292 	 * the above cases!
1293 	 */
1294 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1295 		goto out;
1296 
1297 	if (from->imm == 0 &&
1298 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1299 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1300 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1301 		goto out;
1302 	}
1303 
1304 	switch (from->code) {
1305 	case BPF_ALU | BPF_ADD | BPF_K:
1306 	case BPF_ALU | BPF_SUB | BPF_K:
1307 	case BPF_ALU | BPF_AND | BPF_K:
1308 	case BPF_ALU | BPF_OR  | BPF_K:
1309 	case BPF_ALU | BPF_XOR | BPF_K:
1310 	case BPF_ALU | BPF_MUL | BPF_K:
1311 	case BPF_ALU | BPF_MOV | BPF_K:
1312 	case BPF_ALU | BPF_DIV | BPF_K:
1313 	case BPF_ALU | BPF_MOD | BPF_K:
1314 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1315 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1316 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1317 		break;
1318 
1319 	case BPF_ALU64 | BPF_ADD | BPF_K:
1320 	case BPF_ALU64 | BPF_SUB | BPF_K:
1321 	case BPF_ALU64 | BPF_AND | BPF_K:
1322 	case BPF_ALU64 | BPF_OR  | BPF_K:
1323 	case BPF_ALU64 | BPF_XOR | BPF_K:
1324 	case BPF_ALU64 | BPF_MUL | BPF_K:
1325 	case BPF_ALU64 | BPF_MOV | BPF_K:
1326 	case BPF_ALU64 | BPF_DIV | BPF_K:
1327 	case BPF_ALU64 | BPF_MOD | BPF_K:
1328 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1329 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1330 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1331 		break;
1332 
1333 	case BPF_JMP | BPF_JEQ  | BPF_K:
1334 	case BPF_JMP | BPF_JNE  | BPF_K:
1335 	case BPF_JMP | BPF_JGT  | BPF_K:
1336 	case BPF_JMP | BPF_JLT  | BPF_K:
1337 	case BPF_JMP | BPF_JGE  | BPF_K:
1338 	case BPF_JMP | BPF_JLE  | BPF_K:
1339 	case BPF_JMP | BPF_JSGT | BPF_K:
1340 	case BPF_JMP | BPF_JSLT | BPF_K:
1341 	case BPF_JMP | BPF_JSGE | BPF_K:
1342 	case BPF_JMP | BPF_JSLE | BPF_K:
1343 	case BPF_JMP | BPF_JSET | BPF_K:
1344 		/* Accommodate for extra offset in case of a backjump. */
1345 		off = from->off;
1346 		if (off < 0)
1347 			off -= 2;
1348 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1349 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1350 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1351 		break;
1352 
1353 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1354 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1355 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1356 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1357 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1358 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1359 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1360 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1361 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1362 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1363 	case BPF_JMP32 | BPF_JSET | BPF_K:
1364 		/* Accommodate for extra offset in case of a backjump. */
1365 		off = from->off;
1366 		if (off < 0)
1367 			off -= 2;
1368 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1371 				      off);
1372 		break;
1373 
1374 	case BPF_LD | BPF_IMM | BPF_DW:
1375 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1376 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1377 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1378 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1379 		break;
1380 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1381 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1382 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1383 		if (emit_zext)
1384 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1385 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1386 		break;
1387 
1388 	case BPF_ST | BPF_MEM | BPF_DW:
1389 	case BPF_ST | BPF_MEM | BPF_W:
1390 	case BPF_ST | BPF_MEM | BPF_H:
1391 	case BPF_ST | BPF_MEM | BPF_B:
1392 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1393 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1394 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1395 		break;
1396 	}
1397 out:
1398 	return to - to_buff;
1399 }
1400 
1401 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1402 					      gfp_t gfp_extra_flags)
1403 {
1404 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1405 	struct bpf_prog *fp;
1406 
1407 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1408 	if (fp != NULL) {
1409 		/* aux->prog still points to the fp_other one, so
1410 		 * when promoting the clone to the real program,
1411 		 * this still needs to be adapted.
1412 		 */
1413 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1414 	}
1415 
1416 	return fp;
1417 }
1418 
1419 static void bpf_prog_clone_free(struct bpf_prog *fp)
1420 {
1421 	/* aux was stolen by the other clone, so we cannot free
1422 	 * it from this path! It will be freed eventually by the
1423 	 * other program on release.
1424 	 *
1425 	 * At this point, we don't need a deferred release since
1426 	 * clone is guaranteed to not be locked.
1427 	 */
1428 	fp->aux = NULL;
1429 	fp->stats = NULL;
1430 	fp->active = NULL;
1431 	__bpf_prog_free(fp);
1432 }
1433 
1434 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1435 {
1436 	/* We have to repoint aux->prog to self, as we don't
1437 	 * know whether fp here is the clone or the original.
1438 	 */
1439 	fp->aux->prog = fp;
1440 	bpf_prog_clone_free(fp_other);
1441 }
1442 
1443 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1444 {
1445 	struct bpf_insn insn_buff[16], aux[2];
1446 	struct bpf_prog *clone, *tmp;
1447 	int insn_delta, insn_cnt;
1448 	struct bpf_insn *insn;
1449 	int i, rewritten;
1450 
1451 	if (!prog->blinding_requested || prog->blinded)
1452 		return prog;
1453 
1454 	clone = bpf_prog_clone_create(prog, GFP_USER);
1455 	if (!clone)
1456 		return ERR_PTR(-ENOMEM);
1457 
1458 	insn_cnt = clone->len;
1459 	insn = clone->insnsi;
1460 
1461 	for (i = 0; i < insn_cnt; i++, insn++) {
1462 		if (bpf_pseudo_func(insn)) {
1463 			/* ld_imm64 with an address of bpf subprog is not
1464 			 * a user controlled constant. Don't randomize it,
1465 			 * since it will conflict with jit_subprogs() logic.
1466 			 */
1467 			insn++;
1468 			i++;
1469 			continue;
1470 		}
1471 
1472 		/* We temporarily need to hold the original ld64 insn
1473 		 * so that we can still access the first part in the
1474 		 * second blinding run.
1475 		 */
1476 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1477 		    insn[1].code == 0)
1478 			memcpy(aux, insn, sizeof(aux));
1479 
1480 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1481 						clone->aux->verifier_zext);
1482 		if (!rewritten)
1483 			continue;
1484 
1485 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1486 		if (IS_ERR(tmp)) {
1487 			/* Patching may have repointed aux->prog during
1488 			 * realloc from the original one, so we need to
1489 			 * fix it up here on error.
1490 			 */
1491 			bpf_jit_prog_release_other(prog, clone);
1492 			return tmp;
1493 		}
1494 
1495 		clone = tmp;
1496 		insn_delta = rewritten - 1;
1497 
1498 		/* Walk new program and skip insns we just inserted. */
1499 		insn = clone->insnsi + i + insn_delta;
1500 		insn_cnt += insn_delta;
1501 		i        += insn_delta;
1502 	}
1503 
1504 	clone->blinded = 1;
1505 	return clone;
1506 }
1507 #endif /* CONFIG_BPF_JIT */
1508 
1509 /* Base function for offset calculation. Needs to go into .text section,
1510  * therefore keeping it non-static as well; will also be used by JITs
1511  * anyway later on, so do not let the compiler omit it. This also needs
1512  * to go into kallsyms for correlation from e.g. bpftool, so naming
1513  * must not change.
