xref: /linux/kernel/bpf/core.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
91 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
92 {
93 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
94 	struct bpf_prog_aux *aux;
95 	struct bpf_prog *fp;
96 
97 	size = round_up(size, PAGE_SIZE);
98 	fp = __vmalloc(size, gfp_flags);
99 	if (fp == NULL)
100 		return NULL;
101 
102 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
103 	if (aux == NULL) {
104 		vfree(fp);
105 		return NULL;
106 	}
107 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (!fp->active) {
109 		vfree(fp);
110 		kfree(aux);
111 		return NULL;
112 	}
113 
114 	fp->pages = size / PAGE_SIZE;
115 	fp->aux = aux;
116 	fp->aux->prog = fp;
117 	fp->jit_requested = ebpf_jit_enabled();
118 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
119 #ifdef CONFIG_CGROUP_BPF
120 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
121 #endif
122 
123 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
124 	mutex_init(&fp->aux->used_maps_mutex);
125 	mutex_init(&fp->aux->dst_mutex);
126 
127 	return fp;
128 }
129 
130 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
131 {
132 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
133 	struct bpf_prog *prog;
134 	int cpu;
135 
136 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
137 	if (!prog)
138 		return NULL;
139 
140 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
141 	if (!prog->stats) {
142 		free_percpu(prog->active);
143 		kfree(prog->aux);
144 		vfree(prog);
145 		return NULL;
146 	}
147 
148 	for_each_possible_cpu(cpu) {
149 		struct bpf_prog_stats *pstats;
150 
151 		pstats = per_cpu_ptr(prog->stats, cpu);
152 		u64_stats_init(&pstats->syncp);
153 	}
154 	return prog;
155 }
156 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
157 
158 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
159 {
160 	if (!prog->aux->nr_linfo || !prog->jit_requested)
161 		return 0;
162 
163 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
164 					  sizeof(*prog->aux->jited_linfo),
165 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
166 	if (!prog->aux->jited_linfo)
167 		return -ENOMEM;
168 
169 	return 0;
170 }
171 
172 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
173 {
174 	if (prog->aux->jited_linfo &&
175 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
176 		kvfree(prog->aux->jited_linfo);
177 		prog->aux->jited_linfo = NULL;
178 	}
179 
180 	kfree(prog->aux->kfunc_tab);
181 	prog->aux->kfunc_tab = NULL;
182 }
183 
184 /* The jit engine is responsible to provide an array
185  * for insn_off to the jited_off mapping (insn_to_jit_off).
186  *
187  * The idx to this array is the insn_off.  Hence, the insn_off
188  * here is relative to the prog itself instead of the main prog.
189  * This array has one entry for each xlated bpf insn.
190  *
191  * jited_off is the byte off to the end of the jited insn.
192  *
193  * Hence, with
194  * insn_start:
195  *      The first bpf insn off of the prog.  The insn off
196  *      here is relative to the main prog.
197  *      e.g. if prog is a subprog, insn_start > 0
198  * linfo_idx:
199  *      The prog's idx to prog->aux->linfo and jited_linfo
200  *
201  * jited_linfo[linfo_idx] = prog->bpf_func
202  *
203  * For i > linfo_idx,
204  *
205  * jited_linfo[i] = prog->bpf_func +
206  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
207  */
208 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
209 			       const u32 *insn_to_jit_off)
210 {
211 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
212 	const struct bpf_line_info *linfo;
213 	void **jited_linfo;
214 
215 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
216 		/* Userspace did not provide linfo */
217 		return;
218 
219 	linfo_idx = prog->aux->linfo_idx;
220 	linfo = &prog->aux->linfo[linfo_idx];
221 	insn_start = linfo[0].insn_off;
222 	insn_end = insn_start + prog->len;
223 
224 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
225 	jited_linfo[0] = prog->bpf_func;
226 
227 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
228 
229 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
230 		/* The verifier ensures that linfo[i].insn_off is
231 		 * strictly increasing
232 		 */
233 		jited_linfo[i] = prog->bpf_func +
234 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
235 }
236 
237 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
238 				  gfp_t gfp_extra_flags)
239 {
240 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
241 	struct bpf_prog *fp;
242 	u32 pages;
243 
244 	size = round_up(size, PAGE_SIZE);
245 	pages = size / PAGE_SIZE;
246 	if (pages <= fp_old->pages)
247 		return fp_old;
248 
249 	fp = __vmalloc(size, gfp_flags);
250 	if (fp) {
251 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
252 		fp->pages = pages;
253 		fp->aux->prog = fp;
254 
255 		/* We keep fp->aux from fp_old around in the new
256 		 * reallocated structure.
257 		 */
258 		fp_old->aux = NULL;
259 		fp_old->stats = NULL;
260 		fp_old->active = NULL;
261 		__bpf_prog_free(fp_old);
262 	}
263 
264 	return fp;
265 }
266 
267 void __bpf_prog_free(struct bpf_prog *fp)
268 {
269 	if (fp->aux) {
270 		mutex_destroy(&fp->aux->used_maps_mutex);
271 		mutex_destroy(&fp->aux->dst_mutex);
272 		kfree(fp->aux->poke_tab);
273 		kfree(fp->aux);
274 	}
275 	free_percpu(fp->stats);
276 	free_percpu(fp->active);
277 	vfree(fp);
278 }
279 
280 int bpf_prog_calc_tag(struct bpf_prog *fp)
281 {
282 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
283 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
284 	u32 digest[SHA1_DIGEST_WORDS];
285 	u32 ws[SHA1_WORKSPACE_WORDS];
286 	u32 i, bsize, psize, blocks;
287 	struct bpf_insn *dst;
288 	bool was_ld_map;
289 	u8 *raw, *todo;
290 	__be32 *result;
291 	__be64 *bits;
292 
293 	raw = vmalloc(raw_size);
294 	if (!raw)
295 		return -ENOMEM;
296 
297 	sha1_init(digest);
298 	memset(ws, 0, sizeof(ws));
299 
300 	/* We need to take out the map fd for the digest calculation
301 	 * since they are unstable from user space side.
302 	 */
303 	dst = (void *)raw;
304 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
305 		dst[i] = fp->insnsi[i];
306 		if (!was_ld_map &&
307 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
308 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
309 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
310 			was_ld_map = true;
311 			dst[i].imm = 0;
312 		} else if (was_ld_map &&
313 			   dst[i].code == 0 &&
314 			   dst[i].dst_reg == 0 &&
315 			   dst[i].src_reg == 0 &&
316 			   dst[i].off == 0) {
317 			was_ld_map = false;
318 			dst[i].imm = 0;
319 		} else {
320 			was_ld_map = false;
321 		}
322 	}
323 
324 	psize = bpf_prog_insn_size(fp);
325 	memset(&raw[psize], 0, raw_size - psize);
326 	raw[psize++] = 0x80;
327 
328 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
329 	blocks = bsize / SHA1_BLOCK_SIZE;
330 	todo   = raw;
331 	if (bsize - psize >= sizeof(__be64)) {
332 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
333 	} else {
334 		bits = (__be64 *)(todo + bsize + bits_offset);
335 		blocks++;
336 	}
337 	*bits = cpu_to_be64((psize - 1) << 3);
338 
339 	while (blocks--) {
340 		sha1_transform(digest, todo, ws);
341 		todo += SHA1_BLOCK_SIZE;
342 	}
343 
344 	result = (__force __be32 *)digest;
345 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
346 		result[i] = cpu_to_be32(digest[i]);
347 	memcpy(fp->tag, result, sizeof(fp->tag));
348 
349 	vfree(raw);
350 	return 0;
351 }
352 
353 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
354 				s32 end_new, s32 curr, const bool probe_pass)
355 {
356 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
357 	s32 delta = end_new - end_old;
358 	s64 imm = insn->imm;
359 
360 	if (curr < pos && curr + imm + 1 >= end_old)
361 		imm += delta;
362 	else if (curr >= end_new && curr + imm + 1 < end_new)
363 		imm -= delta;
364 	if (imm < imm_min || imm > imm_max)
365 		return -ERANGE;
366 	if (!probe_pass)
367 		insn->imm = imm;
368 	return 0;
369 }
370 
371 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
372 				s32 end_new, s32 curr, const bool probe_pass)
373 {
374 	s64 off_min, off_max, off;
375 	s32 delta = end_new - end_old;
376 
377 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
378 		off = insn->imm;
379 		off_min = S32_MIN;
380 		off_max = S32_MAX;
381 	} else {
382 		off = insn->off;
383 		off_min = S16_MIN;
384 		off_max = S16_MAX;
385 	}
386 
387 	if (curr < pos && curr + off + 1 >= end_old)
388 		off += delta;
389 	else if (curr >= end_new && curr + off + 1 < end_new)
390 		off -= delta;
391 	if (off < off_min || off > off_max)
392 		return -ERANGE;
393 	if (!probe_pass) {
394 		if (insn->code == (BPF_JMP32 | BPF_JA))
395 			insn->imm = off;
396 		else
397 			insn->off = off;
398 	}
399 	return 0;
400 }
401 
402 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
403 			    s32 end_new, const bool probe_pass)
404 {
405 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
406 	struct bpf_insn *insn = prog->insnsi;
407 	int ret = 0;
408 
409 	for (i = 0; i < insn_cnt; i++, insn++) {
410 		u8 code;
411 
412 		/* In the probing pass we still operate on the original,
413 		 * unpatched image in order to check overflows before we
414 		 * do any other adjustments. Therefore skip the patchlet.
415 		 */
416 		if (probe_pass && i == pos) {
417 			i = end_new;
418 			insn = prog->insnsi + end_old;
419 		}
420 		if (bpf_pseudo_func(insn)) {
421 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 			if (ret)
424 				return ret;
425 			continue;
426 		}
427 		code = insn->code;
428 		if ((BPF_CLASS(code) != BPF_JMP &&
429 		     BPF_CLASS(code) != BPF_JMP32) ||
430 		    BPF_OP(code) == BPF_EXIT)
431 			continue;
432 		/* Adjust offset of jmps if we cross patch boundaries. */
433 		if (BPF_OP(code) == BPF_CALL) {
434 			if (insn->src_reg != BPF_PSEUDO_CALL)
435 				continue;
436 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
437 						   end_new, i, probe_pass);
438 		} else {
439 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
440 						   end_new, i, probe_pass);
441 		}
442 		if (ret)
443 			break;
444 	}
445 
446 	return ret;
447 }
448 
449 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
450 {
451 	struct bpf_line_info *linfo;
452 	u32 i, nr_linfo;
453 
454 	nr_linfo = prog->aux->nr_linfo;
455 	if (!nr_linfo || !delta)
456 		return;
457 
458 	linfo = prog->aux->linfo;
459 
460 	for (i = 0; i < nr_linfo; i++)
461 		if (off < linfo[i].insn_off)
462 			break;
463 
464 	/* Push all off < linfo[i].insn_off by delta */
465 	for (; i < nr_linfo; i++)
466 		linfo[i].insn_off += delta;
467 }
468 
469 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
470 				       const struct bpf_insn *patch, u32 len)
471 {
472 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
473 	const u32 cnt_max = S16_MAX;
474 	struct bpf_prog *prog_adj;
475 	int err;
476 
477 	/* Since our patchlet doesn't expand the image, we're done. */
478 	if (insn_delta == 0) {
479 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
480 		return prog;
481 	}
482 
483 	insn_adj_cnt = prog->len + insn_delta;
484 
485 	/* Reject anything that would potentially let the insn->off
486 	 * target overflow when we have excessive program expansions.
