1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux Socket Filter - Kernel level socket filtering 4 * 5 * Based on the design of the Berkeley Packet Filter. The new 6 * internal format has been designed by PLUMgrid: 7 * 8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 9 * 10 * Authors: 11 * 12 * Jay Schulist <jschlst@samba.org> 13 * Alexei Starovoitov <ast@plumgrid.com> 14 * Daniel Borkmann <dborkman@redhat.com> 15 * 16 * Andi Kleen - Fix a few bad bugs and races. 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 18 */ 19 20 #include <uapi/linux/btf.h> 21 #include <linux/filter.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/random.h> 25 #include <linux/moduleloader.h> 26 #include <linux/bpf.h> 27 #include <linux/btf.h> 28 #include <linux/objtool.h> 29 #include <linux/rbtree_latch.h> 30 #include <linux/kallsyms.h> 31 #include <linux/rcupdate.h> 32 #include <linux/perf_event.h> 33 #include <linux/extable.h> 34 #include <linux/log2.h> 35 #include <asm/unaligned.h> 36 37 /* Registers */ 38 #define BPF_R0 regs[BPF_REG_0] 39 #define BPF_R1 regs[BPF_REG_1] 40 #define BPF_R2 regs[BPF_REG_2] 41 #define BPF_R3 regs[BPF_REG_3] 42 #define BPF_R4 regs[BPF_REG_4] 43 #define BPF_R5 regs[BPF_REG_5] 44 #define BPF_R6 regs[BPF_REG_6] 45 #define BPF_R7 regs[BPF_REG_7] 46 #define BPF_R8 regs[BPF_REG_8] 47 #define BPF_R9 regs[BPF_REG_9] 48 #define BPF_R10 regs[BPF_REG_10] 49 50 /* Named registers */ 51 #define DST regs[insn->dst_reg] 52 #define SRC regs[insn->src_reg] 53 #define FP regs[BPF_REG_FP] 54 #define AX regs[BPF_REG_AX] 55 #define ARG1 regs[BPF_REG_ARG1] 56 #define CTX regs[BPF_REG_CTX] 57 #define IMM insn->imm 58 59 /* No hurry in this branch 60 * 61 * Exported for the bpf jit load helper. 62 */ 63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) 64 { 65 u8 *ptr = NULL; 66 67 if (k >= SKF_NET_OFF) 68 ptr = skb_network_header(skb) + k - SKF_NET_OFF; 69 else if (k >= SKF_LL_OFF) 70 ptr = skb_mac_header(skb) + k - SKF_LL_OFF; 71 72 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) 73 return ptr; 74 75 return NULL; 76 } 77 78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) 79 { 80 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; 81 struct bpf_prog_aux *aux; 82 struct bpf_prog *fp; 83 84 size = round_up(size, PAGE_SIZE); 85 fp = __vmalloc(size, gfp_flags); 86 if (fp == NULL) 87 return NULL; 88 89 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags); 90 if (aux == NULL) { 91 vfree(fp); 92 return NULL; 93 } 94 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags); 95 if (!fp->active) { 96 vfree(fp); 97 kfree(aux); 98 return NULL; 99 } 100 101 fp->pages = size / PAGE_SIZE; 102 fp->aux = aux; 103 fp->aux->prog = fp; 104 fp->jit_requested = ebpf_jit_enabled(); 105 106 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); 107 mutex_init(&fp->aux->used_maps_mutex); 108 mutex_init(&fp->aux->dst_mutex); 109 110 return fp; 111 } 112 113 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) 114 { 115 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; 116 struct bpf_prog *prog; 117 int cpu; 118 119 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); 120 if (!prog) 121 return NULL; 122 123 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); 124 if (!prog->stats) { 125 free_percpu(prog->active); 126 kfree(prog->aux); 127 vfree(prog); 128 return NULL; 129 } 130 131 for_each_possible_cpu(cpu) { 132 struct bpf_prog_stats *pstats; 133 134 pstats = per_cpu_ptr(prog->stats, cpu); 135 u64_stats_init(&pstats->syncp); 136 } 137 return prog; 138 } 139 EXPORT_SYMBOL_GPL(bpf_prog_alloc); 140 141 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) 142 { 143 if (!prog->aux->nr_linfo || !prog->jit_requested) 144 return 0; 145 146 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo, 147 sizeof(*prog->aux->jited_linfo), 148 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 149 if (!prog->aux->jited_linfo) 150 return -ENOMEM; 151 152 return 0; 153 } 154 155 void bpf_prog_free_jited_linfo(struct bpf_prog *prog) 156 { 157 kfree(prog->aux->jited_linfo); 158 prog->aux->jited_linfo = NULL; 159 } 160 161 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog) 162 { 163 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0]) 164 bpf_prog_free_jited_linfo(prog); 165 } 166 167 /* The jit engine is responsible to provide an array 168 * for insn_off to the jited_off mapping (insn_to_jit_off). 169 * 170 * The idx to this array is the insn_off. Hence, the insn_off 171 * here is relative to the prog itself instead of the main prog. 172 * This array has one entry for each xlated bpf insn. 173 * 174 * jited_off is the byte off to the last byte of the jited insn. 175 * 176 * Hence, with 177 * insn_start: 178 * The first bpf insn off of the prog. The insn off 179 * here is relative to the main prog. 180 * e.g. if prog is a subprog, insn_start > 0 181 * linfo_idx: 182 * The prog's idx to prog->aux->linfo and jited_linfo 183 * 184 * jited_linfo[linfo_idx] = prog->bpf_func 185 * 186 * For i > linfo_idx, 187 * 188 * jited_linfo[i] = prog->bpf_func + 189 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] 190 */ 191 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 192 const u32 *insn_to_jit_off) 193 { 194 u32 linfo_idx, insn_start, insn_end, nr_linfo, i; 195 const struct bpf_line_info *linfo; 196 void **jited_linfo; 197 198 if (!prog->aux->jited_linfo) 199 /* Userspace did not provide linfo */ 200 return; 201 202 linfo_idx = prog->aux->linfo_idx; 203 linfo = &prog->aux->linfo[linfo_idx]; 204 insn_start = linfo[0].insn_off; 205 insn_end = insn_start + prog->len; 206 207 jited_linfo = &prog->aux->jited_linfo[linfo_idx]; 208 jited_linfo[0] = prog->bpf_func; 209 210 nr_linfo = prog->aux->nr_linfo - linfo_idx; 211 212 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) 213 /* The verifier ensures that linfo[i].insn_off is 214 * strictly increasing 215 */ 216 jited_linfo[i] = prog->bpf_func + 217 insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; 218 } 219 220 void bpf_prog_free_linfo(struct bpf_prog *prog) 221 { 222 bpf_prog_free_jited_linfo(prog); 223 kvfree(prog->aux->linfo); 224 } 225 226 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 227 gfp_t gfp_extra_flags) 228 { 229 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; 230 struct bpf_prog *fp; 231 u32 pages; 232 233 size = round_up(size, PAGE_SIZE); 234 pages = size / PAGE_SIZE; 235 if (pages <= fp_old->pages) 236 return fp_old; 237 238 fp = __vmalloc(size, gfp_flags); 239 if (fp) { 240 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); 241 fp->pages = pages; 242 fp->aux->prog = fp; 243 244 /* We keep fp->aux from fp_old around in the new 245 * reallocated structure. 246 */ 247 fp_old->aux = NULL; 248 fp_old->stats = NULL; 249 fp_old->active = NULL; 250 __bpf_prog_free(fp_old); 251 } 252 253 return fp; 254 } 255 256 void __bpf_prog_free(struct bpf_prog *fp) 257 { 258 if (fp->aux) { 259 mutex_destroy(&fp->aux->used_maps_mutex); 260 mutex_destroy(&fp->aux->dst_mutex); 261 kfree(fp->aux->poke_tab); 262 kfree(fp->aux); 263 } 264 free_percpu(fp->stats); 265 free_percpu(fp->active); 266 vfree(fp); 267 } 268 269 int bpf_prog_calc_tag(struct bpf_prog *fp) 270 { 271 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64); 272 u32 raw_size = bpf_prog_tag_scratch_size(fp); 273 u32 digest[SHA1_DIGEST_WORDS]; 274 u32 ws[SHA1_WORKSPACE_WORDS]; 275 u32 i, bsize, psize, blocks; 276 struct bpf_insn *dst; 277 bool was_ld_map; 278 u8 *raw, *todo; 279 __be32 *result; 280 __be64 *bits; 281 282 raw = vmalloc(raw_size); 283 if (!raw) 284 return -ENOMEM; 285 286 sha1_init(digest); 287 memset(ws, 0, sizeof(ws)); 288 289 /* We need to take out the map fd for the digest calculation 290 * since they are unstable from user space side. 291 */ 292 dst = (void *)raw; 293 for (i = 0, was_ld_map = false; i < fp->len; i++) { 294 dst[i] = fp->insnsi[i]; 295 if (!was_ld_map && 296 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 297 (dst[i].src_reg == BPF_PSEUDO_MAP_FD || 298 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { 299 was_ld_map = true; 300 dst[i].imm = 0; 301 } else if (was_ld_map && 302 dst[i].code == 0 && 303 dst[i].dst_reg == 0 && 304 dst[i].src_reg == 0 && 305 dst[i].off == 0) { 306 was_ld_map = false; 307 dst[i].imm = 0; 308 } else { 309 was_ld_map = false; 310 } 311 } 312 313 psize = bpf_prog_insn_size(fp); 314 memset(&raw[psize], 0, raw_size - psize); 315 raw[psize++] = 0x80; 316 317 bsize = round_up(psize, SHA1_BLOCK_SIZE); 