1514  */
1515 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1516 {
1517 	return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(__bpf_call_base);
1520 
1521 /* All UAPI available opcodes. */
1522 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1523 	/* 32 bit ALU operations. */		\
1524 	/*   Register based. */			\
1525 	INSN_3(ALU, ADD,  X),			\
1526 	INSN_3(ALU, SUB,  X),			\
1527 	INSN_3(ALU, AND,  X),			\
1528 	INSN_3(ALU, OR,   X),			\
1529 	INSN_3(ALU, LSH,  X),			\
1530 	INSN_3(ALU, RSH,  X),			\
1531 	INSN_3(ALU, XOR,  X),			\
1532 	INSN_3(ALU, MUL,  X),			\
1533 	INSN_3(ALU, MOV,  X),			\
1534 	INSN_3(ALU, ARSH, X),			\
1535 	INSN_3(ALU, DIV,  X),			\
1536 	INSN_3(ALU, MOD,  X),			\
1537 	INSN_2(ALU, NEG),			\
1538 	INSN_3(ALU, END, TO_BE),		\
1539 	INSN_3(ALU, END, TO_LE),		\
1540 	/*   Immediate based. */		\
1541 	INSN_3(ALU, ADD,  K),			\
1542 	INSN_3(ALU, SUB,  K),			\
1543 	INSN_3(ALU, AND,  K),			\
1544 	INSN_3(ALU, OR,   K),			\
1545 	INSN_3(ALU, LSH,  K),			\
1546 	INSN_3(ALU, RSH,  K),			\
1547 	INSN_3(ALU, XOR,  K),			\
1548 	INSN_3(ALU, MUL,  K),			\
1549 	INSN_3(ALU, MOV,  K),			\
1550 	INSN_3(ALU, ARSH, K),			\
1551 	INSN_3(ALU, DIV,  K),			\
1552 	INSN_3(ALU, MOD,  K),			\
1553 	/* 64 bit ALU operations. */		\
1554 	/*   Register based. */			\
1555 	INSN_3(ALU64, ADD,  X),			\
1556 	INSN_3(ALU64, SUB,  X),			\
1557 	INSN_3(ALU64, AND,  X),			\
1558 	INSN_3(ALU64, OR,   X),			\
1559 	INSN_3(ALU64, LSH,  X),			\
1560 	INSN_3(ALU64, RSH,  X),			\
1561 	INSN_3(ALU64, XOR,  X),			\
1562 	INSN_3(ALU64, MUL,  X),			\
1563 	INSN_3(ALU64, MOV,  X),			\
1564 	INSN_3(ALU64, ARSH, X),			\
1565 	INSN_3(ALU64, DIV,  X),			\
1566 	INSN_3(ALU64, MOD,  X),			\
1567 	INSN_2(ALU64, NEG),			\
1568 	INSN_3(ALU64, END, TO_LE),		\
1569 	/*   Immediate based. */		\
1570 	INSN_3(ALU64, ADD,  K),			\
1571 	INSN_3(ALU64, SUB,  K),			\
1572 	INSN_3(ALU64, AND,  K),			\
1573 	INSN_3(ALU64, OR,   K),			\
1574 	INSN_3(ALU64, LSH,  K),			\
1575 	INSN_3(ALU64, RSH,  K),			\
1576 	INSN_3(ALU64, XOR,  K),			\
1577 	INSN_3(ALU64, MUL,  K),			\
1578 	INSN_3(ALU64, MOV,  K),			\
1579 	INSN_3(ALU64, ARSH, K),			\
1580 	INSN_3(ALU64, DIV,  K),			\
1581 	INSN_3(ALU64, MOD,  K),			\
1582 	/* Call instruction. */			\
1583 	INSN_2(JMP, CALL),			\
1584 	/* Exit instruction. */			\
1585 	INSN_2(JMP, EXIT),			\
1586 	/* 32-bit Jump instructions. */		\
1587 	/*   Register based. */			\
1588 	INSN_3(JMP32, JEQ,  X),			\
1589 	INSN_3(JMP32, JNE,  X),			\
1590 	INSN_3(JMP32, JGT,  X),			\
1591 	INSN_3(JMP32, JLT,  X),			\
1592 	INSN_3(JMP32, JGE,  X),			\
1593 	INSN_3(JMP32, JLE,  X),			\
1594 	INSN_3(JMP32, JSGT, X),			\
1595 	INSN_3(JMP32, JSLT, X),			\
1596 	INSN_3(JMP32, JSGE, X),			\
1597 	INSN_3(JMP32, JSLE, X),			\
1598 	INSN_3(JMP32, JSET, X),			\
1599 	/*   Immediate based. */		\
1600 	INSN_3(JMP32, JEQ,  K),			\
1601 	INSN_3(JMP32, JNE,  K),			\
1602 	INSN_3(JMP32, JGT,  K),			\
1603 	INSN_3(JMP32, JLT,  K),			\
1604 	INSN_3(JMP32, JGE,  K),			\
1605 	INSN_3(JMP32, JLE,  K),			\
1606 	INSN_3(JMP32, JSGT, K),			\
1607 	INSN_3(JMP32, JSLT, K),			\
1608 	INSN_3(JMP32, JSGE, K),			\
1609 	INSN_3(JMP32, JSLE, K),			\
1610 	INSN_3(JMP32, JSET, K),			\
1611 	/* Jump instructions. */		\
1612 	/*   Register based. */			\
1613 	INSN_3(JMP, JEQ,  X),			\
1614 	INSN_3(JMP, JNE,  X),			\
1615 	INSN_3(JMP, JGT,  X),			\
1616 	INSN_3(JMP, JLT,  X),			\
1617 	INSN_3(JMP, JGE,  X),			\
1618 	INSN_3(JMP, JLE,  X),			\
1619 	INSN_3(JMP, JSGT, X),			\
1620 	INSN_3(JMP, JSLT, X),			\
1621 	INSN_3(JMP, JSGE, X),			\
1622 	INSN_3(JMP, JSLE, X),			\
1623 	INSN_3(JMP, JSET, X),			\
1624 	/*   Immediate based. */		\
1625 	INSN_3(JMP, JEQ,  K),			\
1626 	INSN_3(JMP, JNE,  K),			\
1627 	INSN_3(JMP, JGT,  K),			\
1628 	INSN_3(JMP, JLT,  K),			\
1629 	INSN_3(JMP, JGE,  K),			\
1630 	INSN_3(JMP, JLE,  K),			\
1631 	INSN_3(JMP, JSGT, K),			\
1632 	INSN_3(JMP, JSLT, K),			\
1633 	INSN_3(JMP, JSGE, K),			\
1634 	INSN_3(JMP, JSLE, K),			\
1635 	INSN_3(JMP, JSET, K),			\
1636 	INSN_2(JMP, JA),			\
1637 	INSN_2(JMP32, JA),			\
1638 	/* Store instructions. */		\
1639 	/*   Register based. */			\
1640 	INSN_3(STX, MEM,  B),			\
1641 	INSN_3(STX, MEM,  H),			\
1642 	INSN_3(STX, MEM,  W),			\
1643 	INSN_3(STX, MEM,  DW),			\
1644 	INSN_3(STX, ATOMIC, W),			\
1645 	INSN_3(STX, ATOMIC, DW),		\
1646 	/*   Immediate based. */		\
1647 	INSN_3(ST, MEM, B),			\
1648 	INSN_3(ST, MEM, H),			\
1649 	INSN_3(ST, MEM, W),			\
1650 	INSN_3(ST, MEM, DW),			\
1651 	/* Load instructions. */		\
1652 	/*   Register based. */			\
1653 	INSN_3(LDX, MEM, B),			\
1654 	INSN_3(LDX, MEM, H),			\
1655 	INSN_3(LDX, MEM, W),			\
1656 	INSN_3(LDX, MEM, DW),			\
1657 	INSN_3(LDX, MEMSX, B),			\
1658 	INSN_3(LDX, MEMSX, H),			\
1659 	INSN_3(LDX, MEMSX, W),			\
1660 	/*   Immediate based. */		\
1661 	INSN_3(LD, IMM, DW)
1662 
1663 bool bpf_opcode_in_insntable(u8 code)
1664 {
1665 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1666 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1667 	static const bool public_insntable[256] = {
1668 		[0 ... 255] = false,
1669 		/* Now overwrite non-defaults ... */
1670 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1671 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1672 		[BPF_LD | BPF_ABS | BPF_B] = true,
