xref: /linux/kernel/bpf/core.c (revision 5832c4a77d6931cebf9ba737129ae8f14b66ee1d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
91 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
92 enum page_size_enum {
93 	__PAGE_SIZE = PAGE_SIZE
94 };
95 
96 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
97 {
98 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
99 	struct bpf_prog_aux *aux;
100 	struct bpf_prog *fp;
101 
102 	size = round_up(size, __PAGE_SIZE);
103 	fp = __vmalloc(size, gfp_flags);
104 	if (fp == NULL)
105 		return NULL;
106 
107 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (aux == NULL) {
109 		vfree(fp);
110 		return NULL;
111 	}
112 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
113 	if (!fp->active) {
114 		vfree(fp);
115 		kfree(aux);
116 		return NULL;
117 	}
118 
119 	fp->pages = size / PAGE_SIZE;
120 	fp->aux = aux;
121 	fp->aux->prog = fp;
122 	fp->jit_requested = ebpf_jit_enabled();
123 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
124 #ifdef CONFIG_CGROUP_BPF
125 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
126 #endif
127 
128 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
129 #ifdef CONFIG_FINEIBT
130 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
131 #endif
132 	mutex_init(&fp->aux->used_maps_mutex);
133 	mutex_init(&fp->aux->dst_mutex);
134 
135 	return fp;
136 }
137 
138 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
139 {
140 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
141 	struct bpf_prog *prog;
142 	int cpu;
143 
144 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
145 	if (!prog)
146 		return NULL;
147 
148 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
149 	if (!prog->stats) {
150 		free_percpu(prog->active);
151 		kfree(prog->aux);
152 		vfree(prog);
153 		return NULL;
154 	}
155 
156 	for_each_possible_cpu(cpu) {
157 		struct bpf_prog_stats *pstats;
158 
159 		pstats = per_cpu_ptr(prog->stats, cpu);
160 		u64_stats_init(&pstats->syncp);
161 	}
162 	return prog;
163 }
164 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
165 
166 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
167 {
168 	if (!prog->aux->nr_linfo || !prog->jit_requested)
169 		return 0;
170 
171 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
172 					  sizeof(*prog->aux->jited_linfo),
173 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
174 	if (!prog->aux->jited_linfo)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
180 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
181 {
182 	if (prog->aux->jited_linfo &&
183 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
184 		kvfree(prog->aux->jited_linfo);
185 		prog->aux->jited_linfo = NULL;
186 	}
187 
188 	kfree(prog->aux->kfunc_tab);
189 	prog->aux->kfunc_tab = NULL;
190 }
191 
192 /* The jit engine is responsible to provide an array
193  * for insn_off to the jited_off mapping (insn_to_jit_off).
194  *
195  * The idx to this array is the insn_off.  Hence, the insn_off
196  * here is relative to the prog itself instead of the main prog.
197  * This array has one entry for each xlated bpf insn.
198  *
199  * jited_off is the byte off to the end of the jited insn.
200  *
201  * Hence, with
202  * insn_start:
203  *      The first bpf insn off of the prog.  The insn off
204  *      here is relative to the main prog.
205  *      e.g. if prog is a subprog, insn_start > 0
206  * linfo_idx:
207  *      The prog's idx to prog->aux->linfo and jited_linfo
208  *
209  * jited_linfo[linfo_idx] = prog->bpf_func
210  *
211  * For i > linfo_idx,
212  *
213  * jited_linfo[i] = prog->bpf_func +
214  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
215  */
216 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
217 			       const u32 *insn_to_jit_off)
218 {
219 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
220 	const struct bpf_line_info *linfo;
221 	void **jited_linfo;
222 
223 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
224 		/* Userspace did not provide linfo */
225 		return;
226 
227 	linfo_idx = prog->aux->linfo_idx;
228 	linfo = &prog->aux->linfo[linfo_idx];
229 	insn_start = linfo[0].insn_off;
230 	insn_end = insn_start + prog->len;
231 
232 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
233 	jited_linfo[0] = prog->bpf_func;
234 
235 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
236 
237 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
238 		/* The verifier ensures that linfo[i].insn_off is
239 		 * strictly increasing
240 		 */
241 		jited_linfo[i] = prog->bpf_func +
242 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
243 }
244 
245 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
246 				  gfp_t gfp_extra_flags)
247 {
248 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
249 	struct bpf_prog *fp;
250 	u32 pages;
251 
252 	size = round_up(size, PAGE_SIZE);
253 	pages = size / PAGE_SIZE;
254 	if (pages <= fp_old->pages)
255 		return fp_old;
256 
257 	fp = __vmalloc(size, gfp_flags);
258 	if (fp) {
259 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
260 		fp->pages = pages;
261 		fp->aux->prog = fp;
262 
263 		/* We keep fp->aux from fp_old around in the new
264 		 * reallocated structure.
265 		 */
266 		fp_old->aux = NULL;
267 		fp_old->stats = NULL;
268 		fp_old->active = NULL;
269 		__bpf_prog_free(fp_old);
270 	}
271 
272 	return fp;
273 }
274 
275 void __bpf_prog_free(struct bpf_prog *fp)
276 {
277 	if (fp->aux) {
278 		mutex_destroy(&fp->aux->used_maps_mutex);
279 		mutex_destroy(&fp->aux->dst_mutex);
280 		kfree(fp->aux->poke_tab);
281 		kfree(fp->aux);
282 	}
283 	free_percpu(fp->stats);
284 	free_percpu(fp->active);
285 	vfree(fp);
286 }
287 
288 int bpf_prog_calc_tag(struct bpf_prog *fp)
289 {
290 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
291 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
292 	u32 digest[SHA1_DIGEST_WORDS];
293 	u32 ws[SHA1_WORKSPACE_WORDS];
294 	u32 i, bsize, psize, blocks;
295 	struct bpf_insn *dst;
296 	bool was_ld_map;
297 	u8 *raw, *todo;
298 	__be32 *result;
299 	__be64 *bits;
300 
301 	raw = vmalloc(raw_size);
302 	if (!raw)
303 		return -ENOMEM;
304 
305 	sha1_init(digest);
306 	memset(ws, 0, sizeof(ws));
307 
308 	/* We need to take out the map fd for the digest calculation
309 	 * since they are unstable from user space side.
310 	 */
311 	dst = (void *)raw;
312 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
313 		dst[i] = fp->insnsi[i];
314 		if (!was_ld_map &&
315 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
316 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
317 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
318 			was_ld_map = true;
319 			dst[i].imm = 0;
320 		} else if (was_ld_map &&
321 			   dst[i].code == 0 &&
322 			   dst[i].dst_reg == 0 &&
323 			   dst[i].src_reg == 0 &&
324 			   dst[i].off == 0) {
325 			was_ld_map = false;
326 			dst[i].imm = 0;
327 		} else {
328 			was_ld_map = false;
329 		}
330 	}
331 
332 	psize = bpf_prog_insn_size(fp);
333 	memset(&raw[psize], 0, raw_size - psize);
334 	raw[psize++] = 0x80;
335 
336 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
337 	blocks = bsize / SHA1_BLOCK_SIZE;
338 	todo   = raw;
339 	if (bsize - psize >= sizeof(__be64)) {
340 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
341 	} else {
342 		bits = (__be64 *)(todo + bsize + bits_offset);
343 		blocks++;
344 	}
345 	*bits = cpu_to_be64((psize - 1) << 3);
346 
347 	while (blocks--) {
348 		sha1_transform(digest, todo, ws);
349 		todo += SHA1_BLOCK_SIZE;
350 	}
351 
352 	result = (__force __be32 *)digest;
353 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
354 		result[i] = cpu_to_be32(digest[i]);
355 	memcpy(fp->tag, result, sizeof(fp->tag));
356 
357 	vfree(raw);
358 	return 0;
359 }
360 
361 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
362 				s32 end_new, s32 curr, const bool probe_pass)
363 {
364 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
365 	s32 delta = end_new - end_old;
366 	s64 imm = insn->imm;
367 
368 	if (curr < pos && curr + imm + 1 >= end_old)
369 		imm += delta;
370 	else if (curr >= end_new && curr + imm + 1 < end_new)
371 		imm -= delta;
372 	if (imm < imm_min || imm > imm_max)
373 		return -ERANGE;
374 	if (!probe_pass)
375 		insn->imm = imm;
376 	return 0;
377 }
378 
379 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
380 				s32 end_new, s32 curr, const bool probe_pass)
381 {
382 	s64 off_min, off_max, off;
383 	s32 delta = end_new - end_old;
384 
385 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
386 		off = insn->imm;
387 		off_min = S32_MIN;
388 		off_max = S32_MAX;
389 	} else {
390 		off = insn->off;
391 		off_min = S16_MIN;
392 		off_max = S16_MAX;
393 	}
394 
395 	if (curr < pos && curr + off + 1 >= end_old)
396 		off += delta;
397 	else if (curr >= end_new && curr + off + 1 < end_new)
398 		off -= delta;
399 	if (off < off_min || off > off_max)
400 		return -ERANGE;
401 	if (!probe_pass) {
402 		if (insn->code == (BPF_JMP32 | BPF_JA))
403 			insn->imm = off;
404 		else
405 			insn->off = off;
406 	}
407 	return 0;
408 }
409 
410 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
411 			    s32 end_new, const bool probe_pass)
412 {
413 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
414 	struct bpf_insn *insn = prog->insnsi;
415 	int ret = 0;
416 
417 	for (i = 0; i < insn_cnt; i++, insn++) {
418 		u8 code;
419 
420 		/* In the probing pass we still operate on the original,
421 		 * unpatched image in order to check overflows before we
422 		 * do any other adjustments. Therefore skip the patchlet.