318 blocks = bsize / SHA1_BLOCK_SIZE; 319 todo = raw; 320 if (bsize - psize >= sizeof(__be64)) { 321 bits = (__be64 *)(todo + bsize - sizeof(__be64)); 322 } else { 323 bits = (__be64 *)(todo + bsize + bits_offset); 324 blocks++; 325 } 326 *bits = cpu_to_be64((psize - 1) << 3); 327 328 while (blocks--) { 329 sha1_transform(digest, todo, ws); 330 todo += SHA1_BLOCK_SIZE; 331 } 332 333 result = (__force __be32 *)digest; 334 for (i = 0; i < SHA1_DIGEST_WORDS; i++) 335 result[i] = cpu_to_be32(digest[i]); 336 memcpy(fp->tag, result, sizeof(fp->tag)); 337 338 vfree(raw); 339 return 0; 340 } 341 342 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, 343 s32 end_new, s32 curr, const bool probe_pass) 344 { 345 const s64 imm_min = S32_MIN, imm_max = S32_MAX; 346 s32 delta = end_new - end_old; 347 s64 imm = insn->imm; 348 349 if (curr < pos && curr + imm + 1 >= end_old) 350 imm += delta; 351 else if (curr >= end_new && curr + imm + 1 < end_new) 352 imm -= delta; 353 if (imm < imm_min || imm > imm_max) 354 return -ERANGE; 355 if (!probe_pass) 356 insn->imm = imm; 357 return 0; 358 } 359 360 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, 361 s32 end_new, s32 curr, const bool probe_pass) 362 { 363 const s32 off_min = S16_MIN, off_max = S16_MAX; 364 s32 delta = end_new - end_old; 365 s32 off = insn->off; 366 367 if (curr < pos && curr + off + 1 >= end_old) 368 off += delta; 369 else if (curr >= end_new && curr + off + 1 < end_new) 370 off -= delta; 371 if (off < off_min || off > off_max) 372 return -ERANGE; 373 if (!probe_pass) 374 insn->off = off; 375 return 0; 376 } 377 378 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, 379 s32 end_new, const bool probe_pass) 380 { 381 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); 382 struct bpf_insn *insn = prog->insnsi; 383 int ret = 0; 384 385 for (i = 0; i < insn_cnt; i++, insn++) { 386 u8 code; 387 388 /* In the probing pass we still operate on the original, 389 * unpatched image in order to check overflows before we 390 * do any other adjustments. Therefore skip the patchlet. 391 */ 392 if (probe_pass && i == pos) { 393 i = end_new; 394 insn = prog->insnsi + end_old; 395 } 396 code = insn->code; 397 if ((BPF_CLASS(code) != BPF_JMP && 398 BPF_CLASS(code) != BPF_JMP32) || 399 BPF_OP(code) == BPF_EXIT) 400 continue; 401 /* Adjust offset of jmps if we cross patch boundaries. */ 402 if (BPF_OP(code) == BPF_CALL) { 403 if (insn->src_reg != BPF_PSEUDO_CALL) 404 continue; 405 ret = bpf_adj_delta_to_imm(insn, pos, end_old, 406 end_new, i, probe_pass); 407 } else { 408 ret = bpf_adj_delta_to_off(insn, pos, end_old, 409 end_new, i, probe_pass); 410 } 411 if (ret) 412 break; 413 } 414 415 return ret; 416 } 417 418 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) 419 { 420 struct bpf_line_info *linfo; 421 u32 i, nr_linfo; 422 423 nr_linfo = prog->aux->nr_linfo; 424 if (!nr_linfo || !delta) 425 return; 426 427 linfo = prog->aux->linfo; 428 429 for (i = 0; i < nr_linfo; i++) 430 if (off < linfo[i].insn_off) 431 break; 432 433 /* Push all off < linfo[i].insn_off by delta */ 434 for (; i < nr_linfo; i++) 435 linfo[i].insn_off += delta; 436 } 437 438 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 439 const struct bpf_insn *patch, u32 len) 440 { 441 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; 442 const u32 cnt_max = S16_MAX; 443 struct bpf_prog *prog_adj; 444 int err; 445 446 /* Since our patchlet doesn't expand the image, we're done. */ 447 if (insn_delta == 0) { 448 memcpy(prog->insnsi + off, patch, sizeof(*patch)); 449 return prog; 450 } 451 452 insn_adj_cnt = prog->len + insn_delta; 453 454 /* Reject anything that would potentially let the insn->off 455 * target overflow when we have excessive program expansions. 456 * We need to probe here before we do any reallocation where 457 * we afterwards may not fail anymore. 458 */ 459 if (insn_adj_cnt > cnt_max && 460 (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) 461 return ERR_PTR(err); 462 463 /* Several new instructions need to be inserted. Make room 464 * for them. Likely, there's no need for a new allocation as 465 * last page could have large enough tailroom. 466 */ 467 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), 468 GFP_USER); 469 if (!prog_adj) 470 return ERR_PTR(-ENOMEM); 471 472 prog_adj->len = insn_adj_cnt; 473 474 /* Patching happens in 3 steps: 475 * 476 * 1) Move over tail of insnsi from next instruction onwards, 477 * so we can patch the single target insn with one or more 478 * new ones (patching is always from 1 to n insns, n > 0). 479 * 2) Inject new instructions at the target location. 480 * 3) Adjust branch offsets if necessary. 481 */ 482 insn_rest = insn_adj_cnt - off - len; 483 484 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, 485 sizeof(*patch) * insn_rest); 486 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); 487 488 /* We are guaranteed to not fail at this point, otherwise 489 * the ship has sailed to reverse to the original state. An 490 * overflow cannot happen at this point. 491 */ 492 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); 493 494 bpf_adj_linfo(prog_adj, off, insn_delta); 495 496 return prog_adj; 497 } 498 499 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) 500 { 501 /* Branch offsets can't overflow when program is shrinking, no need 502 * to call bpf_adj_branches(..., true) here 503 */ 504 memmove(prog->insnsi + off, prog->insnsi + off + cnt, 505 sizeof(struct bpf_insn) * (prog->len - off - cnt)); 506 prog->len -= cnt; 507 508 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false)); 509 } 510 511 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) 512 { 513 int i; 514 515 for (i = 0; i < fp->aux->func_cnt; i++) 516 bpf_prog_kallsyms_del(fp->aux->func[i]); 517 } 518 519 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) 520 { 521 bpf_prog_kallsyms_del_subprogs(fp); 522 bpf_prog_kallsyms_del(fp); 523 } 524 525 #ifdef CONFIG_BPF_JIT 526 /* All BPF JIT sysctl knobs here. */ 527 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); 528 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); 529 int bpf_jit_harden __read_mostly; 530 long bpf_jit_limit __read_mostly; 531 532 static void 533 bpf_prog_ksym_set_addr(struct bpf_prog *prog) 534 { 535 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); 536 unsigned long addr = (unsigned long)hdr; 537 538 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); 539 540 prog->aux->ksym.start = (unsigned long) prog->bpf_func; 541 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE; 542 } 543 544 static void 545 bpf_prog_ksym_set_name(struct bpf_prog *prog) 546 { 547 char *sym = prog->aux->ksym.name; 548 const char *end = sym + KSYM_NAME_LEN; 549 const struct btf_type *type; 550 const char *func_name; 551 552 BUILD_BUG_ON(sizeof("bpf_prog_") + 553 sizeof(prog->tag) * 2 + 554 /* name has been null terminated. 555 * We should need +1 for the '_' preceding 556 * the name. However, the null character 557 * is double counted between the name and the 558 * sizeof("bpf_prog_") above, so we omit 559 * the +1 here. 560 */ 561 sizeof(prog->aux->name) > KSYM_NAME_LEN); 562 563 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); 564 sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); 565 566 /* prog->aux->name will be ignored if full btf name is available */ 567 if (prog->aux->func_info_cnt) { 568 type = btf_type_by_id(prog->aux->btf, 569 prog->aux->func_info[prog->aux->func_idx].type_id); 570 func_name = btf_name_by_offset(prog->aux->btf, type->name_off); 571 snprintf(sym, (size_t)(end - sym), "_%s", func_name); 572 return; 573 } 574 575 if (prog->aux->name[0]) 576 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); 577 else 578 *sym = 0; 579 } 580 581 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) 582 { 583 return container_of(n, struct bpf_ksym, tnode)->start; 584 } 585 586 static __always_inline bool bpf_tree_less(struct latch_tree_node *a, 587 struct latch_tree_node *b) 588 { 589 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); 590 } 591 592 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) 593 { 594 unsigned long val = (unsigned long)key; 595 const struct bpf_ksym *ksym; 596 597 ksym = container_of(n, struct bpf_ksym, tnode); 598 599 if (val < ksym->start) 600 return -1; 601 if (val >= ksym->end) 602 return 1; 603 604 return 0; 605 } 606 607 static const struct latch_tree_ops bpf_tree_ops = { 608 .less = bpf_tree_less, 609 .comp = bpf_tree_comp, 610 }; 611 612 static DEFINE_SPINLOCK(bpf_lock); 613 static LIST_HEAD(bpf_kallsyms); 614 static struct latch_tree_root bpf_tree __cacheline_aligned; 615 616 void bpf_ksym_add(struct bpf_ksym *ksym) 617 { 618 spin_lock_bh(&bpf_lock); 619 WARN_ON_ONCE(!list_empty(&ksym->lnode)); 620 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); 621 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); 622 spin_unlock_bh(&bpf_lock); 623 } 624 625 static void __bpf_ksym_del(struct bpf_ksym *ksym) 626 { 627 if (list_empty(&ksym->lnode)) 628 return; 629 630 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); 631 list_del_rcu(&ksym->lnode); 632 } 633 634 void bpf_ksym_del(struct bpf_ksym *ksym) 635 { 636 spin_lock_bh(&bpf_lock); 637 __bpf_ksym_del(ksym); 638 spin_unlock_bh(&bpf_lock); 639 } 640 641 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) 642 { 643 return fp->jited && !bpf_prog_was_classic(fp); 644 } 645 646 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 647 { 648 return list_empty(&fp->aux->ksym.lnode) || 649 fp->aux->ksym.lnode.prev == LIST_POISON2; 650 } 651 652 void bpf_prog_kallsyms_add(struct bpf_prog *fp) 653 { 654 if (!bpf_prog_kallsyms_candidate(fp) || 655 !bpf_capable()) 656 return; 657 658 bpf_prog_ksym_set_addr(fp); 659 bpf_prog_ksym_set_name(fp); 660 fp->aux->ksym.prog = true; 661 662 bpf_ksym_add(&fp->aux->ksym); 663 } 664 665 void bpf_prog_kallsyms_del(struct bpf_prog *fp) 666 { 667 if (!bpf_prog_kallsyms_candidate(fp)) 668 return; 669 670 bpf_ksym_del(&fp->aux->ksym); 671 } 672 673 static struct bpf_ksym *bpf_ksym_find(unsigned long addr) 674 { 675 struct latch_tree_node *n; 676 677 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); 678 return n ? container_of(n, struct bpf_ksym, tnode) : NULL; 679 } 680 681 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 682 unsigned long *off, char *sym) 683 { 684 struct bpf_ksym *ksym; 685 char *ret = NULL; 686 687 rcu_read_lock(); 688 ksym = bpf_ksym_find(addr); 689 if (ksym) { 690 unsigned long symbol_start = ksym->start; 691 unsigned long symbol_end = ksym->end; 692 693 strncpy(sym, ksym->name, KSYM_NAME_LEN); 694 695 ret = sym; 696 if (size) 697 *size = symbol_end - symbol_start; 698 if (off) 699 *off = addr - symbol_start; 700 } 701 rcu_read_unlock(); 702 703 return ret; 704 } 705 706 bool is_bpf_text_address(unsigned long addr) 707 { 708 bool ret; 709 710 rcu_read_lock(); 711 ret = bpf_ksym_find(addr) != NULL; 712 rcu_read_unlock(); 713 714 return ret; 715 } 716 717 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 718 { 719 struct bpf_ksym *ksym = bpf_ksym_find(addr); 720 721 return ksym && ksym->prog ? 722 container_of(ksym, struct bpf_prog_aux, ksym)->prog : 723 NULL; 724 } 725 726 const struct exception_table_entry *search_bpf_extables(unsigned long addr) 727 { 728 const struct exception_table_entry *e = NULL; 729 struct bpf_prog *prog; 730 731 rcu_read_lock(); 732 prog = bpf_prog_ksym_find(addr); 733 if (!prog) 734 goto out; 735 if (!prog->aux->num_exentries) 736 goto out; 737 738 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); 739 out: 740 rcu_read_unlock(); 741 return e; 742 } 743 744 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 745 char *sym) 746 { 747 struct bpf_ksym *ksym; 748 unsigned int it = 0; 749 int ret = -ERANGE; 750 751 if (!bpf_jit_kallsyms_enabled()) 752 return ret; 753 754 rcu_read_lock(); 755 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { 756 if (it++ != symnum) 757 continue; 758 759 strncpy(sym, ksym->name, KSYM_NAME_LEN); 760 761 *value = ksym->start; 762 *type = BPF_SYM_ELF_TYPE; 763 764 ret = 0; 765 break; 766 } 767 rcu_read_unlock(); 768 769 return ret; 770 } 771 772 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 773 struct bpf_jit_poke_descriptor *poke) 774 { 775 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 776 static const u32 poke_tab_max = 1024; 777 u32 slot = prog->aux->size_poke_tab; 778 u32 size = slot + 1; 779 780 if (size > poke_tab_max) 781 return -ENOSPC; 782 if (poke->tailcall_target || poke->tailcall_target_stable || 783 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) 784 return -EINVAL; 785 786 switch (poke->reason) { 787 case BPF_POKE_REASON_TAIL_CALL: 788 if (!poke->tail_call.map) 789 return -EINVAL; 790 break; 791 default: 792 return -EINVAL; 793 } 794 795 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL); 796 if (!tab) 797 return -ENOMEM; 798 799 memcpy(&tab[slot], poke, sizeof(*poke)); 800 prog->aux->size_poke_tab = size; 801 prog->aux->poke_tab = tab; 802 803 return slot; 804 } 805 806 static atomic_long_t bpf_jit_current; 807 808 /* Can be overridden by an arch's JIT compiler if it has a custom, 809 * dedicated BPF backend memory area, or if neither of the two 810 * below apply. 811 */ 812 u64 __weak bpf_jit_alloc_exec_limit(void) 813 { 814 #if defined(MODULES_VADDR) 815 return MODULES_END - MODULES_VADDR; 816 #else 817 return VMALLOC_END - VMALLOC_START; 818 #endif 819 } 820 821 static int __init bpf_jit_charge_init(void) 822 { 823 /* Only used as heuristic here to derive limit. */ 824 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2, 825 PAGE_SIZE), LONG_MAX); 826 return 0; 827 } 828 pure_initcall(bpf_jit_charge_init); 829 830 static int bpf_jit_charge_modmem(u32 pages) 831 { 832 if (atomic_long_add_return(pages, &bpf_jit_current) > 833 (bpf_jit_limit >> PAGE_SHIFT)) { 834 if (!capable(CAP_SYS_ADMIN)) { 835 atomic_long_sub(pages, &bpf_jit_current); 836 return -EPERM; 837 } 838 } 839 840 return 0; 841 } 842 843 static void bpf_jit_uncharge_modmem(u32 pages) 844 { 845 atomic_long_sub(pages, &bpf_jit_current); 846 } 847 848 void *__weak bpf_jit_alloc_exec(unsigned long size) 849 { 850 return module_alloc(size); 851 } 852 853 void __weak bpf_jit_free_exec(void *addr) 854 { 855 module_memfree(addr); 856 } 857 858 struct bpf_binary_header * 859 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 860 unsigned int alignment, 861 bpf_jit_fill_hole_t bpf_fill_ill_insns) 862 { 863 struct bpf_binary_header *hdr; 864 u32 size, hole, start, pages; 865 866 WARN_ON_ONCE(!is_power_of_2(alignment) || 867 alignment > BPF_IMAGE_ALIGNMENT); 868 869 /* Most of BPF filters are really small, but if some of them 870 * fill a page, allow at least 128 extra bytes to insert a 871 * random section of illegal instructions. 872 */ 873 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); 874 pages = size / PAGE_SIZE; 875 876 if (bpf_jit_charge_modmem(pages)) 877 return NULL; 878 hdr = bpf_jit_alloc_exec(size); 879 if (!hdr) { 880 bpf_jit_uncharge_modmem(pages); 881 return NULL; 882 } 883 884 /* Fill space with illegal/arch-dep instructions. */ 885 bpf_fill_ill_insns(hdr, size); 886 887 hdr->pages = pages; 888 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), 889 PAGE_SIZE - sizeof(*hdr)); 890 start = (get_random_int() % hole) & ~(alignment - 1); 891 892 /* Leave a random number of instructions before BPF code. */ 893 *image_ptr = &hdr->image[start]; 894 895 return hdr; 896 } 897 898 void bpf_jit_binary_free(struct bpf_binary_header *hdr) 899 { 900 u32 pages = hdr->pages; 901 902 bpf_jit_free_exec(hdr); 903 bpf_jit_uncharge_modmem(pages); 904 } 905 906 /* This symbol is only overridden by archs that have different 907 * requirements than the usual eBPF JITs, f.e. when they only 908 * implement cBPF JIT, do not set images read-only, etc. 909 */ 910 void __weak bpf_jit_free(struct bpf_prog *fp) 911 { 912 if (fp->jited) { 913 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); 914 915 bpf_jit_binary_free(hdr); 916 917 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); 918 } 919 920 bpf_prog_unlock_free(fp); 921 } 922 923 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 924 const struct bpf_insn *insn, bool extra_pass, 925 u64 *func_addr, bool *func_addr_fixed) 926 { 927 s16 off = insn->off; 928 s32 imm = insn->imm; 929 u8 *addr; 930 931 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; 932 if (!*func_addr_fixed) { 933 /* Place-holder address till the last pass has collected 934 * all addresses for JITed subprograms in which case we 935 * can pick them up from prog->aux. 936 */ 937 if (!extra_pass) 938 addr = NULL; 939 else if (prog->aux->func && 940 off >= 0 && off < prog->aux->func_cnt) 941 addr = (u8 *)prog->aux->func[off]->bpf_func; 942 else 943 return -EINVAL; 944 } else { 945 /* Address of a BPF helper call. Since part of the core 946 * kernel, it's always at a fixed location. __bpf_call_base 947 * and the helper with imm relative to it are both in core 948 * kernel. 