1673 		[BPF_LD | BPF_ABS | BPF_H] = true,
1674 		[BPF_LD | BPF_ABS | BPF_W] = true,
1675 		[BPF_LD | BPF_IND | BPF_B] = true,
1676 		[BPF_LD | BPF_IND | BPF_H] = true,
1677 		[BPF_LD | BPF_IND | BPF_W] = true,
1678 	};
1679 #undef BPF_INSN_3_TBL
1680 #undef BPF_INSN_2_TBL
1681 	return public_insntable[code];
1682 }
1683 
1684 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1685 /**
1686  *	___bpf_prog_run - run eBPF program on a given context
1687  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1688  *	@insn: is the array of eBPF instructions
1689  *
1690  * Decode and execute eBPF instructions.
1691  *
1692  * Return: whatever value is in %BPF_R0 at program exit
1693  */
1694 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1695 {
1696 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1697 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1698 	static const void * const jumptable[256] __annotate_jump_table = {
1699 		[0 ... 255] = &&default_label,
1700 		/* Now overwrite non-defaults ... */
1701 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1702 		/* Non-UAPI available opcodes. */
1703 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1704 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1705 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1706 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1707 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1708 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1709 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1710 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1711 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1712 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1713 	};
1714 #undef BPF_INSN_3_LBL
1715 #undef BPF_INSN_2_LBL
1716 	u32 tail_call_cnt = 0;
1717 
1718 #define CONT	 ({ insn++; goto select_insn; })
1719 #define CONT_JMP ({ insn++; goto select_insn; })
1720 
1721 select_insn:
1722 	goto *jumptable[insn->code];
1723 
1724 	/* Explicitly mask the register-based shift amounts with 63 or 31
1725 	 * to avoid undefined behavior. Normally this won't affect the
1726 	 * generated code, for example, in case of native 64 bit archs such
1727 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1728 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1729 	 * the BPF shift operations to machine instructions which produce
1730 	 * implementation-defined results in such a case; the resulting
1731 	 * contents of the register may be arbitrary, but program behaviour
1732 	 * as a whole remains defined. In other words, in case of JIT backends,
1733 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1734 	 */
1735 	/* ALU (shifts) */
1736 #define SHT(OPCODE, OP)					\
1737 	ALU64_##OPCODE##_X:				\
1738 		DST = DST OP (SRC & 63);		\
1739 		CONT;					\
1740 	ALU_##OPCODE##_X:				\
1741 		DST = (u32) DST OP ((u32) SRC & 31);	\
1742 		CONT;					\
1743 	ALU64_##OPCODE##_K:				\
1744 		DST = DST OP IMM;			\
1745 		CONT;					\
1746 	ALU_##OPCODE##_K:				\
1747 		DST = (u32) DST OP (u32) IMM;		\
1748 		CONT;
1749 	/* ALU (rest) */
1750 #define ALU(OPCODE, OP)					\
1751 	ALU64_##OPCODE##_X:				\
1752 		DST = DST OP SRC;			\
1753 		CONT;					\
1754 	ALU_##OPCODE##_X:				\
1755 		DST = (u32) DST OP (u32) SRC;		\
1756 		CONT;					\
1757 	ALU64_##OPCODE##_K:				\
1758 		DST = DST OP IMM;			\
1759 		CONT;					\
1760 	ALU_##OPCODE##_K:				\
1761 		DST = (u32) DST OP (u32) IMM;		\
1762 		CONT;
1763 	ALU(ADD,  +)
1764 	ALU(SUB,  -)
1765 	ALU(AND,  &)
1766 	ALU(OR,   |)
1767 	ALU(XOR,  ^)
1768 	ALU(MUL,  *)
1769 	SHT(LSH, <<)
1770 	SHT(RSH, >>)
1771 #undef SHT
1772 #undef ALU
1773 	ALU_NEG:
1774 		DST = (u32) -DST;
1775 		CONT;
1776 	ALU64_NEG:
1777 		DST = -DST;
1778 		CONT;
1779 	ALU_MOV_X:
1780 		switch (OFF) {
1781 		case 0:
1782 			DST = (u32) SRC;
1783 			break;
1784 		case 8:
1785 			DST = (u32)(s8) SRC;
1786 			break;
1787 		case 16:
1788 			DST = (u32)(s16) SRC;
1789 			break;
1790 		}
1791 		CONT;
1792 	ALU_MOV_K:
1793 		DST = (u32) IMM;
1794 		CONT;
1795 	ALU64_MOV_X:
1796 		switch (OFF) {
1797 		case 0:
1798 			DST = SRC;
1799 			break;
1800 		case 8:
1801 			DST = (s8) SRC;
1802 			break;
1803 		case 16:
1804 			DST = (s16) SRC;
1805 			break;
1806 		case 32:
1807 			DST = (s32) SRC;
1808 			break;
1809 		}
1810 		CONT;
1811 	ALU64_MOV_K:
1812 		DST = IMM;
1813 		CONT;
1814 	LD_IMM_DW:
1815 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1816 		insn++;
1817 		CONT;
1818 	ALU_ARSH_X:
1819 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1820 		CONT;
1821 	ALU_ARSH_K:
1822 		DST = (u64) (u32) (((s32) DST) >> IMM);
1823 		CONT;
1824 	ALU64_ARSH_X:
1825 		(*(s64 *) &DST) >>= (SRC & 63);
1826 		CONT;
1827 	ALU64_ARSH_K:
1828 		(*(s64 *) &DST) >>= IMM;
1829 		CONT;
1830 	ALU64_MOD_X:
1831 		switch (OFF) {
1832 		case 0:
1833 			div64_u64_rem(DST, SRC, &AX);
1834 			DST = AX;
1835 			break;
1836 		case 1:
1837 			AX = div64_s64(DST, SRC);
1838 			DST = DST - AX * SRC;
1839 			break;
1840 		}
1841 		CONT;
1842 	ALU_MOD_X:
1843 		switch (OFF) {
1844 		case 0:
1845 			AX = (u32) DST;
1846 			DST = do_div(AX, (u32) SRC);
1847 			break;
1848 		case 1:
1849 			AX = abs((s32)DST);
1850 			AX = do_div(AX, abs((s32)SRC));
1851 			if ((s32)DST < 0)
1852 				DST = (u32)-AX;
1853 			else
1854 				DST = (u32)AX;