487 	 * We need to probe here before we do any reallocation where
488 	 * we afterwards may not fail anymore.
489 	 */
490 	if (insn_adj_cnt > cnt_max &&
491 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
492 		return ERR_PTR(err);
493 
494 	/* Several new instructions need to be inserted. Make room
495 	 * for them. Likely, there's no need for a new allocation as
496 	 * last page could have large enough tailroom.
497 	 */
498 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
499 				    GFP_USER);
500 	if (!prog_adj)
501 		return ERR_PTR(-ENOMEM);
502 
503 	prog_adj->len = insn_adj_cnt;
504 
505 	/* Patching happens in 3 steps:
506 	 *
507 	 * 1) Move over tail of insnsi from next instruction onwards,
508 	 *    so we can patch the single target insn with one or more
509 	 *    new ones (patching is always from 1 to n insns, n > 0).
510 	 * 2) Inject new instructions at the target location.
511 	 * 3) Adjust branch offsets if necessary.
512 	 */
513 	insn_rest = insn_adj_cnt - off - len;
514 
515 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
516 		sizeof(*patch) * insn_rest);
517 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
518 
519 	/* We are guaranteed to not fail at this point, otherwise
520 	 * the ship has sailed to reverse to the original state. An
521 	 * overflow cannot happen at this point.
522 	 */
523 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
524 
525 	bpf_adj_linfo(prog_adj, off, insn_delta);
526 
527 	return prog_adj;
528 }
529 
530 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
531 {
532 	/* Branch offsets can't overflow when program is shrinking, no need
533 	 * to call bpf_adj_branches(..., true) here
534 	 */
535 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
536 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
537 	prog->len -= cnt;
538 
539 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
540 }
541 
542 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
543 {
544 	int i;
545 
546 	for (i = 0; i < fp->aux->real_func_cnt; i++)
547 		bpf_prog_kallsyms_del(fp->aux->func[i]);
548 }
549 
550 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
551 {
552 	bpf_prog_kallsyms_del_subprogs(fp);
553 	bpf_prog_kallsyms_del(fp);
554 }
555 
556 #ifdef CONFIG_BPF_JIT
557 /* All BPF JIT sysctl knobs here. */
558 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
559 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
560 int bpf_jit_harden   __read_mostly;
561 long bpf_jit_limit   __read_mostly;
562 long bpf_jit_limit_max __read_mostly;
563 
564 static void
565 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
566 {
567 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
568 
569 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
570 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
571 }
572 
573 static void
574 bpf_prog_ksym_set_name(struct bpf_prog *prog)
575 {
576 	char *sym = prog->aux->ksym.name;
577 	const char *end = sym + KSYM_NAME_LEN;
578 	const struct btf_type *type;
579 	const char *func_name;
580 
581 	BUILD_BUG_ON(sizeof("bpf_prog_") +
582 		     sizeof(prog->tag) * 2 +
583 		     /* name has been null terminated.
584 		      * We should need +1 for the '_' preceding
585 		      * the name.  However, the null character
586 		      * is double counted between the name and the
587 		      * sizeof("bpf_prog_") above, so we omit
588 		      * the +1 here.
589 		      */
590 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
591 
592 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
593 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
594 
595 	/* prog->aux->name will be ignored if full btf name is available */
596 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
597 		type = btf_type_by_id(prog->aux->btf,
598 				      prog->aux->func_info[prog->aux->func_idx].type_id);
599 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
600 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
601 		return;
602 	}
603 
604 	if (prog->aux->name[0])
605 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
606 	else
607 		*sym = 0;
608 }
609 
610 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
611 {
612 	return container_of(n, struct bpf_ksym, tnode)->start;
613 }
614 
615 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
616 					  struct latch_tree_node *b)
617 {
618 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
619 }
620 
621 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
622 {
623 	unsigned long val = (unsigned long)key;
624 	const struct bpf_ksym *ksym;
625 
626 	ksym = container_of(n, struct bpf_ksym, tnode);
627 
628 	if (val < ksym->start)
629 		return -1;
630 	/* Ensure that we detect return addresses as part of the program, when
631 	 * the final instruction is a call for a program part of the stack
632 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
633 	 */
634 	if (val > ksym->end)
635 		return  1;
636 
637 	return 0;
638 }
639 
640 static const struct latch_tree_ops bpf_tree_ops = {
641 	.less	= bpf_tree_less,
642 	.comp	= bpf_tree_comp,
643 };
644 
645 static DEFINE_SPINLOCK(bpf_lock);
646 static LIST_HEAD(bpf_kallsyms);
647 static struct latch_tree_root bpf_tree __cacheline_aligned;
648 
649 void bpf_ksym_add(struct bpf_ksym *ksym)
650 {
651 	spin_lock_bh(&bpf_lock);
652 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
653 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
654 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
655 	spin_unlock_bh(&bpf_lock);
656 }
657 
658 static void __bpf_ksym_del(struct bpf_ksym *ksym)
659 {
660 	if (list_empty(&ksym->lnode))
661 		return;
662 
663 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
664 	list_del_rcu(&ksym->lnode);
665 }
666 
667 void bpf_ksym_del(struct bpf_ksym *ksym)
668 {
669 	spin_lock_bh(&bpf_lock);
670 	__bpf_ksym_del(ksym);
671 	spin_unlock_bh(&bpf_lock);
672 }
673 
674 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
675 {
676 	return fp->jited && !bpf_prog_was_classic(fp);
677 }
678 
679 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
680 {
681 	if (!bpf_prog_kallsyms_candidate(fp) ||
682 	    !bpf_capable())
683 		return;
684 
685 	bpf_prog_ksym_set_addr(fp);
686 	bpf_prog_ksym_set_name(fp);
687 	fp->aux->ksym.prog = true;
688 
689 	bpf_ksym_add(&fp->aux->ksym);
690 }
691 
692 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
693 {
694 	if (!bpf_prog_kallsyms_candidate(fp))
695 		return;
696 
697 	bpf_ksym_del(&fp->aux->ksym);
698 }
699 
700 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
701 {
702 	struct latch_tree_node *n;
703 
704 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
705 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
706 }
707 
708 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
709 				 unsigned long *off, char *sym)
710 {
711 	struct bpf_ksym *ksym;
712 	char *ret = NULL;
713 
714 	rcu_read_lock();
715 	ksym = bpf_ksym_find(addr);
716 	if (ksym) {
717 		unsigned long symbol_start = ksym->start;
718 		unsigned long symbol_end = ksym->end;
719 
720 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
721 
722 		ret = sym;
723 		if (size)
724 			*size = symbol_end - symbol_start;
725 		if (off)
726 			*off  = addr - symbol_start;
727 	}
728 	rcu_read_unlock();
729 
730 	return ret;
731 }
732 
733 bool is_bpf_text_address(unsigned long addr)
734 {
735 	bool ret;
736 
737 	rcu_read_lock();
738 	ret = bpf_ksym_find(addr) != NULL;
739 	rcu_read_unlock();
740 
741 	return ret;
742 }
743 
744 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
745 {
746 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
747 
748 	return ksym && ksym->prog ?
749 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
750 	       NULL;
751 }
752 
753 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
754 {
755 	const struct exception_table_entry *e = NULL;
756 	struct bpf_prog *prog;
757 
758 	rcu_read_lock();
759 	prog = bpf_prog_ksym_find(addr);
760 	if (!prog)
761 		goto out;
762 	if (!prog->aux->num_exentries)
763 		goto out;
764 
765 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
766 out:
767 	rcu_read_unlock();
768 	return e;
769 }
770 
771 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
772 		    char *sym)
773 {
774 	struct bpf_ksym *ksym;
775 	unsigned int it = 0;
776 	int ret = -ERANGE;
777 
778 	if (!bpf_jit_kallsyms_enabled())
779 		return ret;
780 
781 	rcu_read_lock();
782 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
783 		if (it++ != symnum)
784 			continue;
785 
786 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
787 
788 		*value = ksym->start;
789 		*type  = BPF_SYM_ELF_TYPE;
790 
791 		ret = 0;
792 		break;
793 	}
794 	rcu_read_unlock();
795 
796 	return ret;
797 }
798 
799 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
800 				struct bpf_jit_poke_descriptor *poke)
801 {
802 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
803 	static const u32 poke_tab_max = 1024;
804 	u32 slot = prog->aux->size_poke_tab;
805 	u32 size = slot + 1;
806 
807 	if (size > poke_tab_max)
808 		return -ENOSPC;
809 	if (poke->tailcall_target || poke->tailcall_target_stable ||
810 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
811 		return -EINVAL;
812 
813 	switch (poke->reason) {
814 	case BPF_POKE_REASON_TAIL_CALL:
815 		if (!poke->tail_call.map)
816 			return -EINVAL;
817 		break;
818 	default:
819 		return -EINVAL;
820 	}
821 
822 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
823 	if (!tab)
824 		return -ENOMEM;
825 
826 	memcpy(&tab[slot], poke, sizeof(*poke));
827 	prog->aux->size_poke_tab = size;
828 	prog->aux->poke_tab = tab;
829 
830 	return slot;
831 }
832 
833 /*
834  * BPF program pack allocator.
835  *
836  * Most BPF programs are pretty small. Allocating a hole page for each
837  * program is sometime a waste. Many small bpf program also adds pressure
838  * to instruction TLB. To solve this issue, we introduce a BPF program pack
839  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
840  * to host BPF programs.