949 */ 950 addr = (u8 *)__bpf_call_base + imm; 951 } 952 953 *func_addr = (unsigned long)addr; 954 return 0; 955 } 956 957 static int bpf_jit_blind_insn(const struct bpf_insn *from, 958 const struct bpf_insn *aux, 959 struct bpf_insn *to_buff, 960 bool emit_zext) 961 { 962 struct bpf_insn *to = to_buff; 963 u32 imm_rnd = get_random_int(); 964 s16 off; 965 966 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); 967 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); 968 969 /* Constraints on AX register: 970 * 971 * AX register is inaccessible from user space. It is mapped in 972 * all JITs, and used here for constant blinding rewrites. It is 973 * typically "stateless" meaning its contents are only valid within 974 * the executed instruction, but not across several instructions. 975 * There are a few exceptions however which are further detailed 976 * below. 977 * 978 * Constant blinding is only used by JITs, not in the interpreter. 979 * The interpreter uses AX in some occasions as a local temporary 980 * register e.g. in DIV or MOD instructions. 981 * 982 * In restricted circumstances, the verifier can also use the AX 983 * register for rewrites as long as they do not interfere with 984 * the above cases! 985 */ 986 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) 987 goto out; 988 989 if (from->imm == 0 && 990 (from->code == (BPF_ALU | BPF_MOV | BPF_K) || 991 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { 992 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); 993 goto out; 994 } 995 996 switch (from->code) { 997 case BPF_ALU | BPF_ADD | BPF_K: 998 case BPF_ALU | BPF_SUB | BPF_K: 999 case BPF_ALU | BPF_AND | BPF_K: 1000 case BPF_ALU | BPF_OR | BPF_K: 1001 case BPF_ALU | BPF_XOR | BPF_K: 1002 case BPF_ALU | BPF_MUL | BPF_K: 1003 case BPF_ALU | BPF_MOV | BPF_K: 1004 case BPF_ALU | BPF_DIV | BPF_K: 1005 case BPF_ALU | BPF_MOD | BPF_K: 1006 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1007 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1008 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); 1009 break; 1010 1011 case BPF_ALU64 | BPF_ADD | BPF_K: 1012 case BPF_ALU64 | BPF_SUB | BPF_K: 1013 case BPF_ALU64 | BPF_AND | BPF_K: 1014 case BPF_ALU64 | BPF_OR | BPF_K: 1015 case BPF_ALU64 | BPF_XOR | BPF_K: 1016 case BPF_ALU64 | BPF_MUL | BPF_K: 1017 case BPF_ALU64 | BPF_MOV | BPF_K: 1018 case BPF_ALU64 | BPF_DIV | BPF_K: 1019 case BPF_ALU64 | BPF_MOD | BPF_K: 1020 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1021 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1022 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); 1023 break; 1024 1025 case BPF_JMP | BPF_JEQ | BPF_K: 1026 case BPF_JMP | BPF_JNE | BPF_K: 1027 case BPF_JMP | BPF_JGT | BPF_K: 1028 case BPF_JMP | BPF_JLT | BPF_K: 1029 case BPF_JMP | BPF_JGE | BPF_K: 1030 case BPF_JMP | BPF_JLE | BPF_K: 1031 case BPF_JMP | BPF_JSGT | BPF_K: 1032 case BPF_JMP | BPF_JSLT | BPF_K: 1033 case BPF_JMP | BPF_JSGE | BPF_K: 1034 case BPF_JMP | BPF_JSLE | BPF_K: 1035 case BPF_JMP | BPF_JSET | BPF_K: 1036 /* Accommodate for extra offset in case of a backjump. */ 1037 off = from->off; 1038 if (off < 0) 1039 off -= 2; 1040 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1041 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1042 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); 1043 break; 1044 1045 case BPF_JMP32 | BPF_JEQ | BPF_K: 1046 case BPF_JMP32 | BPF_JNE | BPF_K: 1047 case BPF_JMP32 | BPF_JGT | BPF_K: 1048 case BPF_JMP32 | BPF_JLT | BPF_K: 1049 case BPF_JMP32 | BPF_JGE | BPF_K: 1050 case BPF_JMP32 | BPF_JLE | BPF_K: 1051 case BPF_JMP32 | BPF_JSGT | BPF_K: 1052 case BPF_JMP32 | BPF_JSLT | BPF_K: 1053 case BPF_JMP32 | BPF_JSGE | BPF_K: 1054 case BPF_JMP32 | BPF_JSLE | BPF_K: 1055 case BPF_JMP32 | BPF_JSET | BPF_K: 1056 /* Accommodate for extra offset in case of a backjump. */ 1057 off = from->off; 1058 if (off < 0) 1059 off -= 2; 1060 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1061 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1062 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, 1063 off); 1064 break; 1065 1066 case BPF_LD | BPF_IMM | BPF_DW: 1067 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); 1068 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1069 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 1070 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); 1071 break; 1072 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ 1073 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); 1074 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1075 if (emit_zext) 1076 *to++ = BPF_ZEXT_REG(BPF_REG_AX); 1077 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); 1078 break; 1079 1080 case BPF_ST | BPF_MEM | BPF_DW: 1081 case BPF_ST | BPF_MEM | BPF_W: 1082 case BPF_ST | BPF_MEM | BPF_H: 1083 case BPF_ST | BPF_MEM | BPF_B: 1084 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1085 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1086 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); 1087 break; 1088 } 1089 out: 1090 return to - to_buff; 1091 } 1092 1093 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, 1094 gfp_t gfp_extra_flags) 1095 { 1096 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; 1097 struct bpf_prog *fp; 1098 1099 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); 1100 if (fp != NULL) { 1101 /* aux->prog still points to the fp_other one, so 1102 * when promoting the clone to the real program, 1103 * this still needs to be adapted. 1104 */ 1105 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); 1106 } 1107 1108 return fp; 1109 } 1110 1111 static void bpf_prog_clone_free(struct bpf_prog *fp) 1112 { 1113 /* aux was stolen by the other clone, so we cannot free 1114 * it from this path! It will be freed eventually by the 1115 * other program on release. 1116 * 1117 * At this point, we don't need a deferred release since 1118 * clone is guaranteed to not be locked. 1119 */ 1120 fp->aux = NULL; 1121 fp->stats = NULL; 1122 fp->active = NULL; 1123 __bpf_prog_free(fp); 1124 } 1125 1126 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) 1127 { 1128 /* We have to repoint aux->prog to self, as we don't 1129 * know whether fp here is the clone or the original. 1130 */ 1131 fp->aux->prog = fp; 1132 bpf_prog_clone_free(fp_other); 1133 } 1134 1135 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) 1136 { 1137 struct bpf_insn insn_buff[16], aux[2]; 1138 struct bpf_prog *clone, *tmp; 1139 int insn_delta, insn_cnt; 1140 struct bpf_insn *insn; 1141 int i, rewritten; 1142 1143 if (!bpf_jit_blinding_enabled(prog) || prog->blinded) 1144 return prog; 1145 1146 clone = bpf_prog_clone_create(prog, GFP_USER); 1147 if (!clone) 1148 return ERR_PTR(-ENOMEM); 1149 1150 insn_cnt = clone->len; 1151 insn = clone->insnsi; 1152 1153 for (i = 0; i < insn_cnt; i++, insn++) { 1154 /* We temporarily need to hold the original ld64 insn 1155 * so that we can still access the first part in the 1156 * second blinding run. 1157 */ 1158 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && 1159 insn[1].code == 0) 1160 memcpy(aux, insn, sizeof(aux)); 1161 1162 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, 1163 clone->aux->verifier_zext); 1164 if (!rewritten) 1165 continue; 1166 1167 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); 1168 if (IS_ERR(tmp)) { 1169 /* Patching may have repointed aux->prog during 1170 * realloc from the original one, so we need to 1171 * fix it up here on error. 1172 */ 1173 bpf_jit_prog_release_other(prog, clone); 1174 return tmp; 1175 } 1176 1177 clone = tmp; 1178 insn_delta = rewritten - 1; 1179 1180 /* Walk new program and skip insns we just inserted. */ 1181 insn = clone->insnsi + i + insn_delta; 1182 insn_cnt += insn_delta; 1183 i += insn_delta; 1184 } 1185 1186 clone->blinded = 1; 1187 return clone; 1188 } 1189 #endif /* CONFIG_BPF_JIT */ 1190 1191 /* Base function for offset calculation. Needs to go into .text section, 1192 * therefore keeping it non-static as well; will also be used by JITs 1193 * anyway later on, so do not let the compiler omit it. This also needs 1194 * to go into kallsyms for correlation from e.g. bpftool, so naming 1195 * must not change. 