1855 			break;
1856 		}
1857 		CONT;
1858 	ALU64_MOD_K:
1859 		switch (OFF) {
1860 		case 0:
1861 			div64_u64_rem(DST, IMM, &AX);
1862 			DST = AX;
1863 			break;
1864 		case 1:
1865 			AX = div64_s64(DST, IMM);
1866 			DST = DST - AX * IMM;
1867 			break;
1868 		}
1869 		CONT;
1870 	ALU_MOD_K:
1871 		switch (OFF) {
1872 		case 0:
1873 			AX = (u32) DST;
1874 			DST = do_div(AX, (u32) IMM);
1875 			break;
1876 		case 1:
1877 			AX = abs((s32)DST);
1878 			AX = do_div(AX, abs((s32)IMM));
1879 			if ((s32)DST < 0)
1880 				DST = (u32)-AX;
1881 			else
1882 				DST = (u32)AX;
1883 			break;
1884 		}
1885 		CONT;
1886 	ALU64_DIV_X:
1887 		switch (OFF) {
1888 		case 0:
1889 			DST = div64_u64(DST, SRC);
1890 			break;
1891 		case 1:
1892 			DST = div64_s64(DST, SRC);
1893 			break;
1894 		}
1895 		CONT;
1896 	ALU_DIV_X:
1897 		switch (OFF) {
1898 		case 0:
1899 			AX = (u32) DST;
1900 			do_div(AX, (u32) SRC);
1901 			DST = (u32) AX;
1902 			break;
1903 		case 1:
1904 			AX = abs((s32)DST);
1905 			do_div(AX, abs((s32)SRC));
1906 			if (((s32)DST < 0) == ((s32)SRC < 0))
1907 				DST = (u32)AX;
1908 			else
1909 				DST = (u32)-AX;
1910 			break;
1911 		}
1912 		CONT;
1913 	ALU64_DIV_K:
1914 		switch (OFF) {
1915 		case 0:
1916 			DST = div64_u64(DST, IMM);
1917 			break;
1918 		case 1:
1919 			DST = div64_s64(DST, IMM);
1920 			break;
1921 		}
1922 		CONT;
1923 	ALU_DIV_K:
1924 		switch (OFF) {
1925 		case 0:
1926 			AX = (u32) DST;
1927 			do_div(AX, (u32) IMM);
1928 			DST = (u32) AX;
1929 			break;
1930 		case 1:
1931 			AX = abs((s32)DST);
1932 			do_div(AX, abs((s32)IMM));
1933 			if (((s32)DST < 0) == ((s32)IMM < 0))
1934 				DST = (u32)AX;
1935 			else
1936 				DST = (u32)-AX;
1937 			break;
1938 		}
1939 		CONT;
1940 	ALU_END_TO_BE:
1941 		switch (IMM) {
1942 		case 16:
1943 			DST = (__force u16) cpu_to_be16(DST);
1944 			break;
1945 		case 32:
1946 			DST = (__force u32) cpu_to_be32(DST);
1947 			break;
1948 		case 64:
1949 			DST = (__force u64) cpu_to_be64(DST);
1950 			break;
1951 		}
1952 		CONT;
1953 	ALU_END_TO_LE:
1954 		switch (IMM) {
1955 		case 16:
1956 			DST = (__force u16) cpu_to_le16(DST);
1957 			break;
1958 		case 32:
1959 			DST = (__force u32) cpu_to_le32(DST);
1960 			break;
1961 		case 64:
1962 			DST = (__force u64) cpu_to_le64(DST);
1963 			break;
1964 		}
1965 		CONT;
1966 	ALU64_END_TO_LE:
1967 		switch (IMM) {
1968 		case 16:
1969 			DST = (__force u16) __swab16(DST);
1970 			break;
1971 		case 32:
1972 			DST = (__force u32) __swab32(DST);
1973 			break;
1974 		case 64:
1975 			DST = (__force u64) __swab64(DST);
1976 			break;
1977 		}
1978 		CONT;
1979 
1980 	/* CALL */
1981 	JMP_CALL:
1982 		/* Function call scratches BPF_R1-BPF_R5 registers,
1983 		 * preserves BPF_R6-BPF_R9, and stores return value
1984 		 * into BPF_R0.
1985 		 */
1986 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1987 						       BPF_R4, BPF_R5);
1988 		CONT;
1989 
1990 	JMP_CALL_ARGS:
1991 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1992 							    BPF_R3, BPF_R4,
1993 							    BPF_R5,
1994 							    insn + insn->off + 1);
1995 		CONT;
1996 
1997 	JMP_TAIL_CALL: {
1998 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1999 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2000 		struct bpf_prog *prog;
2001 		u32 index = BPF_R3;
2002 
2003 		if (unlikely(index >= array->map.max_entries))
2004 			goto out;
2005 
2006 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2007 			goto out;
2008 
2009 		tail_call_cnt++;
2010 
2011 		prog = READ_ONCE(array->ptrs[index]);
2012 		if (!prog)
2013 			goto out;
2014 
2015 		/* ARG1 at this point is guaranteed to point to CTX from
2016 		 * the verifier side due to the fact that the tail call is
2017 		 * handled like a helper, that is, bpf_tail_call_proto,
2018 		 * where arg1_type is ARG_PTR_TO_CTX.
2019 		 */
2020 		insn = prog->insnsi;
2021 		goto select_insn;
2022 out:
2023 		CONT;
2024 	}
2025 	JMP_JA:
2026 		insn += insn->off;
2027 		CONT;
2028 	JMP32_JA:
2029 		insn += insn->imm;
2030 		CONT;
2031 	JMP_EXIT:
2032 		return BPF_R0;
2033 	/* JMP */
2034 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2035 	JMP_##OPCODE##_X:					\
2036 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2037 			insn += insn->off;			\
2038 			CONT_JMP;				\
2039 		}						\
2040 		CONT;						\
2041 	JMP32_##OPCODE##_X:					\
2042 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2043 			insn += insn->off;			\
2044 			CONT_JMP;				\
2045 		}						\
2046 		CONT;						\
2047 	JMP_##OPCODE##_K:					\
2048 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2049 			insn += insn->off;			\
2050 			CONT_JMP;				\
2051 		}						\
2052 		CONT;						\
2053 	JMP32_##OPCODE##_K:					\
2054 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2055 			insn += insn->off;			\
2056 			CONT_JMP;				\
2057 		}						\
2058 		CONT;
2059 	COND_JMP(u, JEQ, ==)
2060 	COND_JMP(u, JNE, !=)
2061 	COND_JMP(u, JGT, >)
2062 	COND_JMP(u, JLT, <)
2063 	COND_JMP(u, JGE, >=)
2064 	COND_JMP(u, JLE, <=)
2065 	COND_JMP(u, JSET, &)
2066 	COND_JMP(s, JSGT, >)
2067 	COND_JMP(s, JSLT, <)
2068 	COND_JMP(s, JSGE, >=)
2069 	COND_JMP(s, JSLE, <=)
2070 #undef COND_JMP
2071 	/* ST, STX and LDX*/
2072 	ST_NOSPEC:
2073 		/* Speculation barrier for mitigating Speculative Store Bypass.