423 		 */
424 		if (probe_pass && i == pos) {
425 			i = end_new;
426 			insn = prog->insnsi + end_old;
427 		}
428 		if (bpf_pseudo_func(insn)) {
429 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
430 						   end_new, i, probe_pass);
431 			if (ret)
432 				return ret;
433 			continue;
434 		}
435 		code = insn->code;
436 		if ((BPF_CLASS(code) != BPF_JMP &&
437 		     BPF_CLASS(code) != BPF_JMP32) ||
438 		    BPF_OP(code) == BPF_EXIT)
439 			continue;
440 		/* Adjust offset of jmps if we cross patch boundaries. */
441 		if (BPF_OP(code) == BPF_CALL) {
442 			if (insn->src_reg != BPF_PSEUDO_CALL)
443 				continue;
444 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
445 						   end_new, i, probe_pass);
446 		} else {
447 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
448 						   end_new, i, probe_pass);
449 		}
450 		if (ret)
451 			break;
452 	}
453 
454 	return ret;
455 }
456 
457 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
458 {
459 	struct bpf_line_info *linfo;
460 	u32 i, nr_linfo;
461 
462 	nr_linfo = prog->aux->nr_linfo;
463 	if (!nr_linfo || !delta)
464 		return;
465 
466 	linfo = prog->aux->linfo;
467 
468 	for (i = 0; i < nr_linfo; i++)
469 		if (off < linfo[i].insn_off)
470 			break;
471 
472 	/* Push all off < linfo[i].insn_off by delta */
473 	for (; i < nr_linfo; i++)
474 		linfo[i].insn_off += delta;
475 }
476 
477 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
478 				       const struct bpf_insn *patch, u32 len)
479 {
480 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
481 	const u32 cnt_max = S16_MAX;
482 	struct bpf_prog *prog_adj;
483 	int err;
484 
485 	/* Since our patchlet doesn't expand the image, we're done. */
486 	if (insn_delta == 0) {
487 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
488 		return prog;
489 	}
490 
491 	insn_adj_cnt = prog->len + insn_delta;
492 
493 	/* Reject anything that would potentially let the insn->off
494 	 * target overflow when we have excessive program expansions.
495 	 * We need to probe here before we do any reallocation where
496 	 * we afterwards may not fail anymore.
497 	 */
498 	if (insn_adj_cnt > cnt_max &&
499 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
500 		return ERR_PTR(err);
501 
502 	/* Several new instructions need to be inserted. Make room
503 	 * for them. Likely, there's no need for a new allocation as
504 	 * last page could have large enough tailroom.
505 	 */
506 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
507 				    GFP_USER);
508 	if (!prog_adj)
509 		return ERR_PTR(-ENOMEM);
510 
511 	prog_adj->len = insn_adj_cnt;
512 
513 	/* Patching happens in 3 steps:
514 	 *
515 	 * 1) Move over tail of insnsi from next instruction onwards,
516 	 *    so we can patch the single target insn with one or more
517 	 *    new ones (patching is always from 1 to n insns, n > 0).
518 	 * 2) Inject new instructions at the target location.
519 	 * 3) Adjust branch offsets if necessary.
520 	 */
521 	insn_rest = insn_adj_cnt - off - len;
522 
523 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
524 		sizeof(*patch) * insn_rest);
525 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
526 
527 	/* We are guaranteed to not fail at this point, otherwise
528 	 * the ship has sailed to reverse to the original state. An
529 	 * overflow cannot happen at this point.
530 	 */
531 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
532 
533 	bpf_adj_linfo(prog_adj, off, insn_delta);
534 
535 	return prog_adj;
536 }
537 
538 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
539 {
540 	/* Branch offsets can't overflow when program is shrinking, no need
541 	 * to call bpf_adj_branches(..., true) here
542 	 */
543 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
544 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
545 	prog->len -= cnt;
546 
547 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
548 }
549 
550 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
551 {
552 	int i;
553 
554 	for (i = 0; i < fp->aux->real_func_cnt; i++)
555 		bpf_prog_kallsyms_del(fp->aux->func[i]);
556 }
557 
558 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
559 {
560 	bpf_prog_kallsyms_del_subprogs(fp);
561 	bpf_prog_kallsyms_del(fp);
562 }
563 
564 #ifdef CONFIG_BPF_JIT
565 /* All BPF JIT sysctl knobs here. */
566 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
567 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
568 int bpf_jit_harden   __read_mostly;
569 long bpf_jit_limit   __read_mostly;
570 long bpf_jit_limit_max __read_mostly;
571 
572 static void
573 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
574 {
575 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
576 
577 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
578 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
579 }
580 
581 static void
582 bpf_prog_ksym_set_name(struct bpf_prog *prog)
583 {
584 	char *sym = prog->aux->ksym.name;
585 	const char *end = sym + KSYM_NAME_LEN;
586 	const struct btf_type *type;
587 	const char *func_name;
588 
589 	BUILD_BUG_ON(sizeof("bpf_prog_") +
590 		     sizeof(prog->tag) * 2 +
591 		     /* name has been null terminated.
592 		      * We should need +1 for the '_' preceding
593 		      * the name.  However, the null character
594 		      * is double counted between the name and the
595 		      * sizeof("bpf_prog_") above, so we omit
596 		      * the +1 here.
597 		      */
598 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
599 
600 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
601 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
602 
603 	/* prog->aux->name will be ignored if full btf name is available */
604 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
605 		type = btf_type_by_id(prog->aux->btf,
606 				      prog->aux->func_info[prog->aux->func_idx].type_id);
607 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
608 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
609 		return;
610 	}
611 
612 	if (prog->aux->name[0])
613 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
614 	else
615 		*sym = 0;
616 }
617 
618 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
619 {
620 	return container_of(n, struct bpf_ksym, tnode)->start;
621 }
622 
623 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
624 					  struct latch_tree_node *b)
625 {
626 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
627 }
628 
629 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
630 {
631 	unsigned long val = (unsigned long)key;
632 	const struct bpf_ksym *ksym;
633 
634 	ksym = container_of(n, struct bpf_ksym, tnode);
635 
636 	if (val < ksym->start)
637 		return -1;
638 	/* Ensure that we detect return addresses as part of the program, when
639 	 * the final instruction is a call for a program part of the stack
640 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
641 	 */
642 	if (val > ksym->end)
643 		return  1;
644 
645 	return 0;
646 }
647 
648 static const struct latch_tree_ops bpf_tree_ops = {
649 	.less	= bpf_tree_less,
650 	.comp	= bpf_tree_comp,
651 };
652 
653 static DEFINE_SPINLOCK(bpf_lock);
654 static LIST_HEAD(bpf_kallsyms);
655 static struct latch_tree_root bpf_tree __cacheline_aligned;
656 
657 void bpf_ksym_add(struct bpf_ksym *ksym)
658 {
659 	spin_lock_bh(&bpf_lock);
660 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
661 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
662 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
663 	spin_unlock_bh(&bpf_lock);
664 }
665 
666 static void __bpf_ksym_del(struct bpf_ksym *ksym)
667 {
668 	if (list_empty(&ksym->lnode))
669 		return;
670 
671 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
672 	list_del_rcu(&ksym->lnode);
673 }
674 
675 void bpf_ksym_del(struct bpf_ksym *ksym)
676 {
677 	spin_lock_bh(&bpf_lock);
678 	__bpf_ksym_del(ksym);
679 	spin_unlock_bh(&bpf_lock);
680 }
681 
682 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
683 {
684 	return fp->jited && !bpf_prog_was_classic(fp);
685 }
686 
687 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
688 {
689 	if (!bpf_prog_kallsyms_candidate(fp) ||
690 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
691 		return;
692 
693 	bpf_prog_ksym_set_addr(fp);
694 	bpf_prog_ksym_set_name(fp);
695 	fp->aux->ksym.prog = true;
696 
697 	bpf_ksym_add(&fp->aux->ksym);
698 
699 #ifdef CONFIG_FINEIBT
700 	/*
701 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
702 	 * and hence unwinder needs help.