1196 */ 1197 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 1198 { 1199 return 0; 1200 } 1201 EXPORT_SYMBOL_GPL(__bpf_call_base); 1202 1203 /* All UAPI available opcodes. */ 1204 #define BPF_INSN_MAP(INSN_2, INSN_3) \ 1205 /* 32 bit ALU operations. */ \ 1206 /* Register based. */ \ 1207 INSN_3(ALU, ADD, X), \ 1208 INSN_3(ALU, SUB, X), \ 1209 INSN_3(ALU, AND, X), \ 1210 INSN_3(ALU, OR, X), \ 1211 INSN_3(ALU, LSH, X), \ 1212 INSN_3(ALU, RSH, X), \ 1213 INSN_3(ALU, XOR, X), \ 1214 INSN_3(ALU, MUL, X), \ 1215 INSN_3(ALU, MOV, X), \ 1216 INSN_3(ALU, ARSH, X), \ 1217 INSN_3(ALU, DIV, X), \ 1218 INSN_3(ALU, MOD, X), \ 1219 INSN_2(ALU, NEG), \ 1220 INSN_3(ALU, END, TO_BE), \ 1221 INSN_3(ALU, END, TO_LE), \ 1222 /* Immediate based. */ \ 1223 INSN_3(ALU, ADD, K), \ 1224 INSN_3(ALU, SUB, K), \ 1225 INSN_3(ALU, AND, K), \ 1226 INSN_3(ALU, OR, K), \ 1227 INSN_3(ALU, LSH, K), \ 1228 INSN_3(ALU, RSH, K), \ 1229 INSN_3(ALU, XOR, K), \ 1230 INSN_3(ALU, MUL, K), \ 1231 INSN_3(ALU, MOV, K), \ 1232 INSN_3(ALU, ARSH, K), \ 1233 INSN_3(ALU, DIV, K), \ 1234 INSN_3(ALU, MOD, K), \ 1235 /* 64 bit ALU operations. */ \ 1236 /* Register based. */ \ 1237 INSN_3(ALU64, ADD, X), \ 1238 INSN_3(ALU64, SUB, X), \ 1239 INSN_3(ALU64, AND, X), \ 1240 INSN_3(ALU64, OR, X), \ 1241 INSN_3(ALU64, LSH, X), \ 1242 INSN_3(ALU64, RSH, X), \ 1243 INSN_3(ALU64, XOR, X), \ 1244 INSN_3(ALU64, MUL, X), \ 1245 INSN_3(ALU64, MOV, X), \ 1246 INSN_3(ALU64, ARSH, X), \ 1247 INSN_3(ALU64, DIV, X), \ 1248 INSN_3(ALU64, MOD, X), \ 1249 INSN_2(ALU64, NEG), \ 1250 /* Immediate based. */ \ 1251 INSN_3(ALU64, ADD, K), \ 1252 INSN_3(ALU64, SUB, K), \ 1253 INSN_3(ALU64, AND, K), \ 1254 INSN_3(ALU64, OR, K), \ 1255 INSN_3(ALU64, LSH, K), \ 1256 INSN_3(ALU64, RSH, K), \ 1257 INSN_3(ALU64, XOR, K), \ 1258 INSN_3(ALU64, MUL, K), \ 1259 INSN_3(ALU64, MOV, K), \ 1260 INSN_3(ALU64, ARSH, K), \ 1261 INSN_3(ALU64, DIV, K), \ 1262 INSN_3(ALU64, MOD, K), \ 1263 /* Call instruction. */ \ 1264 INSN_2(JMP, CALL), \ 1265 /* Exit instruction. */ \ 1266 INSN_2(JMP, EXIT), \ 1267 /* 32-bit Jump instructions. */ \ 1268 /* Register based. */ \ 1269 INSN_3(JMP32, JEQ, X), \ 1270 INSN_3(JMP32, JNE, X), \ 1271 INSN_3(JMP32, JGT, X), \ 1272 INSN_3(JMP32, JLT, X), \ 1273 INSN_3(JMP32, JGE, X), \ 1274 INSN_3(JMP32, JLE, X), \ 1275 INSN_3(JMP32, JSGT, X), \ 1276 INSN_3(JMP32, JSLT, X), \ 1277 INSN_3(JMP32, JSGE, X), \ 1278 INSN_3(JMP32, JSLE, X), \ 1279 INSN_3(JMP32, JSET, X), \ 1280 /* Immediate based. */ \ 1281 INSN_3(JMP32, JEQ, K), \ 1282 INSN_3(JMP32, JNE, K), \ 1283 INSN_3(JMP32, JGT, K), \ 1284 INSN_3(JMP32, JLT, K), \ 1285 INSN_3(JMP32, JGE, K), \ 1286 INSN_3(JMP32, JLE, K), \ 1287 INSN_3(JMP32, JSGT, K), \ 1288 INSN_3(JMP32, JSLT, K), \ 1289 INSN_3(JMP32, JSGE, K), \ 1290 INSN_3(JMP32, JSLE, K), \ 1291 INSN_3(JMP32, JSET, K), \ 1292 /* Jump instructions. */ \ 1293 /* Register based. */ \ 1294 INSN_3(JMP, JEQ, X), \ 1295 INSN_3(JMP, JNE, X), \ 1296 INSN_3(JMP, JGT, X), \ 1297 INSN_3(JMP, JLT, X), \ 1298 INSN_3(JMP, JGE, X), \ 1299 INSN_3(JMP, JLE, X), \ 1300 INSN_3(JMP, JSGT, X), \ 1301 INSN_3(JMP, JSLT, X), \ 1302 INSN_3(JMP, JSGE, X), \ 1303 INSN_3(JMP, JSLE, X), \ 1304 INSN_3(JMP, JSET, X), \ 1305 /* Immediate based. */ \ 1306 INSN_3(JMP, JEQ, K), \ 1307 INSN_3(JMP, JNE, K), \ 1308 INSN_3(JMP, JGT, K), \ 1309 INSN_3(JMP, JLT, K), \ 1310 INSN_3(JMP, JGE, K), \ 1311 INSN_3(JMP, JLE, K), \ 1312 INSN_3(JMP, JSGT, K), \ 1313 INSN_3(JMP, JSLT, K), \ 1314 INSN_3(JMP, JSGE, K), \ 1315 INSN_3(JMP, JSLE, K), \ 1316 INSN_3(JMP, JSET, K), \ 1317 INSN_2(JMP, JA), \ 1318 /* Store instructions. */ \ 1319 /* Register based. */ \ 1320 INSN_3(STX, MEM, B), \ 1321 INSN_3(STX, MEM, H), \ 1322 INSN_3(STX, MEM, W), \ 1323 INSN_3(STX, MEM, DW), \ 1324 INSN_3(STX, ATOMIC, W), \ 1325 INSN_3(STX, ATOMIC, DW), \ 1326 /* Immediate based. */ \ 1327 INSN_3(ST, MEM, B), \ 1328 INSN_3(ST, MEM, H), \ 1329 INSN_3(ST, MEM, W), \ 1330 INSN_3(ST, MEM, DW), \ 1331 /* Load instructions. */ \ 1332 /* Register based. */ \ 1333 INSN_3(LDX, MEM, B), \ 1334 INSN_3(LDX, MEM, H), \ 1335 INSN_3(LDX, MEM, W), \ 1336 INSN_3(LDX, MEM, DW), \ 1337 /* Immediate based. */ \ 1338 INSN_3(LD, IMM, DW) 1339 1340 bool bpf_opcode_in_insntable(u8 code) 1341 { 1342 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true 1343 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true 1344 static const bool public_insntable[256] = { 1345 [0 ... 255] = false, 1346 /* Now overwrite non-defaults ... */ 1347 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), 1348 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ 1349 [BPF_LD | BPF_ABS | BPF_B] = true, 1350 [BPF_LD | BPF_ABS | BPF_H] = true, 1351 [BPF_LD | BPF_ABS | BPF_W] = true, 1352 [BPF_LD | BPF_IND | BPF_B] = true, 1353 [BPF_LD | BPF_IND | BPF_H] = true, 1354 [BPF_LD | BPF_IND | BPF_W] = true, 1355 }; 1356 #undef BPF_INSN_3_TBL 1357 #undef BPF_INSN_2_TBL 1358 return public_insntable[code]; 1359 } 1360 1361 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1362 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) 1363 { 1364 memset(dst, 0, size); 1365 return -EFAULT; 1366 } 1367 1368 /** 1369 * __bpf_prog_run - run eBPF program on a given context 1370 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers 1371 * @insn: is the array of eBPF instructions 1372 * @stack: is the eBPF storage stack 1373 * 1374 * Decode and execute eBPF instructions. 1375 */ 1376 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) 1377 { 1378 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y 1379 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z 1380 static const void * const jumptable[256] __annotate_jump_table = { 1381 [0 ... 255] = &&default_label, 1382 /* Now overwrite non-defaults ... */ 1383 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), 1384 /* Non-UAPI available opcodes. */ 1385 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, 1386 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, 1387 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, 1388 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, 1389 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, 1390 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, 1391 }; 1392 #undef BPF_INSN_3_LBL 1393 #undef BPF_INSN_2_LBL 1394 u32 tail_call_cnt = 0; 1395 1396 #define CONT ({ insn++; goto select_insn; }) 1397 #define CONT_JMP ({ insn++; goto select_insn; }) 1398 1399 select_insn: 1400 goto *jumptable[insn->code]; 1401 1402 /* ALU */ 1403 #define ALU(OPCODE, OP) \ 1404 ALU64_##OPCODE##_X: \ 1405 DST = DST OP SRC; \ 1406 CONT; \ 1407 ALU_##OPCODE##_X: \ 1408 DST = (u32) DST OP (u32) SRC; \ 1409 CONT; \ 1410 ALU64_##OPCODE##_K: \ 1411 DST = DST OP IMM; \ 1412 CONT; \ 1413 ALU_##OPCODE##_K: \ 1414 DST = (u32) DST OP (u32) IMM; \ 1415 CONT; 1416 1417 ALU(ADD, +) 1418 ALU(SUB, -) 1419 ALU(AND, &) 1420 ALU(OR, |) 1421 ALU(LSH, <<) 1422 ALU(RSH, >>) 1423 ALU(XOR, ^) 1424 ALU(MUL, *) 1425 #undef ALU 1426 ALU_NEG: 1427 DST = (u32) -DST; 1428 CONT; 1429 ALU64_NEG: 1430 DST = -DST; 1431 CONT; 1432 ALU_MOV_X: 1433 DST = (u32) SRC; 1434 CONT; 1435 ALU_MOV_K: 1436 DST = (u32) IMM; 1437 CONT; 1438 ALU64_MOV_X: 1439 DST = SRC; 1440 CONT; 1441 ALU64_MOV_K: 1442 DST = IMM; 1443 CONT; 1444 LD_IMM_DW: 1445 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; 1446 insn++; 1447 CONT; 1448 ALU_ARSH_X: 1449 DST = (u64) (u32) (((s32) DST) >> SRC); 1450 CONT; 1451 ALU_ARSH_K: 1452 DST = (u64) (u32) (((s32) DST) >> IMM); 1453 CONT; 1454 ALU64_ARSH_X: 1455 (*(s64 *) &DST) >>= SRC; 1456 CONT; 1457 ALU64_ARSH_K: 1458 (*(s64 *) &DST) >>= IMM; 1459 CONT; 1460 ALU64_MOD_X: 1461 div64_u64_rem(DST, SRC, &AX); 1462 DST = AX; 1463 CONT; 1464 ALU_MOD_X: 1465 AX = (u32) DST; 1466 DST = do_div(AX, (u32) SRC); 1467 CONT; 1468 ALU64_MOD_K: 1469 div64_u64_rem(DST, IMM, &AX); 1470 DST = AX; 1471 CONT; 1472 ALU_MOD_K: 1473 AX = (u32) DST; 1474 DST = do_div(AX, (u32) IMM); 1475 CONT; 1476 ALU64_DIV_X: 1477 DST = div64_u64(DST, SRC); 1478 CONT; 1479 ALU_DIV_X: 1480 AX = (u32) DST; 1481 do_div(AX, (u32) SRC); 1482 DST = (u32) AX; 1483 CONT; 1484 ALU64_DIV_K: 1485 DST = div64_u64(DST, IMM); 1486 CONT; 1487 ALU_DIV_K: 1488 AX = (u32) DST; 1489 do_div(AX, (u32) IMM); 1490 DST = (u32) AX; 1491 CONT; 1492 ALU_END_TO_BE: 1493 switch (IMM) { 1494 case 16: 1495 DST = (__force u16) cpu_to_be16(DST); 1496 break; 1497 case 32: 1498 DST = (__force u32) cpu_to_be32(DST); 1499 break; 1500 case 64: 1501 DST = (__force u64) cpu_to_be64(DST); 1502 break; 1503 } 1504 CONT; 1505 ALU_END_TO_LE: 1506 switch (IMM) { 1507 case 16: 1508 DST = (__force u16) cpu_to_le16(DST); 1509 break; 1510 case 32: 1511 DST = (__force u32) cpu_to_le32(DST); 1512 break; 1513 case 64: 1514 DST = (__force u64) cpu_to_le64(DST); 1515 break; 1516 } 1517 CONT; 1518 1519 /* CALL */ 1520 JMP_CALL: 1521 /* Function call scratches BPF_R1-BPF_R5 registers, 1522 * preserves BPF_R6-BPF_R9, and stores return value 1523 * into BPF_R0. 