2074 		 * In case of arm64, we rely on the firmware mitigation as
2075 		 * controlled via the ssbd kernel parameter. Whenever the
2076 		 * mitigation is enabled, it works for all of the kernel code
2077 		 * with no need to provide any additional instructions here.
2078 		 * In case of x86, we use 'lfence' insn for mitigation. We
2079 		 * reuse preexisting logic from Spectre v1 mitigation that
2080 		 * happens to produce the required code on x86 for v4 as well.
2081 		 */
2082 		barrier_nospec();
2083 		CONT;
2084 #define LDST(SIZEOP, SIZE)						\
2085 	STX_MEM_##SIZEOP:						\
2086 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2087 		CONT;							\
2088 	ST_MEM_##SIZEOP:						\
2089 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2090 		CONT;							\
2091 	LDX_MEM_##SIZEOP:						\
2092 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2093 		CONT;							\
2094 	LDX_PROBE_MEM_##SIZEOP:						\
2095 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2096 			      (const void *)(long) (SRC + insn->off));	\
2097 		DST = *((SIZE *)&DST);					\
2098 		CONT;
2099 
2100 	LDST(B,   u8)
2101 	LDST(H,  u16)
2102 	LDST(W,  u32)
2103 	LDST(DW, u64)
2104 #undef LDST
2105 
2106 #define LDSX(SIZEOP, SIZE)						\
2107 	LDX_MEMSX_##SIZEOP:						\
2108 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2109 		CONT;							\
2110 	LDX_PROBE_MEMSX_##SIZEOP:					\
2111 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2112 				      (const void *)(long) (SRC + insn->off));	\
2113 		DST = *((SIZE *)&DST);					\
2114 		CONT;
2115 
2116 	LDSX(B,   s8)
2117 	LDSX(H,  s16)
2118 	LDSX(W,  s32)
2119 #undef LDSX
2120 
2121 #define ATOMIC_ALU_OP(BOP, KOP)						\
2122 		case BOP:						\
2123 			if (BPF_SIZE(insn->code) == BPF_W)		\
2124 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2125 					     (DST + insn->off));	\
2126 			else						\
2127 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2128 					       (DST + insn->off));	\
2129 			break;						\
2130 		case BOP | BPF_FETCH:					\
2131 			if (BPF_SIZE(insn->code) == BPF_W)		\
2132 				SRC = (u32) atomic_fetch_##KOP(		\
2133 					(u32) SRC,			\
2134 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2135 			else						\
2136 				SRC = (u64) atomic64_fetch_##KOP(	\
2137 					(u64) SRC,			\
2138 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2139 			break;
2140 
2141 	STX_ATOMIC_DW:
2142 	STX_ATOMIC_W:
2143 		switch (IMM) {
2144 		ATOMIC_ALU_OP(BPF_ADD, add)
2145 		ATOMIC_ALU_OP(BPF_AND, and)
2146 		ATOMIC_ALU_OP(BPF_OR, or)
2147 		ATOMIC_ALU_OP(BPF_XOR, xor)
2148 #undef ATOMIC_ALU_OP
2149 
2150 		case BPF_XCHG:
2151 			if (BPF_SIZE(insn->code) == BPF_W)
2152 				SRC = (u32) atomic_xchg(
2153 					(atomic_t *)(unsigned long) (DST + insn->off),
2154 					(u32) SRC);
2155 			else
2156 				SRC = (u64) atomic64_xchg(
2157 					(atomic64_t *)(unsigned long) (DST + insn->off),
2158 					(u64) SRC);
2159 			break;
2160 		case BPF_CMPXCHG:
2161 			if (BPF_SIZE(insn->code) == BPF_W)
2162 				BPF_R0 = (u32) atomic_cmpxchg(
2163 					(atomic_t *)(unsigned long) (DST + insn->off),
2164 					(u32) BPF_R0, (u32) SRC);
2165 			else
2166 				BPF_R0 = (u64) atomic64_cmpxchg(
2167 					(atomic64_t *)(unsigned long) (DST + insn->off),
2168 					(u64) BPF_R0, (u64) SRC);
2169 			break;
2170 
2171 		default:
2172 			goto default_label;
2173 		}
2174 		CONT;
2175 
2176 	default_label:
2177 		/* If we ever reach this, we have a bug somewhere. Die hard here
2178 		 * instead of just returning 0; we could be somewhere in a subprog,
2179 		 * so execution could continue otherwise which we do /not/ want.
2180 		 *
2181 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2182 		 */
2183 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2184 			insn->code, insn->imm);
2185 		BUG_ON(1);
2186 		return 0;
2187 }
2188 
2189 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2190 #define DEFINE_BPF_PROG_RUN(stack_size) \
2191 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2192 { \
2193 	u64 stack[stack_size / sizeof(u64)]; \
2194 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2195 \
2196 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2197 	ARG1 = (u64) (unsigned long) ctx; \
2198 	return ___bpf_prog_run(regs, insn); \
2199 }
2200 
2201 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2202 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2203 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2204 				      const struct bpf_insn *insn) \
2205 { \
2206 	u64 stack[stack_size / sizeof(u64)]; \
2207 	u64 regs[MAX_BPF_EXT_REG]; \
2208 \
2209 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2210 	BPF_R1 = r1; \
2211 	BPF_R2 = r2; \
2212 	BPF_R3 = r3; \
2213 	BPF_R4 = r4; \
2214 	BPF_R5 = r5; \
2215 	return ___bpf_prog_run(regs, insn); \
2216 }
2217 
2218 #define EVAL1(FN, X) FN(X)
2219 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2220 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2221 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2222 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2223 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2224 
2225 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2226 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2227 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2228 
2229 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2230 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2231 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2232 
2233 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2234 
2235 static unsigned int (*interpreters[])(const void *ctx,
2236 				      const struct bpf_insn *insn) = {
2237 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2238 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2239 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2240 };
2241 #undef PROG_NAME_LIST
2242 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2243 static __maybe_unused
2244 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2245 			   const struct bpf_insn *insn) = {
2246 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2247 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2248 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2249 };
2250 #undef PROG_NAME_LIST
2251 
2252 #ifdef CONFIG_BPF_SYSCALL
2253 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2254 {
2255 	stack_depth = max_t(u32, stack_depth, 1);
2256 	insn->off = (s16) insn->imm;
2257 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2258 		__bpf_call_base_args;
2259 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2260 }
2261 #endif
2262 #else
2263 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2264 					 const struct bpf_insn *insn)
2265 {
2266 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2267 	 * is not working properly, so warn about it!