703 	 */
704 	if (cfi_mode != CFI_FINEIBT)
705 		return;
706 
707 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
708 		 "__cfi_%s", fp->aux->ksym.name);
709 
710 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
711 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
712 
713 	bpf_ksym_add(&fp->aux->ksym_prefix);
714 #endif
715 }
716 
717 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
718 {
719 	if (!bpf_prog_kallsyms_candidate(fp))
720 		return;
721 
722 	bpf_ksym_del(&fp->aux->ksym);
723 #ifdef CONFIG_FINEIBT
724 	if (cfi_mode != CFI_FINEIBT)
725 		return;
726 	bpf_ksym_del(&fp->aux->ksym_prefix);
727 #endif
728 }
729 
730 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
731 {
732 	struct latch_tree_node *n;
733 
734 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
735 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
736 }
737 
738 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
739 				 unsigned long *off, char *sym)
740 {
741 	struct bpf_ksym *ksym;
742 	char *ret = NULL;
743 
744 	rcu_read_lock();
745 	ksym = bpf_ksym_find(addr);
746 	if (ksym) {
747 		unsigned long symbol_start = ksym->start;
748 		unsigned long symbol_end = ksym->end;
749 
750 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
751 
752 		ret = sym;
753 		if (size)
754 			*size = symbol_end - symbol_start;
755 		if (off)
756 			*off  = addr - symbol_start;
757 	}
758 	rcu_read_unlock();
759 
760 	return ret;
761 }
762 
763 bool is_bpf_text_address(unsigned long addr)
764 {
765 	bool ret;
766 
767 	rcu_read_lock();
768 	ret = bpf_ksym_find(addr) != NULL;
769 	rcu_read_unlock();
770 
771 	return ret;
772 }
773 
774 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
775 {
776 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
777 
778 	return ksym && ksym->prog ?
779 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
780 	       NULL;
781 }
782 
783 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
784 {
785 	const struct exception_table_entry *e = NULL;
786 	struct bpf_prog *prog;
787 
788 	rcu_read_lock();
789 	prog = bpf_prog_ksym_find(addr);
790 	if (!prog)
791 		goto out;
792 	if (!prog->aux->num_exentries)
793 		goto out;
794 
795 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
796 out:
797 	rcu_read_unlock();
798 	return e;
799 }
800 
801 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
802 		    char *sym)
803 {
804 	struct bpf_ksym *ksym;
805 	unsigned int it = 0;
806 	int ret = -ERANGE;
807 
808 	if (!bpf_jit_kallsyms_enabled())
809 		return ret;
810 
811 	rcu_read_lock();
812 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
813 		if (it++ != symnum)
814 			continue;
815 
816 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
817 
818 		*value = ksym->start;
819 		*type  = BPF_SYM_ELF_TYPE;
820 
821 		ret = 0;
822 		break;
823 	}
824 	rcu_read_unlock();
825 
826 	return ret;
827 }
828 
829 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
830 				struct bpf_jit_poke_descriptor *poke)
831 {
832 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
833 	static const u32 poke_tab_max = 1024;
834 	u32 slot = prog->aux->size_poke_tab;
835 	u32 size = slot + 1;
836 
837 	if (size > poke_tab_max)
838 		return -ENOSPC;
839 	if (poke->tailcall_target || poke->tailcall_target_stable ||
840 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
841 		return -EINVAL;
842 
843 	switch (poke->reason) {
844 	case BPF_POKE_REASON_TAIL_CALL:
845 		if (!poke->tail_call.map)
846 			return -EINVAL;
847 		break;
848 	default:
849 		return -EINVAL;
850 	}
851 
852 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
853 	if (!tab)
854 		return -ENOMEM;
855 
856 	memcpy(&tab[slot], poke, sizeof(*poke));
857 	prog->aux->size_poke_tab = size;
858 	prog->aux->poke_tab = tab;
859 
860 	return slot;
861 }
862 
863 /*
864  * BPF program pack allocator.
865  *
866  * Most BPF programs are pretty small. Allocating a hole page for each
867  * program is sometime a waste. Many small bpf program also adds pressure
868  * to instruction TLB. To solve this issue, we introduce a BPF program pack
869  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
870  * to host BPF programs.
871  */
872 #define BPF_PROG_CHUNK_SHIFT	6
873 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
874 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
875 
876 struct bpf_prog_pack {
877 	struct list_head list;
878 	void *ptr;
879 	unsigned long bitmap[];
880 };
881 
882 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
883 {
884 	memset(area, 0, size);
885 }
886 
887 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
888 
889 static DEFINE_MUTEX(pack_mutex);
890 static LIST_HEAD(pack_list);
891 
892 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
893  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
894  */
895 #ifdef PMD_SIZE
896 /* PMD_SIZE is really big for some archs. It doesn't make sense to
897  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
898  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
899  * greater than or equal to 2MB.
900  */
901 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
902 #else
903 #define BPF_PROG_PACK_SIZE PAGE_SIZE
904 #endif
905 
906 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
907 
908 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
909 {
910 	struct bpf_prog_pack *pack;
911 	int err;
912 
913 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
914 		       GFP_KERNEL);
915 	if (!pack)
916 		return NULL;
917 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
918 	if (!pack->ptr)
919 		goto out;
920 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
921 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
922 
923 	set_vm_flush_reset_perms(pack->ptr);
924 	err = set_memory_rox((unsigned long)pack->ptr,
925 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
926 	if (err)
927 		goto out;
928 	list_add_tail(&pack->list, &pack_list);
929 	return pack;
930 
931 out:
932 	bpf_jit_free_exec(pack->ptr);
933 	kfree(pack);
934 	return NULL;
935 }
936 
937 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
938 {
939 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
940 	struct bpf_prog_pack *pack;
941 	unsigned long pos;
942 	void *ptr = NULL;
943 
944 	mutex_lock(&pack_mutex);
945 	if (size > BPF_PROG_PACK_SIZE) {
946 		size = round_up(size, PAGE_SIZE);
947 		ptr = bpf_jit_alloc_exec(size);
948 		if (ptr) {
949 			int err;
950 
951 			bpf_fill_ill_insns(ptr, size);
952 			set_vm_flush_reset_perms(ptr);
953 			err = set_memory_rox((unsigned long)ptr,
954 					     size / PAGE_SIZE);
955 			if (err) {
956 				bpf_jit_free_exec(ptr);
957 				ptr = NULL;
958 			}
959 		}
960 		goto out;
961 	}
962 	list_for_each_entry(pack, &pack_list, list) {
963 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
964 						 nbits, 0);
965 		if (pos < BPF_PROG_CHUNK_COUNT)
966 			goto found_free_area;
967 	}
968 
969 	pack = alloc_new_pack(bpf_fill_ill_insns);
970 	if (!pack)
971 		goto out;
972 
973 	pos = 0;
974 
975 found_free_area:
976 	bitmap_set(pack->bitmap, pos, nbits);
977 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
978 
979 out:
980 	mutex_unlock(&pack_mutex);
981 	return ptr;
982 }
983 
984 void bpf_prog_pack_free(void *ptr, u32 size)
985 {
986 	struct bpf_prog_pack *pack = NULL, *tmp;
987 	unsigned int nbits;
988 	unsigned long pos;
989 
990 	mutex_lock(&pack_mutex);
991 	if (size > BPF_PROG_PACK_SIZE) {
992 		bpf_jit_free_exec(ptr);
993 		goto out;
994 	}
995 
996 	list_for_each_entry(tmp, &pack_list, list) {
997 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
998 			pack = tmp;
999 			break;
1000 		}
1001 	}
1002 
1003 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1004 		goto out;
1005 
1006 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1007 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1008 
1009 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1010 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1011 
1012 	bitmap_clear(pack->bitmap, pos, nbits);
1013 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1014 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1015 		list_del(&pack->list);
1016 		bpf_jit_free_exec(pack->ptr);
1017 		kfree(pack);
1018 	}
1019 out:
1020 	mutex_unlock(&pack_mutex);
1021 }
1022 
1023 static atomic_long_t bpf_jit_current;
1024 
1025 /* Can be overridden by an arch's JIT compiler if it has a custom,
1026  * dedicated BPF backend memory area, or if neither of the two
1027  * below apply.
1028  */
1029 u64 __weak bpf_jit_alloc_exec_limit(void)
1030 {
1031 #if defined(MODULES_VADDR)
1032 	return MODULES_END - MODULES_VADDR;
1033 #else
1034 	return VMALLOC_END - VMALLOC_START;
1035 #endif
1036 }
1037 
1038 static int __init bpf_jit_charge_init(void)
1039 {
1040 	/* Only used as heuristic here to derive limit. */
1041 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1042 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1043 					    PAGE_SIZE), LONG_MAX);
1044 	return 0;
1045 }
1046 pure_initcall(bpf_jit_charge_init);
1047 
1048 int bpf_jit_charge_modmem(u32 size)
1049 {
1050 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1051 		if (!bpf_capable()) {
1052 			atomic_long_sub(size, &bpf_jit_current);
1053 			return -EPERM;
1054 		}
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 void bpf_jit_uncharge_modmem(u32 size)
1061 {
1062 	atomic_long_sub(size, &bpf_jit_current);
1063 }
1064 
1065 void *__weak bpf_jit_alloc_exec(unsigned long size)
1066 {
1067 	return module_alloc(size);
1068 }
1069 
1070 void __weak bpf_jit_free_exec(void *addr)
1071 {
1072 	module_memfree(addr);
1073 }
1074 
1075 struct bpf_binary_header *
1076 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1077 		     unsigned int alignment,
1078 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1079 {
1080 	struct bpf_binary_header *hdr;
1081 	u32 size, hole, start;
1082 
1083 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1084 		     alignment > BPF_IMAGE_ALIGNMENT);
1085 
1086 	/* Most of BPF filters are really small, but if some of them
1087 	 * fill a page, allow at least 128 extra bytes to insert a
1088 	 * random section of illegal instructions.