841  */
842 #define BPF_PROG_CHUNK_SHIFT	6
843 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
844 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
845 
846 struct bpf_prog_pack {
847 	struct list_head list;
848 	void *ptr;
849 	unsigned long bitmap[];
850 };
851 
852 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
853 {
854 	memset(area, 0, size);
855 }
856 
857 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
858 
859 static DEFINE_MUTEX(pack_mutex);
860 static LIST_HEAD(pack_list);
861 
862 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
863  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
864  */
865 #ifdef PMD_SIZE
866 #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
867 #else
868 #define BPF_PROG_PACK_SIZE PAGE_SIZE
869 #endif
870 
871 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
872 
873 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
874 {
875 	struct bpf_prog_pack *pack;
876 
877 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
878 		       GFP_KERNEL);
879 	if (!pack)
880 		return NULL;
881 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
882 	if (!pack->ptr) {
883 		kfree(pack);
884 		return NULL;
885 	}
886 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
887 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
888 	list_add_tail(&pack->list, &pack_list);
889 
890 	set_vm_flush_reset_perms(pack->ptr);
891 	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
892 	return pack;
893 }
894 
895 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
896 {
897 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
898 	struct bpf_prog_pack *pack;
899 	unsigned long pos;
900 	void *ptr = NULL;
901 
902 	mutex_lock(&pack_mutex);
903 	if (size > BPF_PROG_PACK_SIZE) {
904 		size = round_up(size, PAGE_SIZE);
905 		ptr = bpf_jit_alloc_exec(size);
906 		if (ptr) {
907 			bpf_fill_ill_insns(ptr, size);
908 			set_vm_flush_reset_perms(ptr);
909 			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
910 		}
911 		goto out;
912 	}
913 	list_for_each_entry(pack, &pack_list, list) {
914 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
915 						 nbits, 0);
916 		if (pos < BPF_PROG_CHUNK_COUNT)
917 			goto found_free_area;
918 	}
919 
920 	pack = alloc_new_pack(bpf_fill_ill_insns);
921 	if (!pack)
922 		goto out;
923 
924 	pos = 0;
925 
926 found_free_area:
927 	bitmap_set(pack->bitmap, pos, nbits);
928 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
929 
930 out:
931 	mutex_unlock(&pack_mutex);
932 	return ptr;
933 }
934 
935 void bpf_prog_pack_free(struct bpf_binary_header *hdr)
936 {
937 	struct bpf_prog_pack *pack = NULL, *tmp;
938 	unsigned int nbits;
939 	unsigned long pos;
940 
941 	mutex_lock(&pack_mutex);
942 	if (hdr->size > BPF_PROG_PACK_SIZE) {
943 		bpf_jit_free_exec(hdr);
944 		goto out;
945 	}
946 
947 	list_for_each_entry(tmp, &pack_list, list) {
948 		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
949 			pack = tmp;
950 			break;
951 		}
952 	}
953 
954 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
955 		goto out;
956 
957 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
958 	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
959 
960 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
961 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
962 
963 	bitmap_clear(pack->bitmap, pos, nbits);
964 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
965 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
966 		list_del(&pack->list);
967 		bpf_jit_free_exec(pack->ptr);
968 		kfree(pack);
969 	}
970 out:
971 	mutex_unlock(&pack_mutex);
972 }
973 
974 static atomic_long_t bpf_jit_current;
975 
976 /* Can be overridden by an arch's JIT compiler if it has a custom,
977  * dedicated BPF backend memory area, or if neither of the two
978  * below apply.
979  */
980 u64 __weak bpf_jit_alloc_exec_limit(void)
981 {
982 #if defined(MODULES_VADDR)
983 	return MODULES_END - MODULES_VADDR;
984 #else
985 	return VMALLOC_END - VMALLOC_START;
986 #endif
987 }
988 
989 static int __init bpf_jit_charge_init(void)
990 {
991 	/* Only used as heuristic here to derive limit. */
992 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
993 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
994 					    PAGE_SIZE), LONG_MAX);
995 	return 0;
996 }
997 pure_initcall(bpf_jit_charge_init);
998 
999 int bpf_jit_charge_modmem(u32 size)
1000 {
1001 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1002 		if (!bpf_capable()) {
1003 			atomic_long_sub(size, &bpf_jit_current);
1004 			return -EPERM;
1005 		}
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 void bpf_jit_uncharge_modmem(u32 size)
1012 {
1013 	atomic_long_sub(size, &bpf_jit_current);
1014 }
1015 
1016 void *__weak bpf_jit_alloc_exec(unsigned long size)
1017 {
1018 	return module_alloc(size);
1019 }
1020 
1021 void __weak bpf_jit_free_exec(void *addr)
1022 {
1023 	module_memfree(addr);
1024 }
1025 
1026 struct bpf_binary_header *
1027 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1028 		     unsigned int alignment,
1029 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1030 {
1031 	struct bpf_binary_header *hdr;
1032 	u32 size, hole, start;
1033 
1034 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1035 		     alignment > BPF_IMAGE_ALIGNMENT);
1036 
1037 	/* Most of BPF filters are really small, but if some of them
1038 	 * fill a page, allow at least 128 extra bytes to insert a
1039 	 * random section of illegal instructions.
1040 	 */
1041 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1042 
1043 	if (bpf_jit_charge_modmem(size))
1044 		return NULL;
1045 	hdr = bpf_jit_alloc_exec(size);
1046 	if (!hdr) {
1047 		bpf_jit_uncharge_modmem(size);
1048 		return NULL;
1049 	}
1050 
1051 	/* Fill space with illegal/arch-dep instructions. */
1052 	bpf_fill_ill_insns(hdr, size);
1053 
1054 	hdr->size = size;
1055 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1056 		     PAGE_SIZE - sizeof(*hdr));
1057 	start = get_random_u32_below(hole) & ~(alignment - 1);
1058 
1059 	/* Leave a random number of instructions before BPF code. */
1060 	*image_ptr = &hdr->image[start];
1061 
1062 	return hdr;
1063 }
1064 
1065 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1066 {
1067 	u32 size = hdr->size;
1068 
1069 	bpf_jit_free_exec(hdr);
1070 	bpf_jit_uncharge_modmem(size);
1071 }
1072 
1073 /* Allocate jit binary from bpf_prog_pack allocator.
1074  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1075  * to the memory. To solve this problem, a RW buffer is also allocated at
1076  * as the same time. The JIT engine should calculate offsets based on the
1077  * RO memory address, but write JITed program to the RW buffer. Once the
1078  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1079  * the JITed program to the RO memory.
1080  */
1081 struct bpf_binary_header *
1082 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1083 			  unsigned int alignment,
1084 			  struct bpf_binary_header **rw_header,
1085 			  u8 **rw_image,
1086 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1087 {
1088 	struct bpf_binary_header *ro_header;
1089 	u32 size, hole, start;
1090 
1091 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1092 		     alignment > BPF_IMAGE_ALIGNMENT);
1093 
1094 	/* add 16 bytes for a random section of illegal instructions */
1095 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1096 
1097 	if (bpf_jit_charge_modmem(size))
1098 		return NULL;
1099 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1100 	if (!ro_header) {
1101 		bpf_jit_uncharge_modmem(size);
1102 		return NULL;
1103 	}
1104 
1105 	*rw_header = kvmalloc(size, GFP_KERNEL);
1106 	if (!*rw_header) {
1107 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1108 		bpf_prog_pack_free(ro_header);
1109 		bpf_jit_uncharge_modmem(size);
1110 		return NULL;
1111 	}
1112 
1113 	/* Fill space with illegal/arch-dep instructions. */
1114 	bpf_fill_ill_insns(*rw_header, size);
1115 	(*rw_header)->size = size;
1116 
1117 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1118 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1119 	start = get_random_u32_below(hole) & ~(alignment - 1);
1120 
1121 	*image_ptr = &ro_header->image[start];
1122 	*rw_image = &(*rw_header)->image[start];
1123 
1124 	return ro_header;
1125 }
1126 
1127 /* Copy JITed text from rw_header to its final location, the ro_header. */
1128 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1129 				 struct bpf_binary_header *ro_header,
1130 				 struct bpf_binary_header *rw_header)
1131 {
1132 	void *ptr;
1133 
1134 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1135 
1136 	kvfree(rw_header);
1137 
1138 	if (IS_ERR(ptr)) {
1139 		bpf_prog_pack_free(ro_header);
1140 		return PTR_ERR(ptr);
1141 	}
1142 	return 0;
1143 }
1144 
1145 /* bpf_jit_binary_pack_free is called in two different scenarios:
1146  *   1) when the program is freed after;
1147  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1148  * For case 2), we need to free both the RO memory and the RW buffer.
1149  *
1150  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1151  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1152  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1153  * bpf_arch_text_copy (when jit fails).
1154  */
1155 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1156 			      struct bpf_binary_header *rw_header)
1157 {
1158 	u32 size = ro_header->size;
1159 
1160 	bpf_prog_pack_free(ro_header);
1161 	kvfree(rw_header);
1162 	bpf_jit_uncharge_modmem(size);
1163 }
1164 
1165 struct bpf_binary_header *
1166 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1167 {
1168 	unsigned long real_start = (unsigned long)fp->bpf_func;
1169 	unsigned long addr;
1170 
1171 	addr = real_start & BPF_PROG_CHUNK_MASK;
1172 	return (void *)addr;
1173 }
1174 
1175 static inline struct bpf_binary_header *
1176 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1177 {
1178 	unsigned long real_start = (unsigned long)fp->bpf_func;
1179 	unsigned long addr;
1180 
1181 	addr = real_start & PAGE_MASK;
1182 	return (void *)addr;
1183 }
1184 
1185 /* This symbol is only overridden by archs that have different
1186  * requirements than the usual eBPF JITs, f.e. when they only
1187  * implement cBPF JIT, do not set images read-only, etc.
1188  */
1189 void __weak bpf_jit_free(struct bpf_prog *fp)
1190 {
1191 	if (fp->jited) {
1192 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1193 
1194 		bpf_jit_binary_free(hdr);
1195 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1196 	}
1197 
1198 	bpf_prog_unlock_free(fp);
1199 }
1200 
1201 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1202 			  const struct bpf_insn *insn, bool extra_pass,
1203 			  u64 *func_addr, bool *func_addr_fixed)
1204 {
1205 	s16 off = insn->off;
1206 	s32 imm = insn->imm;
1207 	u8 *addr;
1208 	int err;
1209 
1210 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1211 	if (!*func_addr_fixed) {
1212 		/* Place-holder address till the last pass has collected
1213 		 * all addresses for JITed subprograms in which case we
1214 		 * can pick them up from prog->aux.
1215 		 */
1216 		if (!extra_pass)
1217 			addr = NULL;
1218 		else if (prog->aux->func &&
1219 			 off >= 0 && off < prog->aux->real_func_cnt)
1220 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1221 		else
1222 			return -EINVAL;
1223 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1224 		   bpf_jit_supports_far_kfunc_call()) {
1225 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1226 		if (err)
1227 			return err;
1228 	} else {
1229 		/* Address of a BPF helper call. Since part of the core
1230 		 * kernel, it's always at a fixed location. __bpf_call_base
1231 		 * and the helper with imm relative to it are both in core
1232 		 * kernel.
1233 		 */
1234 		addr = (u8 *)__bpf_call_base + imm;
1235 	}
1236 
1237 	*func_addr = (unsigned long)addr;
1238 	return 0;
1239 }
1240 
1241 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1242 			      const struct bpf_insn *aux,
1243 			      struct bpf_insn *to_buff,
1244 			      bool emit_zext)
1245 {
1246 	struct bpf_insn *to = to_buff;
1247 	u32 imm_rnd = get_random_u32();
1248 	s16 off;
1249 
1250 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1251 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1252 
1253 	/* Constraints on AX register:
1254 	 *
1255 	 * AX register is inaccessible from user space. It is mapped in
1256 	 * all JITs, and used here for constant blinding rewrites. It is
1257 	 * typically "stateless" meaning its contents are only valid within
1258 	 * the executed instruction, but not across several instructions.
1259 	 * There are a few exceptions however which are further detailed
1260 	 * below.
1261 	 *
1262 	 * Constant blinding is only used by JITs, not in the interpreter.
1263 	 * The interpreter uses AX in some occasions as a local temporary
1264 	 * register e.g. in DIV or MOD instructions.
1265 	 *
1266 	 * In restricted circumstances, the verifier can also use the AX
1267 	 * register for rewrites as long as they do not interfere with
1268 	 * the above cases!