2268 	 */
2269 	WARN_ON_ONCE(1);
2270 	return 0;
2271 }
2272 #endif
2273 
2274 bool bpf_prog_map_compatible(struct bpf_map *map,
2275 			     const struct bpf_prog *fp)
2276 {
2277 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2278 	bool ret;
2279 
2280 	if (fp->kprobe_override)
2281 		return false;
2282 
2283 	/* XDP programs inserted into maps are not guaranteed to run on
2284 	 * a particular netdev (and can run outside driver context entirely
2285 	 * in the case of devmap and cpumap). Until device checks
2286 	 * are implemented, prohibit adding dev-bound programs to program maps.
2287 	 */
2288 	if (bpf_prog_is_dev_bound(fp->aux))
2289 		return false;
2290 
2291 	spin_lock(&map->owner.lock);
2292 	if (!map->owner.type) {
2293 		/* There's no owner yet where we could check for
2294 		 * compatibility.
2295 		 */
2296 		map->owner.type  = prog_type;
2297 		map->owner.jited = fp->jited;
2298 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2299 		ret = true;
2300 	} else {
2301 		ret = map->owner.type  == prog_type &&
2302 		      map->owner.jited == fp->jited &&
2303 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2304 	}
2305 	spin_unlock(&map->owner.lock);
2306 
2307 	return ret;
2308 }
2309 
2310 static int bpf_check_tail_call(const struct bpf_prog *fp)
2311 {
2312 	struct bpf_prog_aux *aux = fp->aux;
2313 	int i, ret = 0;
2314 
2315 	mutex_lock(&aux->used_maps_mutex);
2316 	for (i = 0; i < aux->used_map_cnt; i++) {
2317 		struct bpf_map *map = aux->used_maps[i];
2318 
2319 		if (!map_type_contains_progs(map))
2320 			continue;
2321 
2322 		if (!bpf_prog_map_compatible(map, fp)) {
2323 			ret = -EINVAL;
2324 			goto out;
2325 		}
2326 	}
2327 
2328 out:
2329 	mutex_unlock(&aux->used_maps_mutex);
2330 	return ret;
2331 }
2332 
2333 static void bpf_prog_select_func(struct bpf_prog *fp)
2334 {
2335 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2336 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2337 
2338 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2339 #else
2340 	fp->bpf_func = __bpf_prog_ret0_warn;
2341 #endif
2342 }
2343 
2344 /**
2345  *	bpf_prog_select_runtime - select exec runtime for BPF program
2346  *	@fp: bpf_prog populated with BPF program
2347  *	@err: pointer to error variable
2348  *
2349  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2350  * The BPF program will be executed via bpf_prog_run() function.
2351  *
2352  * Return: the &fp argument along with &err set to 0 for success or
2353  * a negative errno code on failure
2354  */
2355 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2356 {
2357 	/* In case of BPF to BPF calls, verifier did all the prep
2358 	 * work with regards to JITing, etc.
2359 	 */
2360 	bool jit_needed = false;
2361 
2362 	if (fp->bpf_func)
2363 		goto finalize;
2364 
2365 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2366 	    bpf_prog_has_kfunc_call(fp))
2367 		jit_needed = true;
2368 
2369 	bpf_prog_select_func(fp);
2370 
2371 	/* eBPF JITs can rewrite the program in case constant
2372 	 * blinding is active. However, in case of error during
2373 	 * blinding, bpf_int_jit_compile() must always return a
2374 	 * valid program, which in this case would simply not
2375 	 * be JITed, but falls back to the interpreter.
2376 	 */
2377 	if (!bpf_prog_is_offloaded(fp->aux)) {
2378 		*err = bpf_prog_alloc_jited_linfo(fp);
2379 		if (*err)
2380 			return fp;
2381 
2382 		fp = bpf_int_jit_compile(fp);
2383 		bpf_prog_jit_attempt_done(fp);
2384 		if (!fp->jited && jit_needed) {
2385 			*err = -ENOTSUPP;
2386 			return fp;
2387 		}
2388 	} else {
2389 		*err = bpf_prog_offload_compile(fp);
2390 		if (*err)
2391 			return fp;
2392 	}
2393 
2394 finalize:
2395 	bpf_prog_lock_ro(fp);
2396 
2397 	/* The tail call compatibility check can only be done at
2398 	 * this late stage as we need to determine, if we deal
2399 	 * with JITed or non JITed program concatenations and not
2400 	 * all eBPF JITs might immediately support all features.
2401 	 */
2402 	*err = bpf_check_tail_call(fp);
2403 
2404 	return fp;
2405 }
2406 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2407 
2408 static unsigned int __bpf_prog_ret1(const void *ctx,
2409 				    const struct bpf_insn *insn)
2410 {
2411 	return 1;
2412 }
2413 
2414 static struct bpf_prog_dummy {
2415 	struct bpf_prog prog;
2416 } dummy_bpf_prog = {
2417 	.prog = {
2418 		.bpf_func = __bpf_prog_ret1,
2419 	},
2420 };
2421 
2422 struct bpf_empty_prog_array bpf_empty_prog_array = {
2423 	.null_prog = NULL,
2424 };
2425 EXPORT_SYMBOL(bpf_empty_prog_array);
2426 
2427 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2428 {
2429 	if (prog_cnt)
2430 		return kzalloc(sizeof(struct bpf_prog_array) +
2431 			       sizeof(struct bpf_prog_array_item) *
2432 			       (prog_cnt + 1),
2433 			       flags);
2434 
2435 	return &bpf_empty_prog_array.hdr;
2436 }
2437 
2438 void bpf_prog_array_free(struct bpf_prog_array *progs)
2439 {
2440 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2441 		return;
2442 	kfree_rcu(progs, rcu);
2443 }
2444 
2445 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2446 {
2447 	struct bpf_prog_array *progs;
2448 
2449 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2450 	 * no need to call kfree_rcu(), just call kfree() directly.
2451 	 */
2452 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2453 	if (rcu_trace_implies_rcu_gp())
2454 		kfree(progs);
2455 	else
2456 		kfree_rcu(progs, rcu);
2457 }
2458 
2459 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2460 {
2461 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2462 		return;
2463 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2464 }
2465 
2466 int bpf_prog_array_length(struct bpf_prog_array *array)
2467 {
2468 	struct bpf_prog_array_item *item;
2469 	u32 cnt = 0;
2470 
2471 	for (item = array->items; item->prog; item++)
2472 		if (item->prog != &dummy_bpf_prog.prog)
2473 			cnt++;
2474 	return cnt;
2475 }
2476 
2477 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2478 {
2479 	struct bpf_prog_array_item *item;
2480 
2481 	for (item = array->items; item->prog; item++)
2482 		if (item->prog != &dummy_bpf_prog.prog)
2483 			return false;
2484 	return true;
2485 }
2486 
2487 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2488 				     u32 *prog_ids,
2489 				     u32 request_cnt)
2490 {
2491 	struct bpf_prog_array_item *item;
2492 	int i = 0;
2493 
2494 	for (item = array->items; item->prog; item++) {
2495 		if (item->prog == &dummy_bpf_prog.prog)
2496 			continue;
2497 		prog_ids[i] = item->prog->aux->id;
2498 		if (++i == request_cnt) {
2499 			item++;
2500 			break;
2501 		}
2502 	}
2503 
2504 	return !!(item->prog);
2505 }
2506 
2507 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2508 				__u32 __user *prog_ids, u32 cnt)
2509 {
2510 	unsigned long err = 0;
2511 	bool nospc;
2512 	u32 *ids;
2513 
2514 	/* users of this function are doing:
2515 	 * cnt = bpf_prog_array_length();
2516 	 * if (cnt > 0)
2517 	 *     bpf_prog_array_copy_to_user(..., cnt);
2518 	 * so below kcalloc doesn't need extra cnt > 0 check.