1089 	 */
1090 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1091 
1092 	if (bpf_jit_charge_modmem(size))
1093 		return NULL;
1094 	hdr = bpf_jit_alloc_exec(size);
1095 	if (!hdr) {
1096 		bpf_jit_uncharge_modmem(size);
1097 		return NULL;
1098 	}
1099 
1100 	/* Fill space with illegal/arch-dep instructions. */
1101 	bpf_fill_ill_insns(hdr, size);
1102 
1103 	hdr->size = size;
1104 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1105 		     PAGE_SIZE - sizeof(*hdr));
1106 	start = get_random_u32_below(hole) & ~(alignment - 1);
1107 
1108 	/* Leave a random number of instructions before BPF code. */
1109 	*image_ptr = &hdr->image[start];
1110 
1111 	return hdr;
1112 }
1113 
1114 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1115 {
1116 	u32 size = hdr->size;
1117 
1118 	bpf_jit_free_exec(hdr);
1119 	bpf_jit_uncharge_modmem(size);
1120 }
1121 
1122 /* Allocate jit binary from bpf_prog_pack allocator.
1123  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1124  * to the memory. To solve this problem, a RW buffer is also allocated at
1125  * as the same time. The JIT engine should calculate offsets based on the
1126  * RO memory address, but write JITed program to the RW buffer. Once the
1127  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1128  * the JITed program to the RO memory.
1129  */
1130 struct bpf_binary_header *
1131 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1132 			  unsigned int alignment,
1133 			  struct bpf_binary_header **rw_header,
1134 			  u8 **rw_image,
1135 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1136 {
1137 	struct bpf_binary_header *ro_header;
1138 	u32 size, hole, start;
1139 
1140 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1141 		     alignment > BPF_IMAGE_ALIGNMENT);
1142 
1143 	/* add 16 bytes for a random section of illegal instructions */
1144 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1145 
1146 	if (bpf_jit_charge_modmem(size))
1147 		return NULL;
1148 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1149 	if (!ro_header) {
1150 		bpf_jit_uncharge_modmem(size);
1151 		return NULL;
1152 	}
1153 
1154 	*rw_header = kvmalloc(size, GFP_KERNEL);
1155 	if (!*rw_header) {
1156 		bpf_prog_pack_free(ro_header, size);
1157 		bpf_jit_uncharge_modmem(size);
1158 		return NULL;
1159 	}
1160 
1161 	/* Fill space with illegal/arch-dep instructions. */
1162 	bpf_fill_ill_insns(*rw_header, size);
1163 	(*rw_header)->size = size;
1164 
1165 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1166 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1167 	start = get_random_u32_below(hole) & ~(alignment - 1);
1168 
1169 	*image_ptr = &ro_header->image[start];
1170 	*rw_image = &(*rw_header)->image[start];
1171 
1172 	return ro_header;
1173 }
1174 
1175 /* Copy JITed text from rw_header to its final location, the ro_header. */
1176 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1177 				 struct bpf_binary_header *ro_header,
1178 				 struct bpf_binary_header *rw_header)
1179 {
1180 	void *ptr;
1181 
1182 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1183 
1184 	kvfree(rw_header);
1185 
1186 	if (IS_ERR(ptr)) {
1187 		bpf_prog_pack_free(ro_header, ro_header->size);
1188 		return PTR_ERR(ptr);
1189 	}
1190 	return 0;
1191 }
1192 
1193 /* bpf_jit_binary_pack_free is called in two different scenarios:
1194  *   1) when the program is freed after;
1195  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1196  * For case 2), we need to free both the RO memory and the RW buffer.
1197  *
1198  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1199  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1200  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1201  * bpf_arch_text_copy (when jit fails).
1202  */
1203 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1204 			      struct bpf_binary_header *rw_header)
1205 {
1206 	u32 size = ro_header->size;
1207 
1208 	bpf_prog_pack_free(ro_header, size);
1209 	kvfree(rw_header);
1210 	bpf_jit_uncharge_modmem(size);
1211 }
1212 
1213 struct bpf_binary_header *
1214 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1215 {
1216 	unsigned long real_start = (unsigned long)fp->bpf_func;
1217 	unsigned long addr;
1218 
1219 	addr = real_start & BPF_PROG_CHUNK_MASK;
1220 	return (void *)addr;
1221 }
1222 
1223 static inline struct bpf_binary_header *
1224 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1225 {
1226 	unsigned long real_start = (unsigned long)fp->bpf_func;
1227 	unsigned long addr;
1228 
1229 	addr = real_start & PAGE_MASK;
1230 	return (void *)addr;
1231 }
1232 
1233 /* This symbol is only overridden by archs that have different
1234  * requirements than the usual eBPF JITs, f.e. when they only
1235  * implement cBPF JIT, do not set images read-only, etc.
1236  */
1237 void __weak bpf_jit_free(struct bpf_prog *fp)
1238 {
1239 	if (fp->jited) {
1240 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1241 
1242 		bpf_jit_binary_free(hdr);
1243 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1244 	}
1245 
1246 	bpf_prog_unlock_free(fp);
1247 }
1248 
1249 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1250 			  const struct bpf_insn *insn, bool extra_pass,
1251 			  u64 *func_addr, bool *func_addr_fixed)
1252 {
1253 	s16 off = insn->off;
1254 	s32 imm = insn->imm;
1255 	u8 *addr;
1256 	int err;
1257 
1258 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1259 	if (!*func_addr_fixed) {
1260 		/* Place-holder address till the last pass has collected
1261 		 * all addresses for JITed subprograms in which case we
1262 		 * can pick them up from prog->aux.
1263 		 */
1264 		if (!extra_pass)
1265 			addr = NULL;
1266 		else if (prog->aux->func &&
1267 			 off >= 0 && off < prog->aux->real_func_cnt)
1268 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1269 		else
1270 			return -EINVAL;
1271 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1272 		   bpf_jit_supports_far_kfunc_call()) {
1273 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1274 		if (err)
1275 			return err;
1276 	} else {
1277 		/* Address of a BPF helper call. Since part of the core
1278 		 * kernel, it's always at a fixed location. __bpf_call_base
1279 		 * and the helper with imm relative to it are both in core
1280 		 * kernel.
1281 		 */
1282 		addr = (u8 *)__bpf_call_base + imm;
1283 	}
1284 
1285 	*func_addr = (unsigned long)addr;
1286 	return 0;
1287 }
1288 
1289 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1290 			      const struct bpf_insn *aux,
1291 			      struct bpf_insn *to_buff,
1292 			      bool emit_zext)
1293 {
1294 	struct bpf_insn *to = to_buff;
1295 	u32 imm_rnd = get_random_u32();
1296 	s16 off;
1297 
1298 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1299 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1300 
1301 	/* Constraints on AX register:
1302 	 *
1303 	 * AX register is inaccessible from user space. It is mapped in
1304 	 * all JITs, and used here for constant blinding rewrites. It is
1305 	 * typically "stateless" meaning its contents are only valid within
1306 	 * the executed instruction, but not across several instructions.
1307 	 * There are a few exceptions however which are further detailed
1308 	 * below.
1309 	 *
1310 	 * Constant blinding is only used by JITs, not in the interpreter.
1311 	 * The interpreter uses AX in some occasions as a local temporary
1312 	 * register e.g. in DIV or MOD instructions.
1313 	 *
1314 	 * In restricted circumstances, the verifier can also use the AX
1315 	 * register for rewrites as long as they do not interfere with
1316 	 * the above cases!