1269 	 */
1270 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1271 		goto out;
1272 
1273 	if (from->imm == 0 &&
1274 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1275 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1276 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1277 		goto out;
1278 	}
1279 
1280 	switch (from->code) {
1281 	case BPF_ALU | BPF_ADD | BPF_K:
1282 	case BPF_ALU | BPF_SUB | BPF_K:
1283 	case BPF_ALU | BPF_AND | BPF_K:
1284 	case BPF_ALU | BPF_OR  | BPF_K:
1285 	case BPF_ALU | BPF_XOR | BPF_K:
1286 	case BPF_ALU | BPF_MUL | BPF_K:
1287 	case BPF_ALU | BPF_MOV | BPF_K:
1288 	case BPF_ALU | BPF_DIV | BPF_K:
1289 	case BPF_ALU | BPF_MOD | BPF_K:
1290 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1291 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1292 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1293 		break;
1294 
1295 	case BPF_ALU64 | BPF_ADD | BPF_K:
1296 	case BPF_ALU64 | BPF_SUB | BPF_K:
1297 	case BPF_ALU64 | BPF_AND | BPF_K:
1298 	case BPF_ALU64 | BPF_OR  | BPF_K:
1299 	case BPF_ALU64 | BPF_XOR | BPF_K:
1300 	case BPF_ALU64 | BPF_MUL | BPF_K:
1301 	case BPF_ALU64 | BPF_MOV | BPF_K:
1302 	case BPF_ALU64 | BPF_DIV | BPF_K:
1303 	case BPF_ALU64 | BPF_MOD | BPF_K:
1304 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1305 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1306 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1307 		break;
1308 
1309 	case BPF_JMP | BPF_JEQ  | BPF_K:
1310 	case BPF_JMP | BPF_JNE  | BPF_K:
1311 	case BPF_JMP | BPF_JGT  | BPF_K:
1312 	case BPF_JMP | BPF_JLT  | BPF_K:
1313 	case BPF_JMP | BPF_JGE  | BPF_K:
1314 	case BPF_JMP | BPF_JLE  | BPF_K:
1315 	case BPF_JMP | BPF_JSGT | BPF_K:
1316 	case BPF_JMP | BPF_JSLT | BPF_K:
1317 	case BPF_JMP | BPF_JSGE | BPF_K:
1318 	case BPF_JMP | BPF_JSLE | BPF_K:
1319 	case BPF_JMP | BPF_JSET | BPF_K:
1320 		/* Accommodate for extra offset in case of a backjump. */
1321 		off = from->off;
1322 		if (off < 0)
1323 			off -= 2;
1324 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1325 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1327 		break;
1328 
1329 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1330 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1331 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1332 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1333 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1334 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1335 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1336 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1337 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1338 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1339 	case BPF_JMP32 | BPF_JSET | BPF_K:
1340 		/* Accommodate for extra offset in case of a backjump. */
1341 		off = from->off;
1342 		if (off < 0)
1343 			off -= 2;
1344 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1345 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1346 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1347 				      off);
1348 		break;
1349 
1350 	case BPF_LD | BPF_IMM | BPF_DW:
1351 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1352 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1353 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1354 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1355 		break;
1356 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1357 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1358 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1359 		if (emit_zext)
1360 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1361 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1362 		break;
1363 
1364 	case BPF_ST | BPF_MEM | BPF_DW:
1365 	case BPF_ST | BPF_MEM | BPF_W:
1366 	case BPF_ST | BPF_MEM | BPF_H:
1367 	case BPF_ST | BPF_MEM | BPF_B:
1368 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1371 		break;
1372 	}
1373 out:
1374 	return to - to_buff;
1375 }
1376 
1377 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1378 					      gfp_t gfp_extra_flags)
1379 {
1380 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1381 	struct bpf_prog *fp;
1382 
1383 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1384 	if (fp != NULL) {
1385 		/* aux->prog still points to the fp_other one, so
1386 		 * when promoting the clone to the real program,
1387 		 * this still needs to be adapted.
1388 		 */
1389 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1390 	}
1391 
1392 	return fp;
1393 }
1394 
1395 static void bpf_prog_clone_free(struct bpf_prog *fp)
1396 {
1397 	/* aux was stolen by the other clone, so we cannot free
1398 	 * it from this path! It will be freed eventually by the
1399 	 * other program on release.
1400 	 *
1401 	 * At this point, we don't need a deferred release since
1402 	 * clone is guaranteed to not be locked.
1403 	 */
1404 	fp->aux = NULL;
1405 	fp->stats = NULL;
1406 	fp->active = NULL;
1407 	__bpf_prog_free(fp);
1408 }
1409 
1410 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1411 {
1412 	/* We have to repoint aux->prog to self, as we don't
1413 	 * know whether fp here is the clone or the original.
1414 	 */
1415 	fp->aux->prog = fp;
1416 	bpf_prog_clone_free(fp_other);
1417 }
1418 
1419 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1420 {
1421 	struct bpf_insn insn_buff[16], aux[2];
1422 	struct bpf_prog *clone, *tmp;
1423 	int insn_delta, insn_cnt;
1424 	struct bpf_insn *insn;
1425 	int i, rewritten;
1426 
1427 	if (!prog->blinding_requested || prog->blinded)
1428 		return prog;
1429 
1430 	clone = bpf_prog_clone_create(prog, GFP_USER);
1431 	if (!clone)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	insn_cnt = clone->len;
1435 	insn = clone->insnsi;
1436 
1437 	for (i = 0; i < insn_cnt; i++, insn++) {
1438 		if (bpf_pseudo_func(insn)) {
1439 			/* ld_imm64 with an address of bpf subprog is not
1440 			 * a user controlled constant. Don't randomize it,
1441 			 * since it will conflict with jit_subprogs() logic.
1442 			 */
1443 			insn++;
1444 			i++;
1445 			continue;
1446 		}
1447 
1448 		/* We temporarily need to hold the original ld64 insn
1449 		 * so that we can still access the first part in the
1450 		 * second blinding run.
1451 		 */
1452 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1453 		    insn[1].code == 0)
1454 			memcpy(aux, insn, sizeof(aux));
1455 
1456 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1457 						clone->aux->verifier_zext);
1458 		if (!rewritten)
1459 			continue;
1460 
1461 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1462 		if (IS_ERR(tmp)) {
1463 			/* Patching may have repointed aux->prog during
1464 			 * realloc from the original one, so we need to
1465 			 * fix it up here on error.
1466 			 */
1467 			bpf_jit_prog_release_other(prog, clone);
1468 			return tmp;
1469 		}
1470 
1471 		clone = tmp;
1472 		insn_delta = rewritten - 1;
1473 
1474 		/* Walk new program and skip insns we just inserted. */
1475 		insn = clone->insnsi + i + insn_delta;
1476 		insn_cnt += insn_delta;
1477 		i        += insn_delta;
1478 	}
1479 
1480 	clone->blinded = 1;
1481 	return clone;
1482 }
1483 #endif /* CONFIG_BPF_JIT */
1484 
1485 /* Base function for offset calculation. Needs to go into .text section,
1486  * therefore keeping it non-static as well; will also be used by JITs
1487  * anyway later on, so do not let the compiler omit it. This also needs
1488  * to go into kallsyms for correlation from e.g. bpftool, so naming
1489  * must not change.
1490  */
1491 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1492 {
1493 	return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(__bpf_call_base);
1496 
1497 /* All UAPI available opcodes. */
1498 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1499 	/* 32 bit ALU operations. */		\
1500 	/*   Register based. */			\
1501 	INSN_3(ALU, ADD,  X),			\
1502 	INSN_3(ALU, SUB,  X),			\
1503 	INSN_3(ALU, AND,  X),			\
1504 	INSN_3(ALU, OR,   X),			\
1505 	INSN_3(ALU, LSH,  X),			\
1506 	INSN_3(ALU, RSH,  X),			\
1507 	INSN_3(ALU, XOR,  X),			\
1508 	INSN_3(ALU, MUL,  X),			\
1509 	INSN_3(ALU, MOV,  X),			\
1510 	INSN_3(ALU, ARSH, X),			\
1511 	INSN_3(ALU, DIV,  X),			\
1512 	INSN_3(ALU, MOD,  X),			\
1513 	INSN_2(ALU, NEG),			\
1514 	INSN_3(ALU, END, TO_BE),		\
1515 	INSN_3(ALU, END, TO_LE),		\
1516 	/*   Immediate based. */		\
1517 	INSN_3(ALU, ADD,  K),			\
1518 	INSN_3(ALU, SUB,  K),			\
1519 	INSN_3(ALU, AND,  K),			\
1520 	INSN_3(ALU, OR,   K),			\
1521 	INSN_3(ALU, LSH,  K),			\
1522 	INSN_3(ALU, RSH,  K),			\
1523 	INSN_3(ALU, XOR,  K),			\
1524 	INSN_3(ALU, MUL,  K),			\
1525 	INSN_3(ALU, MOV,  K),			\
1526 	INSN_3(ALU, ARSH, K),			\
1527 	INSN_3(ALU, DIV,  K),			\
1528 	INSN_3(ALU, MOD,  K),			\
1529 	/* 64 bit ALU operations. */		\
1530 	/*   Register based. */			\
1531 	INSN_3(ALU64, ADD,  X),			\
1532 	INSN_3(ALU64, SUB,  X),			\
1533 	INSN_3(ALU64, AND,  X),			\
1534 	INSN_3(ALU64, OR,   X),			\
1535 	INSN_3(ALU64, LSH,  X),			\