1524 */ 1525 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, 1526 BPF_R4, BPF_R5); 1527 CONT; 1528 1529 JMP_CALL_ARGS: 1530 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, 1531 BPF_R3, BPF_R4, 1532 BPF_R5, 1533 insn + insn->off + 1); 1534 CONT; 1535 1536 JMP_TAIL_CALL: { 1537 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; 1538 struct bpf_array *array = container_of(map, struct bpf_array, map); 1539 struct bpf_prog *prog; 1540 u32 index = BPF_R3; 1541 1542 if (unlikely(index >= array->map.max_entries)) 1543 goto out; 1544 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) 1545 goto out; 1546 1547 tail_call_cnt++; 1548 1549 prog = READ_ONCE(array->ptrs[index]); 1550 if (!prog) 1551 goto out; 1552 1553 /* ARG1 at this point is guaranteed to point to CTX from 1554 * the verifier side due to the fact that the tail call is 1555 * handled like a helper, that is, bpf_tail_call_proto, 1556 * where arg1_type is ARG_PTR_TO_CTX. 1557 */ 1558 insn = prog->insnsi; 1559 goto select_insn; 1560 out: 1561 CONT; 1562 } 1563 JMP_JA: 1564 insn += insn->off; 1565 CONT; 1566 JMP_EXIT: 1567 return BPF_R0; 1568 /* JMP */ 1569 #define COND_JMP(SIGN, OPCODE, CMP_OP) \ 1570 JMP_##OPCODE##_X: \ 1571 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ 1572 insn += insn->off; \ 1573 CONT_JMP; \ 1574 } \ 1575 CONT; \ 1576 JMP32_##OPCODE##_X: \ 1577 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ 1578 insn += insn->off; \ 1579 CONT_JMP; \ 1580 } \ 1581 CONT; \ 1582 JMP_##OPCODE##_K: \ 1583 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ 1584 insn += insn->off; \ 1585 CONT_JMP; \ 1586 } \ 1587 CONT; \ 1588 JMP32_##OPCODE##_K: \ 1589 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ 1590 insn += insn->off; \ 1591 CONT_JMP; \ 1592 } \ 1593 CONT; 1594 COND_JMP(u, JEQ, ==) 1595 COND_JMP(u, JNE, !=) 1596 COND_JMP(u, JGT, >) 1597 COND_JMP(u, JLT, <) 1598 COND_JMP(u, JGE, >=) 1599 COND_JMP(u, JLE, <=) 1600 COND_JMP(u, JSET, &) 1601 COND_JMP(s, JSGT, >) 1602 COND_JMP(s, JSLT, <) 1603 COND_JMP(s, JSGE, >=) 1604 COND_JMP(s, JSLE, <=) 1605 #undef COND_JMP 1606 /* STX and ST and LDX*/ 1607 #define LDST(SIZEOP, SIZE) \ 1608 STX_MEM_##SIZEOP: \ 1609 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ 1610 CONT; \ 1611 ST_MEM_##SIZEOP: \ 1612 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ 1613 CONT; \ 1614 LDX_MEM_##SIZEOP: \ 1615 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 1616 CONT; 1617 1618 LDST(B, u8) 1619 LDST(H, u16) 1620 LDST(W, u32) 1621 LDST(DW, u64) 1622 #undef LDST 1623 #define LDX_PROBE(SIZEOP, SIZE) \ 1624 LDX_PROBE_MEM_##SIZEOP: \ 1625 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \ 1626 CONT; 1627 LDX_PROBE(B, 1) 1628 LDX_PROBE(H, 2) 1629 LDX_PROBE(W, 4) 1630 LDX_PROBE(DW, 8) 1631 #undef LDX_PROBE 1632 1633 #define ATOMIC_ALU_OP(BOP, KOP) \ 1634 case BOP: \ 1635 if (BPF_SIZE(insn->code) == BPF_W) \ 1636 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ 1637 (DST + insn->off)); \ 1638 else \ 1639 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ 1640 (DST + insn->off)); \ 1641 break; \ 1642 case BOP | BPF_FETCH: \ 1643 if (BPF_SIZE(insn->code) == BPF_W) \ 1644 SRC = (u32) atomic_fetch_##KOP( \ 1645 (u32) SRC, \ 1646 (atomic_t *)(unsigned long) (DST + insn->off)); \ 1647 else \ 1648 SRC = (u64) atomic64_fetch_##KOP( \ 1649 (u64) SRC, \ 1650 (atomic64_t *)(unsigned long) (DST + insn->off)); \ 1651 break; 1652 1653 STX_ATOMIC_DW: 1654 STX_ATOMIC_W: 1655 switch (IMM) { 1656 ATOMIC_ALU_OP(BPF_ADD, add) 1657 ATOMIC_ALU_OP(BPF_AND, and) 1658 ATOMIC_ALU_OP(BPF_OR, or) 1659 ATOMIC_ALU_OP(BPF_XOR, xor) 1660 #undef ATOMIC_ALU_OP 1661 1662 case BPF_XCHG: 1663 if (BPF_SIZE(insn->code) == BPF_W) 1664 SRC = (u32) atomic_xchg( 1665 (atomic_t *)(unsigned long) (DST + insn->off), 1666 (u32) SRC); 1667 else 1668 SRC = (u64) atomic64_xchg( 1669 (atomic64_t *)(unsigned long) (DST + insn->off), 1670 (u64) SRC); 1671 break; 1672 case BPF_CMPXCHG: 1673 if (BPF_SIZE(insn->code) == BPF_W) 1674 BPF_R0 = (u32) atomic_cmpxchg( 1675 (atomic_t *)(unsigned long) (DST + insn->off), 1676 (u32) BPF_R0, (u32) SRC); 1677 else 1678 BPF_R0 = (u64) atomic64_cmpxchg( 1679 (atomic64_t *)(unsigned long) (DST + insn->off), 1680 (u64) BPF_R0, (u64) SRC); 1681 break; 1682 1683 default: 1684 goto default_label; 1685 } 1686 CONT; 1687 1688 default_label: 1689 /* If we ever reach this, we have a bug somewhere. Die hard here 1690 * instead of just returning 0; we could be somewhere in a subprog, 1691 * so execution could continue otherwise which we do /not/ want. 1692 * 1693 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). 1694 */ 1695 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", 1696 insn->code, insn->imm); 1697 BUG_ON(1); 1698 return 0; 1699 } 1700 1701 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size 1702 #define DEFINE_BPF_PROG_RUN(stack_size) \ 1703 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ 1704 { \ 1705 u64 stack[stack_size / sizeof(u64)]; \ 1706 u64 regs[MAX_BPF_EXT_REG]; \ 1707 \ 1708 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 1709 ARG1 = (u64) (unsigned long) ctx; \ 1710 return ___bpf_prog_run(regs, insn, stack); \ 1711 } 1712 1713 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size 1714 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ 1715 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ 1716 const struct bpf_insn *insn) \ 1717 { \ 1718 u64 stack[stack_size / sizeof(u64)]; \ 1719 u64 regs[MAX_BPF_EXT_REG]; \ 1720 \ 1721 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 1722 BPF_R1 = r1; \ 1723 BPF_R2 = r2; \ 1724 BPF_R3 = r3; \ 1725 BPF_R4 = r4; \ 1726 BPF_R5 = r5; \ 1727 return ___bpf_prog_run(regs, insn, stack); \ 1728 } 1729 1730 #define EVAL1(FN, X) FN(X) 1731 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) 1732 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) 1733 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) 1734 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) 1735 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) 1736 1737 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); 1738 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); 1739 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); 1740 1741 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); 1742 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); 1743 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); 1744 1745 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), 1746 1747 static unsigned int (*interpreters[])(const void *ctx, 1748 const struct bpf_insn *insn) = { 1749 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 1750 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 1751 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 1752 }; 1753 #undef PROG_NAME_LIST 1754 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), 1755 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, 1756 const struct bpf_insn *insn) = { 1757 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 1758 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 1759 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 1760 }; 1761 #undef PROG_NAME_LIST 1762 1763 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) 1764 { 1765 stack_depth = max_t(u32, stack_depth, 1); 1766 insn->off = (s16) insn->imm; 1767 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - 1768 __bpf_call_base_args; 1769 insn->code = BPF_JMP | BPF_CALL_ARGS; 1770 } 1771 1772 #else 1773 static unsigned int __bpf_prog_ret0_warn(const void *ctx, 1774 const struct bpf_insn *insn) 1775 { 1776 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON 1777 * is not working properly, so warn about it! 1778 */ 1779 WARN_ON_ONCE(1); 1780 return 0; 1781 } 1782 #endif 1783 1784 bool bpf_prog_array_compatible(struct bpf_array *array, 1785 const struct bpf_prog *fp) 1786 { 1787 if (fp->kprobe_override) 1788 return false; 1789 1790 if (!array->aux->type) { 1791 /* There's no owner yet where we could check for 1792 * compatibility. 