1317 	 */
1318 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1319 		goto out;
1320 
1321 	if (from->imm == 0 &&
1322 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1323 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1324 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1325 		goto out;
1326 	}
1327 
1328 	switch (from->code) {
1329 	case BPF_ALU | BPF_ADD | BPF_K:
1330 	case BPF_ALU | BPF_SUB | BPF_K:
1331 	case BPF_ALU | BPF_AND | BPF_K:
1332 	case BPF_ALU | BPF_OR  | BPF_K:
1333 	case BPF_ALU | BPF_XOR | BPF_K:
1334 	case BPF_ALU | BPF_MUL | BPF_K:
1335 	case BPF_ALU | BPF_MOV | BPF_K:
1336 	case BPF_ALU | BPF_DIV | BPF_K:
1337 	case BPF_ALU | BPF_MOD | BPF_K:
1338 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1339 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1340 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1341 		break;
1342 
1343 	case BPF_ALU64 | BPF_ADD | BPF_K:
1344 	case BPF_ALU64 | BPF_SUB | BPF_K:
1345 	case BPF_ALU64 | BPF_AND | BPF_K:
1346 	case BPF_ALU64 | BPF_OR  | BPF_K:
1347 	case BPF_ALU64 | BPF_XOR | BPF_K:
1348 	case BPF_ALU64 | BPF_MUL | BPF_K:
1349 	case BPF_ALU64 | BPF_MOV | BPF_K:
1350 	case BPF_ALU64 | BPF_DIV | BPF_K:
1351 	case BPF_ALU64 | BPF_MOD | BPF_K:
1352 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1353 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1354 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1355 		break;
1356 
1357 	case BPF_JMP | BPF_JEQ  | BPF_K:
1358 	case BPF_JMP | BPF_JNE  | BPF_K:
1359 	case BPF_JMP | BPF_JGT  | BPF_K:
1360 	case BPF_JMP | BPF_JLT  | BPF_K:
1361 	case BPF_JMP | BPF_JGE  | BPF_K:
1362 	case BPF_JMP | BPF_JLE  | BPF_K:
1363 	case BPF_JMP | BPF_JSGT | BPF_K:
1364 	case BPF_JMP | BPF_JSLT | BPF_K:
1365 	case BPF_JMP | BPF_JSGE | BPF_K:
1366 	case BPF_JMP | BPF_JSLE | BPF_K:
1367 	case BPF_JMP | BPF_JSET | BPF_K:
1368 		/* Accommodate for extra offset in case of a backjump. */
1369 		off = from->off;
1370 		if (off < 0)
1371 			off -= 2;
1372 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1373 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1374 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1375 		break;
1376 
1377 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1378 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1379 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1380 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1381 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1382 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1383 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1384 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1385 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1386 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1387 	case BPF_JMP32 | BPF_JSET | BPF_K:
1388 		/* Accommodate for extra offset in case of a backjump. */
1389 		off = from->off;
1390 		if (off < 0)
1391 			off -= 2;
1392 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1393 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1394 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1395 				      off);
1396 		break;
1397 
1398 	case BPF_LD | BPF_IMM | BPF_DW:
1399 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1400 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1401 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1402 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1403 		break;
1404 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1405 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1406 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1407 		if (emit_zext)
1408 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1409 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1410 		break;
1411 
1412 	case BPF_ST | BPF_MEM | BPF_DW:
1413 	case BPF_ST | BPF_MEM | BPF_W:
1414 	case BPF_ST | BPF_MEM | BPF_H:
1415 	case BPF_ST | BPF_MEM | BPF_B:
1416 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1417 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1418 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1419 		break;
1420 	}
1421 out:
1422 	return to - to_buff;
1423 }
1424 
1425 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1426 					      gfp_t gfp_extra_flags)
1427 {
1428 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1429 	struct bpf_prog *fp;
1430 
1431 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1432 	if (fp != NULL) {
1433 		/* aux->prog still points to the fp_other one, so
1434 		 * when promoting the clone to the real program,
1435 		 * this still needs to be adapted.
1436 		 */
1437 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1438 	}
1439 
1440 	return fp;
1441 }
1442 
1443 static void bpf_prog_clone_free(struct bpf_prog *fp)
1444 {
1445 	/* aux was stolen by the other clone, so we cannot free
1446 	 * it from this path! It will be freed eventually by the
1447 	 * other program on release.
1448 	 *
1449 	 * At this point, we don't need a deferred release since
1450 	 * clone is guaranteed to not be locked.
1451 	 */
1452 	fp->aux = NULL;
1453 	fp->stats = NULL;
1454 	fp->active = NULL;
1455 	__bpf_prog_free(fp);
1456 }
1457 
1458 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1459 {
1460 	/* We have to repoint aux->prog to self, as we don't
1461 	 * know whether fp here is the clone or the original.
1462 	 */
1463 	fp->aux->prog = fp;
1464 	bpf_prog_clone_free(fp_other);
1465 }
1466 
1467 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1468 {
1469 	struct bpf_insn insn_buff[16], aux[2];
1470 	struct bpf_prog *clone, *tmp;
1471 	int insn_delta, insn_cnt;
1472 	struct bpf_insn *insn;
1473 	int i, rewritten;
1474 
1475 	if (!prog->blinding_requested || prog->blinded)
1476 		return prog;
1477 
1478 	clone = bpf_prog_clone_create(prog, GFP_USER);
1479 	if (!clone)
1480 		return ERR_PTR(-ENOMEM);
1481 
1482 	insn_cnt = clone->len;
1483 	insn = clone->insnsi;
1484 
1485 	for (i = 0; i < insn_cnt; i++, insn++) {
1486 		if (bpf_pseudo_func(insn)) {
1487 			/* ld_imm64 with an address of bpf subprog is not
1488 			 * a user controlled constant. Don't randomize it,
1489 			 * since it will conflict with jit_subprogs() logic.
1490 			 */
1491 			insn++;
1492 			i++;
1493 			continue;
1494 		}
1495 
1496 		/* We temporarily need to hold the original ld64 insn
1497 		 * so that we can still access the first part in the
1498 		 * second blinding run.
1499 		 */
1500 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1501 		    insn[1].code == 0)
1502 			memcpy(aux, insn, sizeof(aux));
1503 
1504 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1505 						clone->aux->verifier_zext);
1506 		if (!rewritten)
1507 			continue;
1508 
1509 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1510 		if (IS_ERR(tmp)) {