1536 	INSN_3(ALU64, RSH,  X),			\
1537 	INSN_3(ALU64, XOR,  X),			\
1538 	INSN_3(ALU64, MUL,  X),			\
1539 	INSN_3(ALU64, MOV,  X),			\
1540 	INSN_3(ALU64, ARSH, X),			\
1541 	INSN_3(ALU64, DIV,  X),			\
1542 	INSN_3(ALU64, MOD,  X),			\
1543 	INSN_2(ALU64, NEG),			\
1544 	INSN_3(ALU64, END, TO_LE),		\
1545 	/*   Immediate based. */		\
1546 	INSN_3(ALU64, ADD,  K),			\
1547 	INSN_3(ALU64, SUB,  K),			\
1548 	INSN_3(ALU64, AND,  K),			\
1549 	INSN_3(ALU64, OR,   K),			\
1550 	INSN_3(ALU64, LSH,  K),			\
1551 	INSN_3(ALU64, RSH,  K),			\
1552 	INSN_3(ALU64, XOR,  K),			\
1553 	INSN_3(ALU64, MUL,  K),			\
1554 	INSN_3(ALU64, MOV,  K),			\
1555 	INSN_3(ALU64, ARSH, K),			\
1556 	INSN_3(ALU64, DIV,  K),			\
1557 	INSN_3(ALU64, MOD,  K),			\
1558 	/* Call instruction. */			\
1559 	INSN_2(JMP, CALL),			\
1560 	/* Exit instruction. */			\
1561 	INSN_2(JMP, EXIT),			\
1562 	/* 32-bit Jump instructions. */		\
1563 	/*   Register based. */			\
1564 	INSN_3(JMP32, JEQ,  X),			\
1565 	INSN_3(JMP32, JNE,  X),			\
1566 	INSN_3(JMP32, JGT,  X),			\
1567 	INSN_3(JMP32, JLT,  X),			\
1568 	INSN_3(JMP32, JGE,  X),			\
1569 	INSN_3(JMP32, JLE,  X),			\
1570 	INSN_3(JMP32, JSGT, X),			\
1571 	INSN_3(JMP32, JSLT, X),			\
1572 	INSN_3(JMP32, JSGE, X),			\
1573 	INSN_3(JMP32, JSLE, X),			\
1574 	INSN_3(JMP32, JSET, X),			\
1575 	/*   Immediate based. */		\
1576 	INSN_3(JMP32, JEQ,  K),			\
1577 	INSN_3(JMP32, JNE,  K),			\
1578 	INSN_3(JMP32, JGT,  K),			\
1579 	INSN_3(JMP32, JLT,  K),			\
1580 	INSN_3(JMP32, JGE,  K),			\
1581 	INSN_3(JMP32, JLE,  K),			\
1582 	INSN_3(JMP32, JSGT, K),			\
1583 	INSN_3(JMP32, JSLT, K),			\
1584 	INSN_3(JMP32, JSGE, K),			\
1585 	INSN_3(JMP32, JSLE, K),			\
1586 	INSN_3(JMP32, JSET, K),			\
1587 	/* Jump instructions. */		\
1588 	/*   Register based. */			\
1589 	INSN_3(JMP, JEQ,  X),			\
1590 	INSN_3(JMP, JNE,  X),			\
1591 	INSN_3(JMP, JGT,  X),			\
1592 	INSN_3(JMP, JLT,  X),			\
1593 	INSN_3(JMP, JGE,  X),			\
1594 	INSN_3(JMP, JLE,  X),			\
1595 	INSN_3(JMP, JSGT, X),			\
1596 	INSN_3(JMP, JSLT, X),			\
1597 	INSN_3(JMP, JSGE, X),			\
1598 	INSN_3(JMP, JSLE, X),			\
1599 	INSN_3(JMP, JSET, X),			\
1600 	/*   Immediate based. */		\
1601 	INSN_3(JMP, JEQ,  K),			\
1602 	INSN_3(JMP, JNE,  K),			\
1603 	INSN_3(JMP, JGT,  K),			\
1604 	INSN_3(JMP, JLT,  K),			\
1605 	INSN_3(JMP, JGE,  K),			\
1606 	INSN_3(JMP, JLE,  K),			\
1607 	INSN_3(JMP, JSGT, K),			\
1608 	INSN_3(JMP, JSLT, K),			\
1609 	INSN_3(JMP, JSGE, K),			\
1610 	INSN_3(JMP, JSLE, K),			\
1611 	INSN_3(JMP, JSET, K),			\
1612 	INSN_2(JMP, JA),			\
1613 	INSN_2(JMP32, JA),			\
1614 	/* Store instructions. */		\
1615 	/*   Register based. */			\
1616 	INSN_3(STX, MEM,  B),			\
1617 	INSN_3(STX, MEM,  H),			\
1618 	INSN_3(STX, MEM,  W),			\
1619 	INSN_3(STX, MEM,  DW),			\
1620 	INSN_3(STX, ATOMIC, W),			\
1621 	INSN_3(STX, ATOMIC, DW),		\
1622 	/*   Immediate based. */		\
1623 	INSN_3(ST, MEM, B),			\
1624 	INSN_3(ST, MEM, H),			\
1625 	INSN_3(ST, MEM, W),			\
1626 	INSN_3(ST, MEM, DW),			\
1627 	/* Load instructions. */		\
1628 	/*   Register based. */			\
1629 	INSN_3(LDX, MEM, B),			\
1630 	INSN_3(LDX, MEM, H),			\
1631 	INSN_3(LDX, MEM, W),			\
1632 	INSN_3(LDX, MEM, DW),			\
1633 	INSN_3(LDX, MEMSX, B),			\
1634 	INSN_3(LDX, MEMSX, H),			\
1635 	INSN_3(LDX, MEMSX, W),			\
1636 	/*   Immediate based. */		\
1637 	INSN_3(LD, IMM, DW)
1638 
1639 bool bpf_opcode_in_insntable(u8 code)
1640 {
1641 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1642 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1643 	static const bool public_insntable[256] = {
1644 		[0 ... 255] = false,
1645 		/* Now overwrite non-defaults ... */
1646 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1647 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1648 		[BPF_LD | BPF_ABS | BPF_B] = true,
1649 		[BPF_LD | BPF_ABS | BPF_H] = true,
1650 		[BPF_LD | BPF_ABS | BPF_W] = true,
1651 		[BPF_LD | BPF_IND | BPF_B] = true,
1652 		[BPF_LD | BPF_IND | BPF_H] = true,
1653 		[BPF_LD | BPF_IND | BPF_W] = true,
1654 	};
1655 #undef BPF_INSN_3_TBL
1656 #undef BPF_INSN_2_TBL
1657 	return public_insntable[code];
1658 }
1659 
1660 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1661 /**
1662  *	___bpf_prog_run - run eBPF program on a given context
1663  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1664  *	@insn: is the array of eBPF instructions
1665  *
1666  * Decode and execute eBPF instructions.
1667  *
1668  * Return: whatever value is in %BPF_R0 at program exit
1669  */
1670 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1671 {
1672 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1673 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1674 	static const void * const jumptable[256] __annotate_jump_table = {
1675 		[0 ... 255] = &&default_label,
1676 		/* Now overwrite non-defaults ... */
1677 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1678 		/* Non-UAPI available opcodes. */
1679 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1680 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1681 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1682 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1683 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1684 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1685 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1686 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1687 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1688 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1689 	};
1690 #undef BPF_INSN_3_LBL
1691 #undef BPF_INSN_2_LBL
1692 	u32 tail_call_cnt = 0;
1693 
1694 #define CONT	 ({ insn++; goto select_insn; })
1695 #define CONT_JMP ({ insn++; goto select_insn; })
1696 
1697 select_insn:
1698 	goto *jumptable[insn->code];
1699 
1700 	/* Explicitly mask the register-based shift amounts with 63 or 31
1701 	 * to avoid undefined behavior. Normally this won't affect the
1702 	 * generated code, for example, in case of native 64 bit archs such
1703 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1704 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1705 	 * the BPF shift operations to machine instructions which produce
1706 	 * implementation-defined results in such a case; the resulting
1707 	 * contents of the register may be arbitrary, but program behaviour
1708 	 * as a whole remains defined. In other words, in case of JIT backends,
1709 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1710 	 */
1711 	/* ALU (shifts) */
1712 #define SHT(OPCODE, OP)					\
1713 	ALU64_##OPCODE##_X:				\
1714 		DST = DST OP (SRC & 63);		\
1715 		CONT;					\
1716 	ALU_##OPCODE##_X:				\
1717 		DST = (u32) DST OP ((u32) SRC & 31);	\
1718 		CONT;					\
1719 	ALU64_##OPCODE##_K:				\
1720 		DST = DST OP IMM;			\
1721 		CONT;					\
1722 	ALU_##OPCODE##_K:				\
1723 		DST = (u32) DST OP (u32) IMM;		\
1724 		CONT;
1725 	/* ALU (rest) */
1726 #define ALU(OPCODE, OP)					\
1727 	ALU64_##OPCODE##_X:				\
1728 		DST = DST OP SRC;			\
1729 		CONT;					\
1730 	ALU_##OPCODE##_X:				\
1731 		DST = (u32) DST OP (u32) SRC;		\
1732 		CONT;					\
1733 	ALU64_##OPCODE##_K:				\
1734 		DST = DST OP IMM;			\
1735 		CONT;					\
1736 	ALU_##OPCODE##_K:				\
1737 		DST = (u32) DST OP (u32) IMM;		\
1738 		CONT;
1739 	ALU(ADD,  +)
1740 	ALU(SUB,  -)
1741 	ALU(AND,  &)
1742 	ALU(OR,   |)
1743 	ALU(XOR,  ^)
1744 	ALU(MUL,  *)
1745 	SHT(LSH, <<)
1746 	SHT(RSH, >>)
1747 #undef SHT
1748 #undef ALU
1749 	ALU_NEG:
1750 		DST = (u32) -DST;
1751 		CONT;
1752 	ALU64_NEG:
1753 		DST = -DST;
1754 		CONT;
1755 	ALU_MOV_X:
1756 		switch (OFF) {
1757 		case 0:
1758 			DST = (u32) SRC;
1759 			break;
1760 		case 8:
1761 			DST = (u32)(s8) SRC;
1762 			break;
1763 		case 16:
1764 			DST = (u32)(s16) SRC;
1765 			break;
1766 		}
1767 		CONT;
1768 	ALU_MOV_K:
1769 		DST = (u32) IMM;
1770 		CONT;
1771 	ALU64_MOV_X:
1772 		switch (OFF) {
1773 		case 0:
1774 			DST = SRC;
1775 			break;
1776 		case 8:
1777 			DST = (s8) SRC;
1778 			break;
1779 		case 16:
1780 			DST = (s16) SRC;
1781 			break;
1782 		case 32:
1783 			DST = (s32) SRC;
1784 			break;
1785 		}
1786 		CONT;
1787 	ALU64_MOV_K:
1788 		DST = IMM;
1789 		CONT;
1790 	LD_IMM_DW:
1791 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1792 		insn++;
1793 		CONT;
1794 	ALU_ARSH_X:
1795 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1796 		CONT;
1797 	ALU_ARSH_K:
1798 		DST = (u64) (u32) (((s32) DST) >> IMM);
1799 		CONT;
1800 	ALU64_ARSH_X:
1801 		(*(s64 *) &DST) >>= (SRC & 63);
1802 		CONT;
1803 	ALU64_ARSH_K:
1804 		(*(s64 *) &DST) >>= IMM;
1805 		CONT;
1806 	ALU64_MOD_X:
1807 		switch (OFF) {
1808 		case 0:
1809 			div64_u64_rem(DST, SRC, &AX);
1810 			DST = AX;
1811 			break;
1812 		case 1:
1813 			AX = div64_s64(DST, SRC);
1814 			DST = DST - AX * SRC;
1815 			break;
1816 		}
1817 		CONT;
1818 	ALU_MOD_X:
1819 		switch (OFF) {
1820 		case 0:
1821 			AX = (u32) DST;
1822 			DST = do_div(AX, (u32) SRC);
1823 			break;
1824 		case 1:
1825 			AX = abs((s32)DST);