2519 	 */
2520 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2521 	if (!ids)
2522 		return -ENOMEM;
2523 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2524 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2525 	kfree(ids);
2526 	if (err)
2527 		return -EFAULT;
2528 	if (nospc)
2529 		return -ENOSPC;
2530 	return 0;
2531 }
2532 
2533 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2534 				struct bpf_prog *old_prog)
2535 {
2536 	struct bpf_prog_array_item *item;
2537 
2538 	for (item = array->items; item->prog; item++)
2539 		if (item->prog == old_prog) {
2540 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2541 			break;
2542 		}
2543 }
2544 
2545 /**
2546  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2547  *                                   index into the program array with
2548  *                                   a dummy no-op program.
2549  * @array: a bpf_prog_array
2550  * @index: the index of the program to replace
2551  *
2552  * Skips over dummy programs, by not counting them, when calculating
2553  * the position of the program to replace.
2554  *
2555  * Return:
2556  * * 0		- Success
2557  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2558  * * -ENOENT	- Index out of range
2559  */
2560 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2561 {
2562 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2563 }
2564 
2565 /**
2566  * bpf_prog_array_update_at() - Updates the program at the given index
2567  *                              into the program array.
2568  * @array: a bpf_prog_array
2569  * @index: the index of the program to update
2570  * @prog: the program to insert into the array
2571  *
2572  * Skips over dummy programs, by not counting them, when calculating
2573  * the position of the program to update.
2574  *
2575  * Return:
2576  * * 0		- Success
2577  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2578  * * -ENOENT	- Index out of range
2579  */
2580 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2581 			     struct bpf_prog *prog)
2582 {
2583 	struct bpf_prog_array_item *item;
2584 
2585 	if (unlikely(index < 0))
2586 		return -EINVAL;
2587 
2588 	for (item = array->items; item->prog; item++) {
2589 		if (item->prog == &dummy_bpf_prog.prog)
2590 			continue;
2591 		if (!index) {
2592 			WRITE_ONCE(item->prog, prog);
2593 			return 0;
2594 		}
2595 		index--;
2596 	}
2597 	return -ENOENT;
2598 }
2599 
2600 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2601 			struct bpf_prog *exclude_prog,
2602 			struct bpf_prog *include_prog,
2603 			u64 bpf_cookie,
2604 			struct bpf_prog_array **new_array)
2605 {
2606 	int new_prog_cnt, carry_prog_cnt = 0;
2607 	struct bpf_prog_array_item *existing, *new;
2608 	struct bpf_prog_array *array;
2609 	bool found_exclude = false;
2610 
2611 	/* Figure out how many existing progs we need to carry over to
2612 	 * the new array.
2613 	 */
2614 	if (old_array) {
2615 		existing = old_array->items;
2616 		for (; existing->prog; existing++) {
2617 			if (existing->prog == exclude_prog) {
2618 				found_exclude = true;
2619 				continue;
2620 			}
2621 			if (existing->prog != &dummy_bpf_prog.prog)
2622 				carry_prog_cnt++;
2623 			if (existing->prog == include_prog)
2624 				return -EEXIST;
2625 		}
2626 	}
2627 
2628 	if (exclude_prog && !found_exclude)
2629 		return -ENOENT;
2630 
2631 	/* How many progs (not NULL) will be in the new array? */
2632 	new_prog_cnt = carry_prog_cnt;
2633 	if (include_prog)
2634 		new_prog_cnt += 1;
2635 
2636 	/* Do we have any prog (not NULL) in the new array? */
2637 	if (!new_prog_cnt) {
2638 		*new_array = NULL;
2639 		return 0;
2640 	}
2641 
2642 	/* +1 as the end of prog_array is marked with NULL */
2643 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2644 	if (!array)
2645 		return -ENOMEM;
2646 	new = array->items;
2647 
2648 	/* Fill in the new prog array */
2649 	if (carry_prog_cnt) {
2650 		existing = old_array->items;
2651 		for (; existing->prog; existing++) {
2652 			if (existing->prog == exclude_prog ||
2653 			    existing->prog == &dummy_bpf_prog.prog)
2654 				continue;
2655 
2656 			new->prog = existing->prog;
2657 			new->bpf_cookie = existing->bpf_cookie;
2658 			new++;
2659 		}
2660 	}
2661 	if (include_prog) {
2662 		new->prog = include_prog;
2663 		new->bpf_cookie = bpf_cookie;
2664 		new++;
2665 	}
2666 	new->prog = NULL;
2667 	*new_array = array;
2668 	return 0;
2669 }
2670 
2671 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2672 			     u32 *prog_ids, u32 request_cnt,
2673 			     u32 *prog_cnt)
2674 {
2675 	u32 cnt = 0;
2676 
2677 	if (array)
2678 		cnt = bpf_prog_array_length(array);
2679 
2680 	*prog_cnt = cnt;
2681 
2682 	/* return early if user requested only program count or nothing to copy */
2683 	if (!request_cnt || !cnt)
2684 		return 0;
2685 
2686 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2687 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2688 								     : 0;
2689 }
2690 
2691 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2692 			  struct bpf_map **used_maps, u32 len)
2693 {
2694 	struct bpf_map *map;
2695 	bool sleepable;
2696 	u32 i;
2697 
2698 	sleepable = aux->sleepable;
2699 	for (i = 0; i < len; i++) {
2700 		map = used_maps[i];
2701 		if (map->ops->map_poke_untrack)
2702 			map->ops->map_poke_untrack(map, aux);
2703 		if (sleepable)
2704 			atomic64_dec(&map->sleepable_refcnt);
2705 		bpf_map_put(map);
2706 	}
2707 }
2708 
2709 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2710 {
2711 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2712 	kfree(aux->used_maps);
2713 }
2714 
2715 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2716 			  struct btf_mod_pair *used_btfs, u32 len)
2717 {
2718 #ifdef CONFIG_BPF_SYSCALL
2719 	struct btf_mod_pair *btf_mod;
2720 	u32 i;
2721 
2722 	for (i = 0; i < len; i++) {
2723 		btf_mod = &used_btfs[i];
2724 		if (btf_mod->module)
2725 			module_put(btf_mod->module);
2726 		btf_put(btf_mod->btf);
2727 	}
2728 #endif
2729 }
2730 
2731 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2732 {
2733 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2734 	kfree(aux->used_btfs);
2735 }
2736 
2737 static void bpf_prog_free_deferred(struct work_struct *work)
2738 {
2739 	struct bpf_prog_aux *aux;
2740 	int i;
2741 
2742 	aux = container_of(work, struct bpf_prog_aux, work);
2743 #ifdef CONFIG_BPF_SYSCALL
2744 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2745 #endif
2746 #ifdef CONFIG_CGROUP_BPF
2747 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2748 		bpf_cgroup_atype_put(aux->cgroup_atype);
2749 #endif
2750 	bpf_free_used_maps(aux);
2751 	bpf_free_used_btfs(aux);
2752 	if (bpf_prog_is_dev_bound(aux))
2753 		bpf_prog_dev_bound_destroy(aux->prog);
2754 #ifdef CONFIG_PERF_EVENTS
2755 	if (aux->prog->has_callchain_buf)
2756 		put_callchain_buffers();
2757 #endif
2758 	if (aux->dst_trampoline)
2759 		bpf_trampoline_put(aux->dst_trampoline);
2760 	for (i = 0; i < aux->real_func_cnt; i++) {
2761 		/* We can just unlink the subprog poke descriptor table as
2762 		 * it was originally linked to the main program and is also
2763 		 * released along with it.