1511 			/* Patching may have repointed aux->prog during
1512 			 * realloc from the original one, so we need to
1513 			 * fix it up here on error.
1514 			 */
1515 			bpf_jit_prog_release_other(prog, clone);
1516 			return tmp;
1517 		}
1518 
1519 		clone = tmp;
1520 		insn_delta = rewritten - 1;
1521 
1522 		/* Walk new program and skip insns we just inserted. */
1523 		insn = clone->insnsi + i + insn_delta;
1524 		insn_cnt += insn_delta;
1525 		i        += insn_delta;
1526 	}
1527 
1528 	clone->blinded = 1;
1529 	return clone;
1530 }
1531 #endif /* CONFIG_BPF_JIT */
1532 
1533 /* Base function for offset calculation. Needs to go into .text section,
1534  * therefore keeping it non-static as well; will also be used by JITs
1535  * anyway later on, so do not let the compiler omit it. This also needs
1536  * to go into kallsyms for correlation from e.g. bpftool, so naming
1537  * must not change.
1538  */
1539 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1540 {
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(__bpf_call_base);
1544 
1545 /* All UAPI available opcodes. */
1546 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1547 	/* 32 bit ALU operations. */		\
1548 	/*   Register based. */			\
1549 	INSN_3(ALU, ADD,  X),			\
1550 	INSN_3(ALU, SUB,  X),			\
1551 	INSN_3(ALU, AND,  X),			\
1552 	INSN_3(ALU, OR,   X),			\
1553 	INSN_3(ALU, LSH,  X),			\
1554 	INSN_3(ALU, RSH,  X),			\
1555 	INSN_3(ALU, XOR,  X),			\
1556 	INSN_3(ALU, MUL,  X),			\
1557 	INSN_3(ALU, MOV,  X),			\
1558 	INSN_3(ALU, ARSH, X),			\
1559 	INSN_3(ALU, DIV,  X),			\
1560 	INSN_3(ALU, MOD,  X),			\
1561 	INSN_2(ALU, NEG),			\
1562 	INSN_3(ALU, END, TO_BE),		\
1563 	INSN_3(ALU, END, TO_LE),		\
1564 	/*   Immediate based. */		\
1565 	INSN_3(ALU, ADD,  K),			\
1566 	INSN_3(ALU, SUB,  K),			\
1567 	INSN_3(ALU, AND,  K),			\
1568 	INSN_3(ALU, OR,   K),			\
1569 	INSN_3(ALU, LSH,  K),			\
1570 	INSN_3(ALU, RSH,  K),			\
1571 	INSN_3(ALU, XOR,  K),			\
1572 	INSN_3(ALU, MUL,  K),			\
1573 	INSN_3(ALU, MOV,  K),			\
1574 	INSN_3(ALU, ARSH, K),			\
1575 	INSN_3(ALU, DIV,  K),			\
1576 	INSN_3(ALU, MOD,  K),			\
1577 	/* 64 bit ALU operations. */		\
1578 	/*   Register based. */			\
1579 	INSN_3(ALU64, ADD,  X),			\
1580 	INSN_3(ALU64, SUB,  X),			\
1581 	INSN_3(ALU64, AND,  X),			\
1582 	INSN_3(ALU64, OR,   X),			\
1583 	INSN_3(ALU64, LSH,  X),			\
1584 	INSN_3(ALU64, RSH,  X),			\
1585 	INSN_3(ALU64, XOR,  X),			\
1586 	INSN_3(ALU64, MUL,  X),			\
1587 	INSN_3(ALU64, MOV,  X),			\
1588 	INSN_3(ALU64, ARSH, X),			\
1589 	INSN_3(ALU64, DIV,  X),			\
1590 	INSN_3(ALU64, MOD,  X),			\
1591 	INSN_2(ALU64, NEG),			\
1592 	INSN_3(ALU64, END, TO_LE),		\
1593 	/*   Immediate based. */		\
1594 	INSN_3(ALU64, ADD,  K),			\
1595 	INSN_3(ALU64, SUB,  K),			\
1596 	INSN_3(ALU64, AND,  K),			\
1597 	INSN_3(ALU64, OR,   K),			\
1598 	INSN_3(ALU64, LSH,  K),			\
1599 	INSN_3(ALU64, RSH,  K),			\
1600 	INSN_3(ALU64, XOR,  K),			\
1601 	INSN_3(ALU64, MUL,  K),			\
1602 	INSN_3(ALU64, MOV,  K),			\
1603 	INSN_3(ALU64, ARSH, K),			\
1604 	INSN_3(ALU64, DIV,  K),			\
1605 	INSN_3(ALU64, MOD,  K),			\
1606 	/* Call instruction. */			\
1607 	INSN_2(JMP, CALL),			\
1608 	/* Exit instruction. */			\
1609 	INSN_2(JMP, EXIT),			\
1610 	/* 32-bit Jump instructions. */		\
1611 	/*   Register based. */			\
1612 	INSN_3(JMP32, JEQ,  X),			\
1613 	INSN_3(JMP32, JNE,  X),			\
1614 	INSN_3(JMP32, JGT,  X),			\
1615 	INSN_3(JMP32, JLT,  X),			\
1616 	INSN_3(JMP32, JGE,  X),			\
1617 	INSN_3(JMP32, JLE,  X),			\
1618 	INSN_3(JMP32, JSGT, X),			\
1619 	INSN_3(JMP32, JSLT, X),			\
1620 	INSN_3(JMP32, JSGE, X),			\
1621 	INSN_3(JMP32, JSLE, X),			\
1622 	INSN_3(JMP32, JSET, X),			\
1623 	/*   Immediate based. */		\
1624 	INSN_3(JMP32, JEQ,  K),			\
1625 	INSN_3(JMP32, JNE,  K),			\
1626 	INSN_3(JMP32, JGT,  K),			\
1627 	INSN_3(JMP32, JLT,  K),			\
1628 	INSN_3(JMP32, JGE,  K),			\
1629 	INSN_3(JMP32, JLE,  K),			\
1630 	INSN_3(JMP32, JSGT, K),			\
1631 	INSN_3(JMP32, JSLT, K),			\
1632 	INSN_3(JMP32, JSGE, K),			\
1633 	INSN_3(JMP32, JSLE, K),			\
1634 	INSN_3(JMP32, JSET, K),			\
1635 	/* Jump instructions. */		\
1636 	/*   Register based. */			\
1637 	INSN_3(JMP, JEQ,  X),			\
1638 	INSN_3(JMP, JNE,  X),			\
1639 	INSN_3(JMP, JGT,  X),			\
1640 	INSN_3(JMP, JLT,  X),			\
1641 	INSN_3(JMP, JGE,  X),			\
1642 	INSN_3(JMP, JLE,  X),			\
1643 	INSN_3(JMP, JSGT, X),			\
1644 	INSN_3(JMP, JSLT, X),			\
1645 	INSN_3(JMP, JSGE, X),			\
1646 	INSN_3(JMP, JSLE, X),			\
1647 	INSN_3(JMP, JSET, X),			\
1648 	/*   Immediate based. */		\
1649 	INSN_3(JMP, JEQ,  K),			\
1650 	INSN_3(JMP, JNE,  K),			\
1651 	INSN_3(JMP, JGT,  K),			\
1652 	INSN_3(JMP, JLT,  K),			\
1653 	INSN_3(JMP, JGE,  K),			\
1654 	INSN_3(JMP, JLE,  K),			\
1655 	INSN_3(JMP, JSGT, K),			\
1656 	INSN_3(JMP, JSLT, K),			\
1657 	INSN_3(JMP, JSGE, K),			\
1658 	INSN_3(JMP, JSLE, K),			\
1659 	INSN_3(JMP, JSET, K),			\
1660 	INSN_2(JMP, JA),			\
1661 	INSN_2(JMP32, JA),			\
1662 	/* Store instructions. */		\
1663 	/*   Register based. */			\
1664 	INSN_3(STX, MEM,  B),			\
1665 	INSN_3(STX, MEM,  H),			\
1666 	INSN_3(STX, MEM,  W),			\
1667 	INSN_3(STX, MEM,  DW),			\
1668 	INSN_3(STX, ATOMIC, W),			\
1669 	INSN_3(STX, ATOMIC, DW),		\
1670 	/*   Immediate based. */		\
1671 	INSN_3(ST, MEM, B),			\
1672 	INSN_3(ST, MEM, H),			\
1673 	INSN_3(ST, MEM, W),			\
1674 	INSN_3(ST, MEM, DW),			\
1675 	/* Load instructions. */		\
1676 	/*   Register based. */			\
1677 	INSN_3(LDX, MEM, B),			\
1678 	INSN_3(LDX, MEM, H),			\
1679 	INSN_3(LDX, MEM, W),			\
1680 	INSN_3(LDX, MEM, DW),			\
1681 	INSN_3(LDX, MEMSX, B),			\
1682 	INSN_3(LDX, MEMSX, H),			\
1683 	INSN_3(LDX, MEMSX, W),			\
1684 	/*   Immediate based. */		\
1685 	INSN_3(LD, IMM, DW)
1686 
1687 bool bpf_opcode_in_insntable(u8 code)
1688 {
1689 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1690 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1691 	static const bool public_insntable[256] = {
1692 		[0 ... 255] = false,
1693 		/* Now overwrite non-defaults ... */
1694 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1695 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1696 		[BPF_LD | BPF_ABS | BPF_B] = true,
1697 		[BPF_LD | BPF_ABS | BPF_H] = true,
1698 		[BPF_LD | BPF_ABS | BPF_W] = true,
1699 		[BPF_LD | BPF_IND | BPF_B] = true,
1700 		[BPF_LD | BPF_IND | BPF_H] = true,
1701 		[BPF_LD | BPF_IND | BPF_W] = true,
1702 		[BPF_JMP | BPF_JCOND] = true,
1703 	};
1704 #undef BPF_INSN_3_TBL
1705 #undef BPF_INSN_2_TBL
1706 	return public_insntable[code];
1707 }
1708 
1709 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1710 /**
1711  *	___bpf_prog_run - run eBPF program on a given context
1712  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1713  *	@insn: is the array of eBPF instructions
1714  *
1715  * Decode and execute eBPF instructions.