1826 			AX = do_div(AX, abs((s32)SRC));
1827 			if ((s32)DST < 0)
1828 				DST = (u32)-AX;
1829 			else
1830 				DST = (u32)AX;
1831 			break;
1832 		}
1833 		CONT;
1834 	ALU64_MOD_K:
1835 		switch (OFF) {
1836 		case 0:
1837 			div64_u64_rem(DST, IMM, &AX);
1838 			DST = AX;
1839 			break;
1840 		case 1:
1841 			AX = div64_s64(DST, IMM);
1842 			DST = DST - AX * IMM;
1843 			break;
1844 		}
1845 		CONT;
1846 	ALU_MOD_K:
1847 		switch (OFF) {
1848 		case 0:
1849 			AX = (u32) DST;
1850 			DST = do_div(AX, (u32) IMM);
1851 			break;
1852 		case 1:
1853 			AX = abs((s32)DST);
1854 			AX = do_div(AX, abs((s32)IMM));
1855 			if ((s32)DST < 0)
1856 				DST = (u32)-AX;
1857 			else
1858 				DST = (u32)AX;
1859 			break;
1860 		}
1861 		CONT;
1862 	ALU64_DIV_X:
1863 		switch (OFF) {
1864 		case 0:
1865 			DST = div64_u64(DST, SRC);
1866 			break;
1867 		case 1:
1868 			DST = div64_s64(DST, SRC);
1869 			break;
1870 		}
1871 		CONT;
1872 	ALU_DIV_X:
1873 		switch (OFF) {
1874 		case 0:
1875 			AX = (u32) DST;
1876 			do_div(AX, (u32) SRC);
1877 			DST = (u32) AX;
1878 			break;
1879 		case 1:
1880 			AX = abs((s32)DST);
1881 			do_div(AX, abs((s32)SRC));
1882 			if (((s32)DST < 0) == ((s32)SRC < 0))
1883 				DST = (u32)AX;
1884 			else
1885 				DST = (u32)-AX;
1886 			break;
1887 		}
1888 		CONT;
1889 	ALU64_DIV_K:
1890 		switch (OFF) {
1891 		case 0:
1892 			DST = div64_u64(DST, IMM);
1893 			break;
1894 		case 1:
1895 			DST = div64_s64(DST, IMM);
1896 			break;
1897 		}
1898 		CONT;
1899 	ALU_DIV_K:
1900 		switch (OFF) {
1901 		case 0:
1902 			AX = (u32) DST;
1903 			do_div(AX, (u32) IMM);
1904 			DST = (u32) AX;
1905 			break;
1906 		case 1:
1907 			AX = abs((s32)DST);
1908 			do_div(AX, abs((s32)IMM));
1909 			if (((s32)DST < 0) == ((s32)IMM < 0))
1910 				DST = (u32)AX;
1911 			else
1912 				DST = (u32)-AX;
1913 			break;
1914 		}
1915 		CONT;
1916 	ALU_END_TO_BE:
1917 		switch (IMM) {
1918 		case 16:
1919 			DST = (__force u16) cpu_to_be16(DST);
1920 			break;
1921 		case 32:
1922 			DST = (__force u32) cpu_to_be32(DST);
1923 			break;
1924 		case 64:
1925 			DST = (__force u64) cpu_to_be64(DST);
1926 			break;
1927 		}
1928 		CONT;
1929 	ALU_END_TO_LE:
1930 		switch (IMM) {
1931 		case 16:
1932 			DST = (__force u16) cpu_to_le16(DST);
1933 			break;
1934 		case 32:
1935 			DST = (__force u32) cpu_to_le32(DST);
1936 			break;
1937 		case 64:
1938 			DST = (__force u64) cpu_to_le64(DST);
1939 			break;
1940 		}
1941 		CONT;
1942 	ALU64_END_TO_LE:
1943 		switch (IMM) {
1944 		case 16:
1945 			DST = (__force u16) __swab16(DST);
1946 			break;
1947 		case 32:
1948 			DST = (__force u32) __swab32(DST);
1949 			break;
1950 		case 64:
1951 			DST = (__force u64) __swab64(DST);
1952 			break;
1953 		}
1954 		CONT;
1955 
1956 	/* CALL */
1957 	JMP_CALL:
1958 		/* Function call scratches BPF_R1-BPF_R5 registers,
1959 		 * preserves BPF_R6-BPF_R9, and stores return value
1960 		 * into BPF_R0.
1961 		 */
1962 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1963 						       BPF_R4, BPF_R5);
1964 		CONT;
1965 
1966 	JMP_CALL_ARGS:
1967 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1968 							    BPF_R3, BPF_R4,
1969 							    BPF_R5,
1970 							    insn + insn->off + 1);
1971 		CONT;
1972 
1973 	JMP_TAIL_CALL: {
1974 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1975 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1976 		struct bpf_prog *prog;
1977 		u32 index = BPF_R3;
1978 
1979 		if (unlikely(index >= array->map.max_entries))
1980 			goto out;
1981 
1982 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1983 			goto out;
1984 
1985 		tail_call_cnt++;
1986 
1987 		prog = READ_ONCE(array->ptrs[index]);
1988 		if (!prog)
1989 			goto out;
1990 
1991 		/* ARG1 at this point is guaranteed to point to CTX from
1992 		 * the verifier side due to the fact that the tail call is
1993 		 * handled like a helper, that is, bpf_tail_call_proto,
1994 		 * where arg1_type is ARG_PTR_TO_CTX.
1995 		 */
1996 		insn = prog->insnsi;
1997 		goto select_insn;
1998 out:
1999 		CONT;
2000 	}
2001 	JMP_JA:
2002 		insn += insn->off;
2003 		CONT;
2004 	JMP32_JA:
2005 		insn += insn->imm;
2006 		CONT;
2007 	JMP_EXIT:
2008 		return BPF_R0;
2009 	/* JMP */
2010 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2011 	JMP_##OPCODE##_X:					\
2012 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2013 			insn += insn->off;			\
2014 			CONT_JMP;				\
2015 		}						\
2016 		CONT;						\
2017 	JMP32_##OPCODE##_X:					\
2018 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2019 			insn += insn->off;			\
2020 			CONT_JMP;				\
2021 		}						\
2022 		CONT;						\
2023 	JMP_##OPCODE##_K:					\
2024 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2025 			insn += insn->off;			\
2026 			CONT_JMP;				\
2027 		}						\
2028 		CONT;						\
2029 	JMP32_##OPCODE##_K:					\
2030 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2031 			insn += insn->off;			\
2032 			CONT_JMP;				\
2033 		}						\
2034 		CONT;
2035 	COND_JMP(u, JEQ, ==)
2036 	COND_JMP(u, JNE, !=)
2037 	COND_JMP(u, JGT, >)
2038 	COND_JMP(u, JLT, <)
2039 	COND_JMP(u, JGE, >=)
2040 	COND_JMP(u, JLE, <=)
2041 	COND_JMP(u, JSET, &)
2042 	COND_JMP(s, JSGT, >)
2043 	COND_JMP(s, JSLT, <)
2044 	COND_JMP(s, JSGE, >=)
2045 	COND_JMP(s, JSLE, <=)
2046 #undef COND_JMP
2047 	/* ST, STX and LDX*/
2048 	ST_NOSPEC:
2049 		/* Speculation barrier for mitigating Speculative Store Bypass.
2050 		 * In case of arm64, we rely on the firmware mitigation as
2051 		 * controlled via the ssbd kernel parameter. Whenever the
2052 		 * mitigation is enabled, it works for all of the kernel code
2053 		 * with no need to provide any additional instructions here.
2054 		 * In case of x86, we use 'lfence' insn for mitigation. We
2055 		 * reuse preexisting logic from Spectre v1 mitigation that
2056 		 * happens to produce the required code on x86 for v4 as well.
2057 		 */
2058 		barrier_nospec();
2059 		CONT;
2060 #define LDST(SIZEOP, SIZE)						\
2061 	STX_MEM_##SIZEOP:						\
2062 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2063 		CONT;							\
2064 	ST_MEM_##SIZEOP:						\
2065 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2066 		CONT;							\
2067 	LDX_MEM_##SIZEOP:						\
2068 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2069 		CONT;							\
2070 	LDX_PROBE_MEM_##SIZEOP:						\
2071 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2072 			      (const void *)(long) (SRC + insn->off));	\
2073 		DST = *((SIZE *)&DST);					\
2074 		CONT;
2075 
2076 	LDST(B,   u8)
2077 	LDST(H,  u16)
2078 	LDST(W,  u32)
2079 	LDST(DW, u64)
2080 #undef LDST
2081 
2082 #define LDSX(SIZEOP, SIZE)						\
2083 	LDX_MEMSX_##SIZEOP:						\
2084 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2085 		CONT;							\
2086 	LDX_PROBE_MEMSX_##SIZEOP:					\
2087 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2088 				      (const void *)(long) (SRC + insn->off));	\
2089 		DST = *((SIZE *)&DST);					\
2090 		CONT;
2091 
2092 	LDSX(B,   s8)
2093 	LDSX(H,  s16)
2094 	LDSX(W,  s32)
2095 #undef LDSX
2096 
2097 #define ATOMIC_ALU_OP(BOP, KOP)						\
2098 		case BOP:						\
2099 			if (BPF_SIZE(insn->code) == BPF_W)		\
2100 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2101 					     (DST + insn->off));	\
2102 			else						\
2103 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2104 					       (DST + insn->off));	\
2105 			break;						\
2106 		case BOP | BPF_FETCH:					\
2107 			if (BPF_SIZE(insn->code) == BPF_W)		\
2108 				SRC = (u32) atomic_fetch_##KOP(		\
2109 					(u32) SRC,			\
2110 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2111 			else						\
2112 				SRC = (u64) atomic64_fetch_##KOP(	\
2113 					(u64) SRC,			\
2114 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2115 			break;
2116 
2117 	STX_ATOMIC_DW:
2118 	STX_ATOMIC_W:
2119 		switch (IMM) {
2120 		ATOMIC_ALU_OP(BPF_ADD, add)
2121 		ATOMIC_ALU_OP(BPF_AND, and)
2122 		ATOMIC_ALU_OP(BPF_OR, or)
2123 		ATOMIC_ALU_OP(BPF_XOR, xor)
2124 #undef ATOMIC_ALU_OP
2125 
2126 		case BPF_XCHG:
2127 			if (BPF_SIZE(insn->code) == BPF_W)
2128 				SRC = (u32) atomic_xchg(
2129 					(atomic_t *)(unsigned long) (DST + insn->off),
2130 					(u32) SRC);
2131 			else
2132 				SRC = (u64) atomic64_xchg(
2133 					(atomic64_t *)(unsigned long) (DST + insn->off),
2134 					(u64) SRC);
2135 			break;
2136 		case BPF_CMPXCHG:
2137 			if (BPF_SIZE(insn->code) == BPF_W)
2138 				BPF_R0 = (u32) atomic_cmpxchg(
2139 					(atomic_t *)(unsigned long) (DST + insn->off),
2140 					(u32) BPF_R0, (u32) SRC);
2141 			else
2142 				BPF_R0 = (u64) atomic64_cmpxchg(
2143 					(atomic64_t *)(unsigned long) (DST + insn->off),
2144 					(u64) BPF_R0, (u64) SRC);
2145 			break;
2146 
2147 		default:
2148 			goto default_label;
2149 		}
2150 		CONT;
2151 
2152 	default_label:
2153 		/* If we ever reach this, we have a bug somewhere. Die hard here
2154 		 * instead of just returning 0; we could be somewhere in a subprog,
2155 		 * so execution could continue otherwise which we do /not/ want.