2764 		 */
2765 		aux->func[i]->aux->poke_tab = NULL;
2766 		bpf_jit_free(aux->func[i]);
2767 	}
2768 	if (aux->real_func_cnt) {
2769 		kfree(aux->func);
2770 		bpf_prog_unlock_free(aux->prog);
2771 	} else {
2772 		bpf_jit_free(aux->prog);
2773 	}
2774 }
2775 
2776 void bpf_prog_free(struct bpf_prog *fp)
2777 {
2778 	struct bpf_prog_aux *aux = fp->aux;
2779 
2780 	if (aux->dst_prog)
2781 		bpf_prog_put(aux->dst_prog);
2782 	bpf_token_put(aux->token);
2783 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2784 	schedule_work(&aux->work);
2785 }
2786 EXPORT_SYMBOL_GPL(bpf_prog_free);
2787 
2788 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2789 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2790 
2791 void bpf_user_rnd_init_once(void)
2792 {
2793 	prandom_init_once(&bpf_user_rnd_state);
2794 }
2795 
2796 BPF_CALL_0(bpf_user_rnd_u32)
2797 {
2798 	/* Should someone ever have the rather unwise idea to use some
2799 	 * of the registers passed into this function, then note that
2800 	 * this function is called from native eBPF and classic-to-eBPF
2801 	 * transformations. Register assignments from both sides are
2802 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2803 	 */
2804 	struct rnd_state *state;
2805 	u32 res;
2806 
2807 	state = &get_cpu_var(bpf_user_rnd_state);
2808 	res = prandom_u32_state(state);
2809 	put_cpu_var(bpf_user_rnd_state);
2810 
2811 	return res;
2812 }
2813 
2814 BPF_CALL_0(bpf_get_raw_cpu_id)
2815 {
2816 	return raw_smp_processor_id();
2817 }
2818 
2819 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2820 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2821 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2822 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2823 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2824 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2825 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2826 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2827 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2828 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2829 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2830 
2831 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2832 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2833 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2834 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2835 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2836 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2837 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2838 
2839 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2840 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2841 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2842 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2843 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2844 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2845 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2846 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2847 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2848 const struct bpf_func_proto bpf_set_retval_proto __weak;
2849 const struct bpf_func_proto bpf_get_retval_proto __weak;
2850 
2851 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2852 {
2853 	return NULL;
2854 }
2855 
2856 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2857 {
2858 	return NULL;
2859 }
2860 
2861 u64 __weak
2862 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2863 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2864 {
2865 	return -ENOTSUPP;
2866 }
2867 EXPORT_SYMBOL_GPL(bpf_event_output);
2868 
2869 /* Always built-in helper functions. */
2870 const struct bpf_func_proto bpf_tail_call_proto = {
2871 	.func		= NULL,
2872 	.gpl_only	= false,
2873 	.ret_type	= RET_VOID,
2874 	.arg1_type	= ARG_PTR_TO_CTX,
2875 	.arg2_type	= ARG_CONST_MAP_PTR,
2876 	.arg3_type	= ARG_ANYTHING,
2877 };
2878 
2879 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2880  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2881  * eBPF and implicitly also cBPF can get JITed!
2882  */
2883 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2884 {
2885 	return prog;
2886 }
2887 
2888 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2889  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2890  */
2891 void __weak bpf_jit_compile(struct bpf_prog *prog)
2892 {
2893 }
2894 
2895 bool __weak bpf_helper_changes_pkt_data(void *func)
2896 {
2897 	return false;
2898 }
2899 
2900 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2901  * analysis code and wants explicit zero extension inserted by verifier.
2902  * Otherwise, return FALSE.
2903  *
2904  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2905  * you don't override this. JITs that don't want these extra insns can detect
2906  * them using insn_is_zext.
2907  */
2908 bool __weak bpf_jit_needs_zext(void)
2909 {
2910 	return false;
2911 }
2912 
2913 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2914 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2915 {
2916 	return false;
2917 }
2918 
2919 bool __weak bpf_jit_supports_kfunc_call(void)
2920 {
2921 	return false;
2922 }
2923 
2924 bool __weak bpf_jit_supports_far_kfunc_call(void)
2925 {
2926 	return false;
2927 }
2928 
2929 /* Return TRUE if the JIT backend satisfies the following two conditions:
2930  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2931  * 2) Under the specific arch, the implementation of xchg() is the same
2932  *    as atomic_xchg() on pointer-sized words.
2933  */
2934 bool __weak bpf_jit_supports_ptr_xchg(void)
2935 {
2936 	return false;
2937 }
2938 
2939 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2940  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2941  */
2942 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2943 			 int len)
2944 {
2945 	return -EFAULT;
2946 }
2947 
2948 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2949 			      void *addr1, void *addr2)
2950 {
2951 	return -ENOTSUPP;
2952 }
2953 
2954 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2955 {
2956 	return ERR_PTR(-ENOTSUPP);
2957 }
2958 
2959 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2960 {
2961 	return -ENOTSUPP;
2962 }
2963 
2964 bool __weak bpf_jit_supports_exceptions(void)
2965 {
2966 	return false;
2967 }
2968 
2969 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2970 {
2971 }
2972 
2973 #ifdef CONFIG_BPF_SYSCALL
2974 static int __init bpf_global_ma_init(void)
2975 {
2976 	int ret;
2977 
2978 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2979 	bpf_global_ma_set = !ret;
2980 	return ret;
2981 }
2982 late_initcall(bpf_global_ma_init);
2983 #endif
2984 
2985 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2986 EXPORT_SYMBOL(bpf_stats_enabled_key);
2987 
2988 /* All definitions of tracepoints related to BPF. */
2989 #define CREATE_TRACE_POINTS
2990 #include <linux/bpf_trace.h>
2991 
2992 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2993 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2994