1716  *
1717  * Return: whatever value is in %BPF_R0 at program exit
1718  */
1719 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1720 {
1721 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1722 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1723 	static const void * const jumptable[256] __annotate_jump_table = {
1724 		[0 ... 255] = &&default_label,
1725 		/* Now overwrite non-defaults ... */
1726 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1727 		/* Non-UAPI available opcodes. */
1728 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1729 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1730 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1731 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1732 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1733 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1734 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1735 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1736 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1737 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1738 	};
1739 #undef BPF_INSN_3_LBL
1740 #undef BPF_INSN_2_LBL
1741 	u32 tail_call_cnt = 0;
1742 
1743 #define CONT	 ({ insn++; goto select_insn; })
1744 #define CONT_JMP ({ insn++; goto select_insn; })
1745 
1746 select_insn:
1747 	goto *jumptable[insn->code];
1748 
1749 	/* Explicitly mask the register-based shift amounts with 63 or 31
1750 	 * to avoid undefined behavior. Normally this won't affect the
1751 	 * generated code, for example, in case of native 64 bit archs such
1752 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1753 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1754 	 * the BPF shift operations to machine instructions which produce
1755 	 * implementation-defined results in such a case; the resulting
1756 	 * contents of the register may be arbitrary, but program behaviour
1757 	 * as a whole remains defined. In other words, in case of JIT backends,
1758 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1759 	 */
1760 	/* ALU (shifts) */
1761 #define SHT(OPCODE, OP)					\
1762 	ALU64_##OPCODE##_X:				\
1763 		DST = DST OP (SRC & 63);		\
1764 		CONT;					\
1765 	ALU_##OPCODE##_X:				\
1766 		DST = (u32) DST OP ((u32) SRC & 31);	\
1767 		CONT;					\
1768 	ALU64_##OPCODE##_K:				\
1769 		DST = DST OP IMM;			\
1770 		CONT;					\
1771 	ALU_##OPCODE##_K:				\
1772 		DST = (u32) DST OP (u32) IMM;		\
1773 		CONT;
1774 	/* ALU (rest) */
1775 #define ALU(OPCODE, OP)					\
1776 	ALU64_##OPCODE##_X:				\
1777 		DST = DST OP SRC;			\
1778 		CONT;					\
1779 	ALU_##OPCODE##_X:				\
1780 		DST = (u32) DST OP (u32) SRC;		\
1781 		CONT;					\
1782 	ALU64_##OPCODE##_K:				\
1783 		DST = DST OP IMM;			\
1784 		CONT;					\
1785 	ALU_##OPCODE##_K:				\
1786 		DST = (u32) DST OP (u32) IMM;		\
1787 		CONT;
1788 	ALU(ADD,  +)
1789 	ALU(SUB,  -)
1790 	ALU(AND,  &)
1791 	ALU(OR,   |)
1792 	ALU(XOR,  ^)
1793 	ALU(MUL,  *)
1794 	SHT(LSH, <<)
1795 	SHT(RSH, >>)
1796 #undef SHT
1797 #undef ALU
1798 	ALU_NEG:
1799 		DST = (u32) -DST;
1800 		CONT;
1801 	ALU64_NEG:
1802 		DST = -DST;
1803 		CONT;
1804 	ALU_MOV_X:
1805 		switch (OFF) {
1806 		case 0:
1807 			DST = (u32) SRC;
1808 			break;
1809 		case 8:
1810 			DST = (u32)(s8) SRC;
1811 			break;
1812 		case 16:
1813 			DST = (u32)(s16) SRC;
1814 			break;
1815 		}
1816 		CONT;
1817 	ALU_MOV_K:
1818 		DST = (u32) IMM;
1819 		CONT;
1820 	ALU64_MOV_X:
1821 		switch (OFF) {
1822 		case 0:
1823 			DST = SRC;
1824 			break;
1825 		case 8:
1826 			DST = (s8) SRC;
1827 			break;
1828 		case 16:
1829 			DST = (s16) SRC;
1830 			break;
1831 		case 32:
1832 			DST = (s32) SRC;
1833 			break;
1834 		}
1835 		CONT;
1836 	ALU64_MOV_K:
1837 		DST = IMM;
1838 		CONT;
1839 	LD_IMM_DW:
1840 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1841 		insn++;
1842 		CONT;
1843 	ALU_ARSH_X:
1844 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1845 		CONT;
1846 	ALU_ARSH_K:
1847 		DST = (u64) (u32) (((s32) DST) >> IMM);
1848 		CONT;
1849 	ALU64_ARSH_X:
1850 		(*(s64 *) &DST) >>= (SRC & 63);
1851 		CONT;
1852 	ALU64_ARSH_K:
1853 		(*(s64 *) &DST) >>= IMM;
1854 		CONT;
1855 	ALU64_MOD_X:
1856 		switch (OFF) {
1857 		case 0:
1858 			div64_u64_rem(DST, SRC, &AX);
1859 			DST = AX;
1860 			break;
1861 		case 1:
1862 			AX = div64_s64(DST, SRC);
1863 			DST = DST - AX * SRC;
1864 			break;
1865 		}
1866 		CONT;
1867 	ALU_MOD_X:
1868 		switch (OFF) {
1869 		case 0:
1870 			AX = (u32) DST;
1871 			DST = do_div(AX, (u32) SRC);
1872 			break;
1873 		case 1:
1874 			AX = abs((s32)DST);
1875 			AX = do_div(AX, abs((s32)SRC));
1876 			if ((s32)DST < 0)
1877 				DST = (u32)-AX;
1878 			else
1879 				DST = (u32)AX;
1880 			break;
1881 		}
1882 		CONT;
1883 	ALU64_MOD_K:
1884 		switch (OFF) {
1885 		case 0:
1886 			div64_u64_rem(DST, IMM, &AX);
1887 			DST = AX;
1888 			break;
1889 		case 1:
1890 			AX = div64_s64(DST, IMM);
1891 			DST = DST - AX * IMM;
1892 			break;
1893 		}
1894 		CONT;
1895 	ALU_MOD_K:
1896 		switch (OFF) {
1897 		case 0:
1898 			AX = (u32) DST;
1899 			DST = do_div(AX, (u32) IMM);
1900 			break;
1901 		case 1:
1902 			AX = abs((s32)DST);
1903 			AX = do_div(AX, abs((s32)IMM));
1904 			if ((s32)DST < 0)
1905 				DST = (u32)-AX;
1906 			else
1907 				DST = (u32)AX;
1908 			break;
1909 		}
1910 		CONT;
1911 	ALU64_DIV_X:
1912 		switch (OFF) {
1913 		case 0:
1914 			DST = div64_u64(DST, SRC);
1915 			break;
1916 		case 1:
1917 			DST = div64_s64(DST, SRC);
1918 			break;
1919 		}
1920 		CONT;
1921 	ALU_DIV_X:
1922 		switch (OFF) {
1923 		case 0:
1924 			AX = (u32) DST;
1925 			do_div(AX, (u32) SRC);
1926 			DST = (u32) AX;
1927 			break;
1928 		case 1:
1929 			AX = abs((s32)DST);
1930 			do_div(AX, abs((s32)SRC));
1931 			if (((s32)DST < 0) == ((s32)SRC < 0))
1932 				DST = (u32)AX;
1933 			else
1934 				DST = (u32)-AX;
1935 			break;
1936 		}
1937 		CONT;
1938 	ALU64_DIV_K:
1939 		switch (OFF) {
1940 		case 0:
1941 			DST = div64_u64(DST, IMM);
1942 			break;
1943 		case 1:
1944 			DST = div64_s64(DST, IMM);
1945 			break;
1946 		}
1947 		CONT;
1948 	ALU_DIV_K:
1949 		switch (OFF) {
1950 		case 0:
1951 			AX = (u32) DST;
1952 			do_div(AX, (u32) IMM);
1953 			DST = (u32) AX;
1954 			break;
1955 		case 1:
1956 			AX = abs((s32)DST);
1957 			do_div(AX, abs((s32)IMM));
1958 			if (((s32)DST < 0) == ((s32)IMM < 0))
1959 				DST = (u32)AX;
1960 			else
1961 				DST = (u32)-AX;
1962 			break;
1963 		}
1964 		CONT;
1965 	ALU_END_TO_BE:
1966 		switch (IMM) {
1967 		case 16:
1968 			DST = (__force u16) cpu_to_be16(DST);
1969 			break;
1970 		case 32:
1971 			DST = (__force u32) cpu_to_be32(DST);
1972 			break;
1973 		case 64:
1974 			DST = (__force u64) cpu_to_be64(DST);
1975 			break;
1976 		}
1977 		CONT;
1978 	ALU_END_TO_LE:
1979 		switch (IMM) {
1980 		case 16:
1981 			DST = (__force u16) cpu_to_le16(DST);
1982 			break;
1983 		case 32:
1984 			DST = (__force u32) cpu_to_le32(DST);
1985 			break;
1986 		case 64:
1987 			DST = (__force u64) cpu_to_le64(DST);
1988 			break;
1989 		}
1990 		CONT;
1991 	ALU64_END_TO_LE:
1992 		switch (IMM) {
1993 		case 16:
1994 			DST = (__force u16) __swab16(DST);
1995 			break;
1996 		case 32:
1997 			DST = (__force u32) __swab32(DST);
1998 			break;
1999 		case 64:
2000 			DST = (__force u64) __swab64(DST);
2001 			break;
2002 		}
2003 		CONT;
2004 
2005 	/* CALL */
2006 	JMP_CALL:
2007 		/* Function call scratches BPF_R1-BPF_R5 registers,
2008 		 * preserves BPF_R6-BPF_R9, and stores return value
2009 		 * into BPF_R0.
2010 		 */
2011 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2012 						       BPF_R4, BPF_R5);
2013 		CONT;
2014 
2015 	JMP_CALL_ARGS:
2016 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2017 							    BPF_R3, BPF_R4,
2018 							    BPF_R5,
2019 							    insn + insn->off + 1);
2020 		CONT;
2021 
2022 	JMP_TAIL_CALL: {
2023 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2024 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2025 		struct bpf_prog *prog;
2026 		u32 index = BPF_R3;
2027 
2028 		if (unlikely(index >= array->map.max_entries))
2029 			goto out;
2030 
2031 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2032 			goto out;
2033 
2034 		tail_call_cnt++;
2035 
2036 		prog = READ_ONCE(array->ptrs[index]);
2037 		if (!prog)
2038 			goto out;
2039 
2040 		/* ARG1 at this point is guaranteed to point to CTX from
2041 		 * the verifier side due to the fact that the tail call is
2042 		 * handled like a helper, that is, bpf_tail_call_proto,
2043 		 * where arg1_type is ARG_PTR_TO_CTX.