2156 		 *
2157 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2158 		 */
2159 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2160 			insn->code, insn->imm);
2161 		BUG_ON(1);
2162 		return 0;
2163 }
2164 
2165 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2166 #define DEFINE_BPF_PROG_RUN(stack_size) \
2167 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2168 { \
2169 	u64 stack[stack_size / sizeof(u64)]; \
2170 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2171 \
2172 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2173 	ARG1 = (u64) (unsigned long) ctx; \
2174 	return ___bpf_prog_run(regs, insn); \
2175 }
2176 
2177 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2178 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2179 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2180 				      const struct bpf_insn *insn) \
2181 { \
2182 	u64 stack[stack_size / sizeof(u64)]; \
2183 	u64 regs[MAX_BPF_EXT_REG]; \
2184 \
2185 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2186 	BPF_R1 = r1; \
2187 	BPF_R2 = r2; \
2188 	BPF_R3 = r3; \
2189 	BPF_R4 = r4; \
2190 	BPF_R5 = r5; \
2191 	return ___bpf_prog_run(regs, insn); \
2192 }
2193 
2194 #define EVAL1(FN, X) FN(X)
2195 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2196 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2197 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2198 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2199 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2200 
2201 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2202 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2203 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2204 
2205 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2206 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2207 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2208 
2209 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2210 
2211 static unsigned int (*interpreters[])(const void *ctx,
2212 				      const struct bpf_insn *insn) = {
2213 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2214 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2215 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2216 };
2217 #undef PROG_NAME_LIST
2218 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2219 static __maybe_unused
2220 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2221 			   const struct bpf_insn *insn) = {
2222 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2223 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2224 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2225 };
2226 #undef PROG_NAME_LIST
2227 
2228 #ifdef CONFIG_BPF_SYSCALL
2229 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2230 {
2231 	stack_depth = max_t(u32, stack_depth, 1);
2232 	insn->off = (s16) insn->imm;
2233 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2234 		__bpf_call_base_args;
2235 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2236 }
2237 #endif
2238 #else
2239 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2240 					 const struct bpf_insn *insn)
2241 {
2242 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2243 	 * is not working properly, so warn about it!
2244 	 */
2245 	WARN_ON_ONCE(1);
2246 	return 0;
2247 }
2248 #endif
2249 
2250 bool bpf_prog_map_compatible(struct bpf_map *map,
2251 			     const struct bpf_prog *fp)
2252 {
2253 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2254 	bool ret;
2255 
2256 	if (fp->kprobe_override)
2257 		return false;
2258 
2259 	/* XDP programs inserted into maps are not guaranteed to run on
2260 	 * a particular netdev (and can run outside driver context entirely
2261 	 * in the case of devmap and cpumap). Until device checks
2262 	 * are implemented, prohibit adding dev-bound programs to program maps.
2263 	 */
2264 	if (bpf_prog_is_dev_bound(fp->aux))
2265 		return false;
2266 
2267 	spin_lock(&map->owner.lock);
2268 	if (!map->owner.type) {
2269 		/* There's no owner yet where we could check for
2270 		 * compatibility.
2271 		 */
2272 		map->owner.type  = prog_type;
2273 		map->owner.jited = fp->jited;
2274 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2275 		ret = true;
2276 	} else {
2277 		ret = map->owner.type  == prog_type &&
2278 		      map->owner.jited == fp->jited &&
2279 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2280 	}
2281 	spin_unlock(&map->owner.lock);
2282 
2283 	return ret;
2284 }
2285 
2286 static int bpf_check_tail_call(const struct bpf_prog *fp)
2287 {
2288 	struct bpf_prog_aux *aux = fp->aux;
2289 	int i, ret = 0;
2290 
2291 	mutex_lock(&aux->used_maps_mutex);
2292 	for (i = 0; i < aux->used_map_cnt; i++) {
2293 		struct bpf_map *map = aux->used_maps[i];
2294 
2295 		if (!map_type_contains_progs(map))
2296 			continue;
2297 
2298 		if (!bpf_prog_map_compatible(map, fp)) {
2299 			ret = -EINVAL;
2300 			goto out;
2301 		}
2302 	}
2303 
2304 out:
2305 	mutex_unlock(&aux->used_maps_mutex);
2306 	return ret;
2307 }
2308 
2309 static void bpf_prog_select_func(struct bpf_prog *fp)
2310 {
2311 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2312 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2313 
2314 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2315 #else
2316 	fp->bpf_func = __bpf_prog_ret0_warn;
2317 #endif
2318 }
2319 
2320 /**
2321  *	bpf_prog_select_runtime - select exec runtime for BPF program
2322  *	@fp: bpf_prog populated with BPF program
2323  *	@err: pointer to error variable
2324  *
2325  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2326  * The BPF program will be executed via bpf_prog_run() function.
2327  *
2328  * Return: the &fp argument along with &err set to 0 for success or
2329  * a negative errno code on failure
2330  */
2331 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2332 {
2333 	/* In case of BPF to BPF calls, verifier did all the prep
2334 	 * work with regards to JITing, etc.
2335 	 */
2336 	bool jit_needed = false;
2337 
2338 	if (fp->bpf_func)
2339 		goto finalize;
2340 
2341 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2342 	    bpf_prog_has_kfunc_call(fp))
2343 		jit_needed = true;
2344 
2345 	bpf_prog_select_func(fp);
2346 
2347 	/* eBPF JITs can rewrite the program in case constant
2348 	 * blinding is active. However, in case of error during
2349 	 * blinding, bpf_int_jit_compile() must always return a
2350 	 * valid program, which in this case would simply not
2351 	 * be JITed, but falls back to the interpreter.
2352 	 */
2353 	if (!bpf_prog_is_offloaded(fp->aux)) {
2354 		*err = bpf_prog_alloc_jited_linfo(fp);
2355 		if (*err)
2356 			return fp;
2357 
2358 		fp = bpf_int_jit_compile(fp);
2359 		bpf_prog_jit_attempt_done(fp);
2360 		if (!fp->jited && jit_needed) {
2361 			*err = -ENOTSUPP;
2362 			return fp;
2363 		}
2364 	} else {
2365 		*err = bpf_prog_offload_compile(fp);
2366 		if (*err)
2367 			return fp;
2368 	}
2369 
2370 finalize:
2371 	bpf_prog_lock_ro(fp);
2372 
2373 	/* The tail call compatibility check can only be done at
2374 	 * this late stage as we need to determine, if we deal
2375 	 * with JITed or non JITed program concatenations and not
2376 	 * all eBPF JITs might immediately support all features.
2377 	 */
2378 	*err = bpf_check_tail_call(fp);
2379 
2380 	return fp;
2381 }
2382 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2383 
2384 static unsigned int __bpf_prog_ret1(const void *ctx,
2385 				    const struct bpf_insn *insn)
2386 {
2387 	return 1;
2388 }
2389 
2390 static struct bpf_prog_dummy {
2391 	struct bpf_prog prog;
2392 } dummy_bpf_prog = {
2393 	.prog = {
2394 		.bpf_func = __bpf_prog_ret1,
2395 	},
2396 };
2397 
2398 struct bpf_empty_prog_array bpf_empty_prog_array = {
2399 	.null_prog = NULL,
2400 };
2401 EXPORT_SYMBOL(bpf_empty_prog_array);
2402 
2403 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2404 {
2405 	if (prog_cnt)
2406 		return kzalloc(sizeof(struct bpf_prog_array) +
2407 			       sizeof(struct bpf_prog_array_item) *
2408 			       (prog_cnt + 1),
2409 			       flags);
2410 
2411 	return &bpf_empty_prog_array.hdr;
2412 }
2413 
2414 void bpf_prog_array_free(struct bpf_prog_array *progs)
2415 {
2416 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2417 		return;
2418 	kfree_rcu(progs, rcu);
2419 }
2420 
2421 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2422 {
2423 	struct bpf_prog_array *progs;
2424 
2425 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2426 	 * no need to call kfree_rcu(), just call kfree() directly.
2427 	 */
2428 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2429 	if (rcu_trace_implies_rcu_gp())
2430 		kfree(progs);
2431 	else
2432 		kfree_rcu(progs, rcu);
2433 }
2434 
2435 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2436 {
2437 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2438 		return;
2439 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2440 }
2441 
2442 int bpf_prog_array_length(struct bpf_prog_array *array)
2443 {
2444 	struct bpf_prog_array_item *item;
2445 	u32 cnt = 0;
2446 
2447 	for (item = array->items; item->prog; item++)
2448 		if (item->prog != &dummy_bpf_prog.prog)
2449 			cnt++;
2450 	return cnt;
2451 }
2452 
2453 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2454 {
2455 	struct bpf_prog_array_item *item;
2456 
2457 	for (item = array->items; item->prog; item++)
2458 		if (item->prog != &dummy_bpf_prog.prog)
2459 			return false;
2460 	return true;
2461 }
2462 
2463 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2464 				     u32 *prog_ids,
2465 				     u32 request_cnt)
2466 {
2467 	struct bpf_prog_array_item *item;
2468 	int i = 0;
2469 
2470 	for (item = array->items; item->prog; item++) {
2471 		if (item->prog == &dummy_bpf_prog.prog)
2472 			continue;
2473 		prog_ids[i] = item->prog->aux->id;
2474 		if (++i == request_cnt) {
2475 			item++;
2476 			break;
2477 		}
2478 	}
2479 
2480 	return !!(item->prog);
2481 }
2482 
2483 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2484 				__u32 __user *prog_ids, u32 cnt)
2485 {
2486 	unsigned long err = 0;
2487 	bool nospc;
2488 	u32 *ids;
2489 
2490 	/* users of this function are doing:
2491 	 * cnt = bpf_prog_array_length();
2492 	 * if (cnt > 0)
2493 	 *     bpf_prog_array_copy_to_user(..., cnt);
2494 	 * so below kcalloc doesn't need extra cnt > 0 check.
2495 	 */
2496 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2497 	if (!ids)
2498 		return -ENOMEM;
2499 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2500 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2501 	kfree(ids);
2502 	if (err)
2503 		return -EFAULT;
2504 	if (nospc)
2505 		return -ENOSPC;
2506 	return 0;
2507 }
2508 
2509 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2510 				struct bpf_prog *old_prog)
2511 {
2512 	struct bpf_prog_array_item *item;
2513 
2514 	for (item = array->items; item->prog; item++)
2515 		if (item->prog == old_prog) {
2516 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2517 			break;
2518 		}
2519 }
2520 
2521 /**
2522  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2523  *                                   index into the program array with
2524  *                                   a dummy no-op program.
2525  * @array: a bpf_prog_array
2526  * @index: the index of the program to replace
2527  *
2528  * Skips over dummy programs, by not counting them, when calculating
2529  * the position of the program to replace.
2530  *
2531  * Return:
2532  * * 0		- Success
2533  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2534  * * -ENOENT	- Index out of range
2535  */
2536 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2537 {
2538 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2539 }
2540 
2541 /**
2542  * bpf_prog_array_update_at() - Updates the program at the given index
2543  *                              into the program array.
2544  * @array: a bpf_prog_array
2545  * @index: the index of the program to update
2546  * @prog: the program to insert into the array
2547  *
2548  * Skips over dummy programs, by not counting them, when calculating
2549  * the position of the program to update.