1793 */ 1794 array->aux->type = fp->type; 1795 array->aux->jited = fp->jited; 1796 return true; 1797 } 1798 1799 return array->aux->type == fp->type && 1800 array->aux->jited == fp->jited; 1801 } 1802 1803 static int bpf_check_tail_call(const struct bpf_prog *fp) 1804 { 1805 struct bpf_prog_aux *aux = fp->aux; 1806 int i, ret = 0; 1807 1808 mutex_lock(&aux->used_maps_mutex); 1809 for (i = 0; i < aux->used_map_cnt; i++) { 1810 struct bpf_map *map = aux->used_maps[i]; 1811 struct bpf_array *array; 1812 1813 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1814 continue; 1815 1816 array = container_of(map, struct bpf_array, map); 1817 if (!bpf_prog_array_compatible(array, fp)) { 1818 ret = -EINVAL; 1819 goto out; 1820 } 1821 } 1822 1823 out: 1824 mutex_unlock(&aux->used_maps_mutex); 1825 return ret; 1826 } 1827 1828 static void bpf_prog_select_func(struct bpf_prog *fp) 1829 { 1830 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1831 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); 1832 1833 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; 1834 #else 1835 fp->bpf_func = __bpf_prog_ret0_warn; 1836 #endif 1837 } 1838 1839 /** 1840 * bpf_prog_select_runtime - select exec runtime for BPF program 1841 * @fp: bpf_prog populated with internal BPF program 1842 * @err: pointer to error variable 1843 * 1844 * Try to JIT eBPF program, if JIT is not available, use interpreter. 1845 * The BPF program will be executed via BPF_PROG_RUN() macro. 1846 */ 1847 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) 1848 { 1849 /* In case of BPF to BPF calls, verifier did all the prep 1850 * work with regards to JITing, etc. 1851 */ 1852 if (fp->bpf_func) 1853 goto finalize; 1854 1855 bpf_prog_select_func(fp); 1856 1857 /* eBPF JITs can rewrite the program in case constant 1858 * blinding is active. However, in case of error during 1859 * blinding, bpf_int_jit_compile() must always return a 1860 * valid program, which in this case would simply not 1861 * be JITed, but falls back to the interpreter. 1862 */ 1863 if (!bpf_prog_is_dev_bound(fp->aux)) { 1864 *err = bpf_prog_alloc_jited_linfo(fp); 1865 if (*err) 1866 return fp; 1867 1868 fp = bpf_int_jit_compile(fp); 1869 if (!fp->jited) { 1870 bpf_prog_free_jited_linfo(fp); 1871 #ifdef CONFIG_BPF_JIT_ALWAYS_ON 1872 *err = -ENOTSUPP; 1873 return fp; 1874 #endif 1875 } else { 1876 bpf_prog_free_unused_jited_linfo(fp); 1877 } 1878 } else { 1879 *err = bpf_prog_offload_compile(fp); 1880 if (*err) 1881 return fp; 1882 } 1883 1884 finalize: 1885 bpf_prog_lock_ro(fp); 1886 1887 /* The tail call compatibility check can only be done at 1888 * this late stage as we need to determine, if we deal 1889 * with JITed or non JITed program concatenations and not 1890 * all eBPF JITs might immediately support all features. 1891 */ 1892 *err = bpf_check_tail_call(fp); 1893 1894 return fp; 1895 } 1896 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); 1897 1898 static unsigned int __bpf_prog_ret1(const void *ctx, 1899 const struct bpf_insn *insn) 1900 { 1901 return 1; 1902 } 1903 1904 static struct bpf_prog_dummy { 1905 struct bpf_prog prog; 1906 } dummy_bpf_prog = { 1907 .prog = { 1908 .bpf_func = __bpf_prog_ret1, 1909 }, 1910 }; 1911 1912 /* to avoid allocating empty bpf_prog_array for cgroups that 1913 * don't have bpf program attached use one global 'empty_prog_array' 1914 * It will not be modified the caller of bpf_prog_array_alloc() 1915 * (since caller requested prog_cnt == 0) 1916 * that pointer should be 'freed' by bpf_prog_array_free() 1917 */ 1918 static struct { 1919 struct bpf_prog_array hdr; 1920 struct bpf_prog *null_prog; 1921 } empty_prog_array = { 1922 .null_prog = NULL, 1923 }; 1924 1925 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) 1926 { 1927 if (prog_cnt) 1928 return kzalloc(sizeof(struct bpf_prog_array) + 1929 sizeof(struct bpf_prog_array_item) * 1930 (prog_cnt + 1), 1931 flags); 1932 1933 return &empty_prog_array.hdr; 1934 } 1935 1936 void bpf_prog_array_free(struct bpf_prog_array *progs) 1937 { 1938 if (!progs || progs == &empty_prog_array.hdr) 1939 return; 1940 kfree_rcu(progs, rcu); 1941 } 1942 1943 int bpf_prog_array_length(struct bpf_prog_array *array) 1944 { 1945 struct bpf_prog_array_item *item; 1946 u32 cnt = 0; 1947 1948 for (item = array->items; item->prog; item++) 1949 if (item->prog != &dummy_bpf_prog.prog) 1950 cnt++; 1951 return cnt; 1952 } 1953 1954 bool bpf_prog_array_is_empty(struct bpf_prog_array *array) 1955 { 1956 struct bpf_prog_array_item *item; 1957 1958 for (item = array->items; item->prog; item++) 1959 if (item->prog != &dummy_bpf_prog.prog) 1960 return false; 1961 return true; 1962 } 1963 1964 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, 1965 u32 *prog_ids, 1966 u32 request_cnt) 1967 { 1968 struct bpf_prog_array_item *item; 1969 int i = 0; 1970 1971 for (item = array->items; item->prog; item++) { 1972 if (item->prog == &dummy_bpf_prog.prog) 1973 continue; 1974 prog_ids[i] = item->prog->aux->id; 1975 if (++i == request_cnt) { 1976 item++; 1977 break; 1978 } 1979 } 1980 1981 return !!(item->prog); 1982 } 1983 1984 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, 1985 __u32 __user *prog_ids, u32 cnt) 1986 { 1987 unsigned long err = 0; 1988 bool nospc; 1989 u32 *ids; 1990 1991 /* users of this function are doing: 1992 * cnt = bpf_prog_array_length(); 1993 * if (cnt > 0) 1994 * bpf_prog_array_copy_to_user(..., cnt); 1995 * so below kcalloc doesn't need extra cnt > 0 check. 1996 */ 1997 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); 1998 if (!ids) 1999 return -ENOMEM; 2000 nospc = bpf_prog_array_copy_core(array, ids, cnt); 2001 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); 2002 kfree(ids); 2003 if (err) 2004 return -EFAULT; 2005 if (nospc) 2006 return -ENOSPC; 2007 return 0; 2008 } 2009 2010 void bpf_prog_array_delete_safe(struct bpf_prog_array *array, 2011 struct bpf_prog *old_prog) 2012 { 2013 struct bpf_prog_array_item *item; 2014 2015 for (item = array->items; item->prog; item++) 2016 if (item->prog == old_prog) { 2017 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); 2018 break; 2019 } 2020 } 2021 2022 /** 2023 * bpf_prog_array_delete_safe_at() - Replaces the program at the given 2024 * index into the program array with 2025 * a dummy no-op program. 2026 * @array: a bpf_prog_array 2027 * @index: the index of the program to replace 2028 * 2029 * Skips over dummy programs, by not counting them, when calculating 2030 * the position of the program to replace. 2031 * 2032 * Return: 2033 * * 0 - Success 2034 * * -EINVAL - Invalid index value. Must be a non-negative integer. 2035 * * -ENOENT - Index out of range 2036 */ 2037 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) 2038 { 2039 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); 2040 } 2041 2042 /** 2043 * bpf_prog_array_update_at() - Updates the program at the given index 2044 * into the program array. 2045 * @array: a bpf_prog_array 2046 * @index: the index of the program to update 2047 * @prog: the program to insert into the array 2048 * 2049 * Skips over dummy programs, by not counting them, when calculating 2050 * the position of the program to update. 2051 * 2052 * Return: 2053 * * 0 - Success 2054 * * -EINVAL - Invalid index value. Must be a non-negative integer. 2055 * * -ENOENT - Index out of range 2056 */ 2057 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2058 struct bpf_prog *prog) 2059 { 2060 struct bpf_prog_array_item *item; 2061 2062 if (unlikely(index < 0)) 2063 return -EINVAL; 2064 2065 for (item = array->items; item->prog; item++) { 2066 if (item->prog == &dummy_bpf_prog.prog) 2067 continue; 2068 if (!index) { 2069 WRITE_ONCE(item->prog, prog); 2070 return 0; 2071 } 2072 index--; 2073 } 2074 return -ENOENT; 2075 } 2076 2077 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2078 struct bpf_prog *exclude_prog, 2079 struct bpf_prog *include_prog, 2080 struct bpf_prog_array **new_array) 2081 { 2082 int new_prog_cnt, carry_prog_cnt = 0; 2083 struct bpf_prog_array_item *existing; 2084 struct bpf_prog_array *array; 2085 bool found_exclude = false; 2086 int new_prog_idx = 0; 2087 2088 /* Figure out how many existing progs we need to carry over to 2089 * the new array. 