2550  *
2551  * Return:
2552  * * 0		- Success
2553  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2554  * * -ENOENT	- Index out of range
2555  */
2556 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2557 			     struct bpf_prog *prog)
2558 {
2559 	struct bpf_prog_array_item *item;
2560 
2561 	if (unlikely(index < 0))
2562 		return -EINVAL;
2563 
2564 	for (item = array->items; item->prog; item++) {
2565 		if (item->prog == &dummy_bpf_prog.prog)
2566 			continue;
2567 		if (!index) {
2568 			WRITE_ONCE(item->prog, prog);
2569 			return 0;
2570 		}
2571 		index--;
2572 	}
2573 	return -ENOENT;
2574 }
2575 
2576 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2577 			struct bpf_prog *exclude_prog,
2578 			struct bpf_prog *include_prog,
2579 			u64 bpf_cookie,
2580 			struct bpf_prog_array **new_array)
2581 {
2582 	int new_prog_cnt, carry_prog_cnt = 0;
2583 	struct bpf_prog_array_item *existing, *new;
2584 	struct bpf_prog_array *array;
2585 	bool found_exclude = false;
2586 
2587 	/* Figure out how many existing progs we need to carry over to
2588 	 * the new array.
2589 	 */
2590 	if (old_array) {
2591 		existing = old_array->items;
2592 		for (; existing->prog; existing++) {
2593 			if (existing->prog == exclude_prog) {
2594 				found_exclude = true;
2595 				continue;
2596 			}
2597 			if (existing->prog != &dummy_bpf_prog.prog)
2598 				carry_prog_cnt++;
2599 			if (existing->prog == include_prog)
2600 				return -EEXIST;
2601 		}
2602 	}
2603 
2604 	if (exclude_prog && !found_exclude)
2605 		return -ENOENT;
2606 
2607 	/* How many progs (not NULL) will be in the new array? */
2608 	new_prog_cnt = carry_prog_cnt;
2609 	if (include_prog)
2610 		new_prog_cnt += 1;
2611 
2612 	/* Do we have any prog (not NULL) in the new array? */
2613 	if (!new_prog_cnt) {
2614 		*new_array = NULL;
2615 		return 0;
2616 	}
2617 
2618 	/* +1 as the end of prog_array is marked with NULL */
2619 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2620 	if (!array)
2621 		return -ENOMEM;
2622 	new = array->items;
2623 
2624 	/* Fill in the new prog array */
2625 	if (carry_prog_cnt) {
2626 		existing = old_array->items;
2627 		for (; existing->prog; existing++) {
2628 			if (existing->prog == exclude_prog ||
2629 			    existing->prog == &dummy_bpf_prog.prog)
2630 				continue;
2631 
2632 			new->prog = existing->prog;
2633 			new->bpf_cookie = existing->bpf_cookie;
2634 			new++;
2635 		}
2636 	}
2637 	if (include_prog) {
2638 		new->prog = include_prog;
2639 		new->bpf_cookie = bpf_cookie;
2640 		new++;
2641 	}
2642 	new->prog = NULL;
2643 	*new_array = array;
2644 	return 0;
2645 }
2646 
2647 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2648 			     u32 *prog_ids, u32 request_cnt,
2649 			     u32 *prog_cnt)
2650 {
2651 	u32 cnt = 0;
2652 
2653 	if (array)
2654 		cnt = bpf_prog_array_length(array);
2655 
2656 	*prog_cnt = cnt;
2657 
2658 	/* return early if user requested only program count or nothing to copy */
2659 	if (!request_cnt || !cnt)
2660 		return 0;
2661 
2662 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2663 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2664 								     : 0;
2665 }
2666 
2667 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2668 			  struct bpf_map **used_maps, u32 len)
2669 {
2670 	struct bpf_map *map;
2671 	u32 i;
2672 
2673 	for (i = 0; i < len; i++) {
2674 		map = used_maps[i];
2675 		if (map->ops->map_poke_untrack)
2676 			map->ops->map_poke_untrack(map, aux);
2677 		bpf_map_put(map);
2678 	}
2679 }
2680 
2681 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2682 {
2683 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2684 	kfree(aux->used_maps);
2685 }
2686 
2687 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2688 			  struct btf_mod_pair *used_btfs, u32 len)
2689 {
2690 #ifdef CONFIG_BPF_SYSCALL
2691 	struct btf_mod_pair *btf_mod;
2692 	u32 i;
2693 
2694 	for (i = 0; i < len; i++) {
2695 		btf_mod = &used_btfs[i];
2696 		if (btf_mod->module)
2697 			module_put(btf_mod->module);
2698 		btf_put(btf_mod->btf);
2699 	}
2700 #endif
2701 }
2702 
2703 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2704 {
2705 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2706 	kfree(aux->used_btfs);
2707 }
2708 
2709 static void bpf_prog_free_deferred(struct work_struct *work)
2710 {
2711 	struct bpf_prog_aux *aux;
2712 	int i;
2713 
2714 	aux = container_of(work, struct bpf_prog_aux, work);
2715 #ifdef CONFIG_BPF_SYSCALL
2716 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2717 #endif
2718 #ifdef CONFIG_CGROUP_BPF
2719 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2720 		bpf_cgroup_atype_put(aux->cgroup_atype);
2721 #endif
2722 	bpf_free_used_maps(aux);
2723 	bpf_free_used_btfs(aux);
2724 	if (bpf_prog_is_dev_bound(aux))
2725 		bpf_prog_dev_bound_destroy(aux->prog);
2726 #ifdef CONFIG_PERF_EVENTS
2727 	if (aux->prog->has_callchain_buf)
2728 		put_callchain_buffers();
2729 #endif
2730 	if (aux->dst_trampoline)
2731 		bpf_trampoline_put(aux->dst_trampoline);
2732 	for (i = 0; i < aux->real_func_cnt; i++) {
2733 		/* We can just unlink the subprog poke descriptor table as
2734 		 * it was originally linked to the main program and is also
2735 		 * released along with it.
2736 		 */
2737 		aux->func[i]->aux->poke_tab = NULL;
2738 		bpf_jit_free(aux->func[i]);
2739 	}
2740 	if (aux->real_func_cnt) {
2741 		kfree(aux->func);
2742 		bpf_prog_unlock_free(aux->prog);
2743 	} else {
2744 		bpf_jit_free(aux->prog);
2745 	}
2746 }
2747 
2748 void bpf_prog_free(struct bpf_prog *fp)
2749 {
2750 	struct bpf_prog_aux *aux = fp->aux;
2751 
2752 	if (aux->dst_prog)
2753 		bpf_prog_put(aux->dst_prog);
2754 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2755 	schedule_work(&aux->work);
2756 }
2757 EXPORT_SYMBOL_GPL(bpf_prog_free);
2758 
2759 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2760 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2761 
2762 void bpf_user_rnd_init_once(void)
2763 {
2764 	prandom_init_once(&bpf_user_rnd_state);
2765 }
2766 
2767 BPF_CALL_0(bpf_user_rnd_u32)
2768 {
2769 	/* Should someone ever have the rather unwise idea to use some
2770 	 * of the registers passed into this function, then note that
2771 	 * this function is called from native eBPF and classic-to-eBPF
2772 	 * transformations. Register assignments from both sides are
2773 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2774 	 */
2775 	struct rnd_state *state;
2776 	u32 res;
2777 
2778 	state = &get_cpu_var(bpf_user_rnd_state);
2779 	res = prandom_u32_state(state);
2780 	put_cpu_var(bpf_user_rnd_state);
2781 
2782 	return res;
2783 }
2784 
2785 BPF_CALL_0(bpf_get_raw_cpu_id)
2786 {
2787 	return raw_smp_processor_id();
2788 }
2789 
2790 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2791 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2792 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2793 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2794 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2795 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2796 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2797 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2798 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2799 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2800 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2801 
2802 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2803 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2804 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2805 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2806 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2807 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2808 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2809 
2810 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2811 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2812 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2813 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2814 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2815 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2816 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2817 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2818 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2819 const struct bpf_func_proto bpf_set_retval_proto __weak;
2820 const struct bpf_func_proto bpf_get_retval_proto __weak;
2821 
2822 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2823 {
2824 	return NULL;
2825 }
2826 
2827 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2828 {
2829 	return NULL;
2830 }
2831 
2832 u64 __weak
2833 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2834 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2835 {
2836 	return -ENOTSUPP;
2837 }
2838 EXPORT_SYMBOL_GPL(bpf_event_output);
2839 
2840 /* Always built-in helper functions. */
2841 const struct bpf_func_proto bpf_tail_call_proto = {
2842 	.func		= NULL,
2843 	.gpl_only	= false,
2844 	.ret_type	= RET_VOID,
2845 	.arg1_type	= ARG_PTR_TO_CTX,
2846 	.arg2_type	= ARG_CONST_MAP_PTR,
2847 	.arg3_type	= ARG_ANYTHING,
2848 };
2849 
2850 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2851  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2852  * eBPF and implicitly also cBPF can get JITed!
2853  */
2854 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2855 {
2856 	return prog;
2857 }
2858 
2859 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2860  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2861  */
2862 void __weak bpf_jit_compile(struct bpf_prog *prog)
2863 {
2864 }
2865 
2866 bool __weak bpf_helper_changes_pkt_data(void *func)
2867 {
2868 	return false;
2869 }
2870 
2871 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2872  * analysis code and wants explicit zero extension inserted by verifier.
2873  * Otherwise, return FALSE.
2874  *
2875  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2876  * you don't override this. JITs that don't want these extra insns can detect
2877  * them using insn_is_zext.
2878  */
2879 bool __weak bpf_jit_needs_zext(void)
2880 {
2881 	return false;
2882 }
2883 
2884 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2885 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2886 {
2887 	return false;
2888 }
2889 
2890 bool __weak bpf_jit_supports_kfunc_call(void)
2891 {
2892 	return false;
2893 }
2894 
2895 bool __weak bpf_jit_supports_far_kfunc_call(void)
2896 {
2897 	return false;
2898 }
2899 
2900 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2901  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2902  */
2903 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2904 			 int len)
2905 {
2906 	return -EFAULT;
2907 }
2908 
2909 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2910 			      void *addr1, void *addr2)
2911 {
2912 	return -ENOTSUPP;
2913 }
2914 
2915 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2916 {
2917 	return ERR_PTR(-ENOTSUPP);
2918 }
2919 
2920 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2921 {
2922 	return -ENOTSUPP;
2923 }
2924 
2925 bool __weak bpf_jit_supports_exceptions(void)
2926 {
2927 	return false;
2928 }
2929 
2930 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2931 {
2932 }
2933 
2934 #ifdef CONFIG_BPF_SYSCALL
2935 static int __init bpf_global_ma_init(void)
2936 {
2937 	int ret;
2938 
2939 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2940 	bpf_global_ma_set = !ret;
2941 	return ret;
2942 }
2943 late_initcall(bpf_global_ma_init);
2944 #endif
2945 
2946 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2947 EXPORT_SYMBOL(bpf_stats_enabled_key);
2948 
2949 /* All definitions of tracepoints related to BPF. */
2950 #define CREATE_TRACE_POINTS
2951 #include <linux/bpf_trace.h>
2952 
2953 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2954 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2955