2090 */ 2091 if (old_array) { 2092 existing = old_array->items; 2093 for (; existing->prog; existing++) { 2094 if (existing->prog == exclude_prog) { 2095 found_exclude = true; 2096 continue; 2097 } 2098 if (existing->prog != &dummy_bpf_prog.prog) 2099 carry_prog_cnt++; 2100 if (existing->prog == include_prog) 2101 return -EEXIST; 2102 } 2103 } 2104 2105 if (exclude_prog && !found_exclude) 2106 return -ENOENT; 2107 2108 /* How many progs (not NULL) will be in the new array? */ 2109 new_prog_cnt = carry_prog_cnt; 2110 if (include_prog) 2111 new_prog_cnt += 1; 2112 2113 /* Do we have any prog (not NULL) in the new array? */ 2114 if (!new_prog_cnt) { 2115 *new_array = NULL; 2116 return 0; 2117 } 2118 2119 /* +1 as the end of prog_array is marked with NULL */ 2120 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); 2121 if (!array) 2122 return -ENOMEM; 2123 2124 /* Fill in the new prog array */ 2125 if (carry_prog_cnt) { 2126 existing = old_array->items; 2127 for (; existing->prog; existing++) 2128 if (existing->prog != exclude_prog && 2129 existing->prog != &dummy_bpf_prog.prog) { 2130 array->items[new_prog_idx++].prog = 2131 existing->prog; 2132 } 2133 } 2134 if (include_prog) 2135 array->items[new_prog_idx++].prog = include_prog; 2136 array->items[new_prog_idx].prog = NULL; 2137 *new_array = array; 2138 return 0; 2139 } 2140 2141 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2142 u32 *prog_ids, u32 request_cnt, 2143 u32 *prog_cnt) 2144 { 2145 u32 cnt = 0; 2146 2147 if (array) 2148 cnt = bpf_prog_array_length(array); 2149 2150 *prog_cnt = cnt; 2151 2152 /* return early if user requested only program count or nothing to copy */ 2153 if (!request_cnt || !cnt) 2154 return 0; 2155 2156 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ 2157 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC 2158 : 0; 2159 } 2160 2161 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2162 struct bpf_map **used_maps, u32 len) 2163 { 2164 struct bpf_map *map; 2165 u32 i; 2166 2167 for (i = 0; i < len; i++) { 2168 map = used_maps[i]; 2169 if (map->ops->map_poke_untrack) 2170 map->ops->map_poke_untrack(map, aux); 2171 bpf_map_put(map); 2172 } 2173 } 2174 2175 static void bpf_free_used_maps(struct bpf_prog_aux *aux) 2176 { 2177 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); 2178 kfree(aux->used_maps); 2179 } 2180 2181 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2182 struct btf_mod_pair *used_btfs, u32 len) 2183 { 2184 #ifdef CONFIG_BPF_SYSCALL 2185 struct btf_mod_pair *btf_mod; 2186 u32 i; 2187 2188 for (i = 0; i < len; i++) { 2189 btf_mod = &used_btfs[i]; 2190 if (btf_mod->module) 2191 module_put(btf_mod->module); 2192 btf_put(btf_mod->btf); 2193 } 2194 #endif 2195 } 2196 2197 static void bpf_free_used_btfs(struct bpf_prog_aux *aux) 2198 { 2199 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt); 2200 kfree(aux->used_btfs); 2201 } 2202 2203 static void bpf_prog_free_deferred(struct work_struct *work) 2204 { 2205 struct bpf_prog_aux *aux; 2206 int i; 2207 2208 aux = container_of(work, struct bpf_prog_aux, work); 2209 bpf_free_used_maps(aux); 2210 bpf_free_used_btfs(aux); 2211 if (bpf_prog_is_dev_bound(aux)) 2212 bpf_prog_offload_destroy(aux->prog); 2213 #ifdef CONFIG_PERF_EVENTS 2214 if (aux->prog->has_callchain_buf) 2215 put_callchain_buffers(); 2216 #endif 2217 if (aux->dst_trampoline) 2218 bpf_trampoline_put(aux->dst_trampoline); 2219 for (i = 0; i < aux->func_cnt; i++) 2220 bpf_jit_free(aux->func[i]); 2221 if (aux->func_cnt) { 2222 kfree(aux->func); 2223 bpf_prog_unlock_free(aux->prog); 2224 } else { 2225 bpf_jit_free(aux->prog); 2226 } 2227 } 2228 2229 /* Free internal BPF program */ 2230 void bpf_prog_free(struct bpf_prog *fp) 2231 { 2232 struct bpf_prog_aux *aux = fp->aux; 2233 2234 if (aux->dst_prog) 2235 bpf_prog_put(aux->dst_prog); 2236 INIT_WORK(&aux->work, bpf_prog_free_deferred); 2237 schedule_work(&aux->work); 2238 } 2239 EXPORT_SYMBOL_GPL(bpf_prog_free); 2240 2241 /* RNG for unpriviledged user space with separated state from prandom_u32(). */ 2242 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); 2243 2244 void bpf_user_rnd_init_once(void) 2245 { 2246 prandom_init_once(&bpf_user_rnd_state); 2247 } 2248 2249 BPF_CALL_0(bpf_user_rnd_u32) 2250 { 2251 /* Should someone ever have the rather unwise idea to use some 2252 * of the registers passed into this function, then note that 2253 * this function is called from native eBPF and classic-to-eBPF 2254 * transformations. Register assignments from both sides are 2255 * different, f.e. classic always sets fn(ctx, A, X) here. 2256 */ 2257 struct rnd_state *state; 2258 u32 res; 2259 2260 state = &get_cpu_var(bpf_user_rnd_state); 2261 res = prandom_u32_state(state); 2262 put_cpu_var(bpf_user_rnd_state); 2263 2264 return res; 2265 } 2266 2267 BPF_CALL_0(bpf_get_raw_cpu_id) 2268 { 2269 return raw_smp_processor_id(); 2270 } 2271 2272 /* Weak definitions of helper functions in case we don't have bpf syscall. */ 2273 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; 2274 const struct bpf_func_proto bpf_map_update_elem_proto __weak; 2275 const struct bpf_func_proto bpf_map_delete_elem_proto __weak; 2276 const struct bpf_func_proto bpf_map_push_elem_proto __weak; 2277 const struct bpf_func_proto bpf_map_pop_elem_proto __weak; 2278 const struct bpf_func_proto bpf_map_peek_elem_proto __weak; 2279 const struct bpf_func_proto bpf_spin_lock_proto __weak; 2280 const struct bpf_func_proto bpf_spin_unlock_proto __weak; 2281 const struct bpf_func_proto bpf_jiffies64_proto __weak; 2282 2283 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; 2284 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; 2285 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; 2286 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; 2287 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; 2288 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; 2289 2290 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; 2291 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; 2292 const struct bpf_func_proto bpf_get_current_comm_proto __weak; 2293 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; 2294 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; 2295 const struct bpf_func_proto bpf_get_local_storage_proto __weak; 2296 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; 2297 const struct bpf_func_proto bpf_snprintf_btf_proto __weak; 2298 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; 2299 2300 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) 2301 { 2302 return NULL; 2303 } 2304 2305 u64 __weak 2306 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2307 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 2308 { 2309 return -ENOTSUPP; 2310 } 2311 EXPORT_SYMBOL_GPL(bpf_event_output); 2312 2313 /* Always built-in helper functions. */ 2314 const struct bpf_func_proto bpf_tail_call_proto = { 2315 .func = NULL, 2316 .gpl_only = false, 2317 .ret_type = RET_VOID, 2318 .arg1_type = ARG_PTR_TO_CTX, 2319 .arg2_type = ARG_CONST_MAP_PTR, 2320 .arg3_type = ARG_ANYTHING, 2321 }; 2322 2323 /* Stub for JITs that only support cBPF. eBPF programs are interpreted. 2324 * It is encouraged to implement bpf_int_jit_compile() instead, so that 2325 * eBPF and implicitly also cBPF can get JITed! 2326 */ 2327 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) 2328 { 2329 return prog; 2330 } 2331 2332 /* Stub for JITs that support eBPF. All cBPF code gets transformed into 2333 * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). 2334 */ 2335 void __weak bpf_jit_compile(struct bpf_prog *prog) 2336 { 2337 } 2338 2339 bool __weak bpf_helper_changes_pkt_data(void *func) 2340 { 2341 return false; 2342 } 2343 2344 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage 2345 * analysis code and wants explicit zero extension inserted by verifier. 2346 * Otherwise, return FALSE. 2347 * 2348 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if 2349 * you don't override this. JITs that don't want these extra insns can detect 2350 * them using insn_is_zext. 2351 */ 2352 bool __weak bpf_jit_needs_zext(void) 2353 { 2354 return false; 2355 } 2356 2357 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call 2358 * skb_copy_bits(), so provide a weak definition of it for NET-less config. 2359 */ 2360 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, 2361 int len) 2362 { 2363 return -EFAULT; 2364 } 2365 2366 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2367 void *addr1, void *addr2) 2368 { 2369 return -ENOTSUPP; 2370 } 2371 2372 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 2373 EXPORT_SYMBOL(bpf_stats_enabled_key); 2374 2375 /* All definitions of tracepoints related to BPF. */ 2376 #define CREATE_TRACE_POINTS 2377 #include <linux/bpf_trace.h> 2378 2379 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); 2380 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx); 2381