2044 		 */
2045 		insn = prog->insnsi;
2046 		goto select_insn;
2047 out:
2048 		CONT;
2049 	}
2050 	JMP_JA:
2051 		insn += insn->off;
2052 		CONT;
2053 	JMP32_JA:
2054 		insn += insn->imm;
2055 		CONT;
2056 	JMP_EXIT:
2057 		return BPF_R0;
2058 	/* JMP */
2059 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2060 	JMP_##OPCODE##_X:					\
2061 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2062 			insn += insn->off;			\
2063 			CONT_JMP;				\
2064 		}						\
2065 		CONT;						\
2066 	JMP32_##OPCODE##_X:					\
2067 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2068 			insn += insn->off;			\
2069 			CONT_JMP;				\
2070 		}						\
2071 		CONT;						\
2072 	JMP_##OPCODE##_K:					\
2073 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2074 			insn += insn->off;			\
2075 			CONT_JMP;				\
2076 		}						\
2077 		CONT;						\
2078 	JMP32_##OPCODE##_K:					\
2079 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2080 			insn += insn->off;			\
2081 			CONT_JMP;				\
2082 		}						\
2083 		CONT;
2084 	COND_JMP(u, JEQ, ==)
2085 	COND_JMP(u, JNE, !=)
2086 	COND_JMP(u, JGT, >)
2087 	COND_JMP(u, JLT, <)
2088 	COND_JMP(u, JGE, >=)
2089 	COND_JMP(u, JLE, <=)
2090 	COND_JMP(u, JSET, &)
2091 	COND_JMP(s, JSGT, >)
2092 	COND_JMP(s, JSLT, <)
2093 	COND_JMP(s, JSGE, >=)
2094 	COND_JMP(s, JSLE, <=)
2095 #undef COND_JMP
2096 	/* ST, STX and LDX*/
2097 	ST_NOSPEC:
2098 		/* Speculation barrier for mitigating Speculative Store Bypass.
2099 		 * In case of arm64, we rely on the firmware mitigation as
2100 		 * controlled via the ssbd kernel parameter. Whenever the
2101 		 * mitigation is enabled, it works for all of the kernel code
2102 		 * with no need to provide any additional instructions here.
2103 		 * In case of x86, we use 'lfence' insn for mitigation. We
2104 		 * reuse preexisting logic from Spectre v1 mitigation that
2105 		 * happens to produce the required code on x86 for v4 as well.
2106 		 */
2107 		barrier_nospec();
2108 		CONT;
2109 #define LDST(SIZEOP, SIZE)						\
2110 	STX_MEM_##SIZEOP:						\
2111 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2112 		CONT;							\
2113 	ST_MEM_##SIZEOP:						\
2114 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2115 		CONT;							\
2116 	LDX_MEM_##SIZEOP:						\
2117 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2118 		CONT;							\
2119 	LDX_PROBE_MEM_##SIZEOP:						\
2120 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2121 			      (const void *)(long) (SRC + insn->off));	\
2122 		DST = *((SIZE *)&DST);					\
2123 		CONT;
2124 
2125 	LDST(B,   u8)
2126 	LDST(H,  u16)
2127 	LDST(W,  u32)
2128 	LDST(DW, u64)
2129 #undef LDST
2130 
2131 #define LDSX(SIZEOP, SIZE)						\
2132 	LDX_MEMSX_##SIZEOP:						\
2133 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2134 		CONT;							\
2135 	LDX_PROBE_MEMSX_##SIZEOP:					\
2136 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2137 				      (const void *)(long) (SRC + insn->off));	\
2138 		DST = *((SIZE *)&DST);					\
2139 		CONT;
2140 
2141 	LDSX(B,   s8)
2142 	LDSX(H,  s16)
2143 	LDSX(W,  s32)
2144 #undef LDSX
2145 
2146 #define ATOMIC_ALU_OP(BOP, KOP)						\
2147 		case BOP:						\
2148 			if (BPF_SIZE(insn->code) == BPF_W)		\
2149 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2150 					     (DST + insn->off));	\
2151 			else						\
2152 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2153 					       (DST + insn->off));	\
2154 			break;						\
2155 		case BOP | BPF_FETCH:					\
2156 			if (BPF_SIZE(insn->code) == BPF_W)		\
2157 				SRC = (u32) atomic_fetch_##KOP(		\
2158 					(u32) SRC,			\
2159 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2160 			else						\
2161 				SRC = (u64) atomic64_fetch_##KOP(	\
2162 					(u64) SRC,			\
2163 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2164 			break;
2165 
2166 	STX_ATOMIC_DW:
2167 	STX_ATOMIC_W:
2168 		switch (IMM) {
2169 		ATOMIC_ALU_OP(BPF_ADD, add)
2170 		ATOMIC_ALU_OP(BPF_AND, and)
2171 		ATOMIC_ALU_OP(BPF_OR, or)
2172 		ATOMIC_ALU_OP(BPF_XOR, xor)
2173 #undef ATOMIC_ALU_OP
2174 
2175 		case BPF_XCHG:
2176 			if (BPF_SIZE(insn->code) == BPF_W)
2177 				SRC = (u32) atomic_xchg(
2178 					(atomic_t *)(unsigned long) (DST + insn->off),
2179 					(u32) SRC);
2180 			else
2181 				SRC = (u64) atomic64_xchg(
2182 					(atomic64_t *)(unsigned long) (DST + insn->off),
2183 					(u64) SRC);
2184 			break;
2185 		case BPF_CMPXCHG:
2186 			if (BPF_SIZE(insn->code) == BPF_W)
2187 				BPF_R0 = (u32) atomic_cmpxchg(
2188 					(atomic_t *)(unsigned long) (DST + insn->off),
2189 					(u32) BPF_R0, (u32) SRC);
2190 			else
2191 				BPF_R0 = (u64) atomic64_cmpxchg(
2192 					(atomic64_t *)(unsigned long) (DST + insn->off),
2193 					(u64) BPF_R0, (u64) SRC);
2194 			break;
2195 
2196 		default:
2197 			goto default_label;
2198 		}
2199 		CONT;
2200 
2201 	default_label:
2202 		/* If we ever reach this, we have a bug somewhere. Die hard here
2203 		 * instead of just returning 0; we could be somewhere in a subprog,
2204 		 * so execution could continue otherwise which we do /not/ want.
2205 		 *
2206 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2207 		 */
2208 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2209 			insn->code, insn->imm);
2210 		BUG_ON(1);
2211 		return 0;
2212 }
2213 
2214 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2215 #define DEFINE_BPF_PROG_RUN(stack_size) \
2216 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2217 { \
2218 	u64 stack[stack_size / sizeof(u64)]; \
2219 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2220 \
2221 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2222 	ARG1 = (u64) (unsigned long) ctx; \
2223 	return ___bpf_prog_run(regs, insn); \
2224 }
2225 
2226 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2227 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2228 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2229 				      const struct bpf_insn *insn) \
2230 { \
2231 	u64 stack[stack_size / sizeof(u64)]; \
2232 	u64 regs[MAX_BPF_EXT_REG]; \
2233 \
2234 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2235 	BPF_R1 = r1; \
2236 	BPF_R2 = r2; \
2237 	BPF_R3 = r3; \
2238 	BPF_R4 = r4; \
2239 	BPF_R5 = r5; \
2240 	return ___bpf_prog_run(regs, insn); \
2241 }
2242 
2243 #define EVAL1(FN, X) FN(X)
2244 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2245 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2246 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2247 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2248 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2249 
2250 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2251 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2252 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2253 
2254 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2255 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2256 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2257 
2258 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2259 
2260 static unsigned int (*interpreters[])(const void *ctx,
2261 				      const struct bpf_insn *insn) = {
2262 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2263 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2264 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2265 };
2266 #undef PROG_NAME_LIST
2267 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2268 static __maybe_unused
2269 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2270 			   const struct bpf_insn *insn) = {
2271 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2272 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2273 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2274 };
2275 #undef PROG_NAME_LIST
2276 
2277 #ifdef CONFIG_BPF_SYSCALL
2278 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2279 {
2280 	stack_depth = max_t(u32, stack_depth, 1);
2281 	insn->off = (s16) insn->imm;
2282 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2283 		__bpf_call_base_args;
2284 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2285 }
2286 #endif
2287 #else
2288 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2289 					 const struct bpf_insn *insn)
2290 {
2291 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2292 	 * is not working properly, so warn about it!
2293 	 */
2294 	WARN_ON_ONCE(1);
2295 	return 0;
2296 }
2297 #endif
2298 
2299 bool bpf_prog_map_compatible(struct bpf_map *map,
2300 			     const struct bpf_prog *fp)
2301 {
2302 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2303 	bool ret;
2304 
2305 	if (fp->kprobe_override)
2306 		return false;
2307 
2308 	/* XDP programs inserted into maps are not guaranteed to run on
2309 	 * a particular netdev (and can run outside driver context entirely
2310 	 * in the case of devmap and cpumap). Until device checks
2311 	 * are implemented, prohibit adding dev-bound programs to program maps.
2312 	 */
2313 	if (bpf_prog_is_dev_bound(fp->aux))
2314 		return false;
2315 
2316 	spin_lock(&map->owner.lock);
2317 	if (!map->owner.type) {
2318 		/* There's no owner yet where we could check for
2319 		 * compatibility.
2320 		 */
2321 		map->owner.type  = prog_type;
2322 		map->owner.jited = fp->jited;
2323 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2324 		ret = true;
2325 	} else {
2326 		ret = map->owner.type  == prog_type &&
2327 		      map->owner.jited == fp->jited &&
2328 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2329 	}
2330 	spin_unlock(&map->owner.lock);
2331 
2332 	return ret;
2333 }
2334 
2335 static int bpf_check_tail_call(const struct bpf_prog *fp)
2336 {
2337 	struct bpf_prog_aux *aux = fp->aux;
2338 	int i, ret = 0;
2339 
2340 	mutex_lock(&aux->used_maps_mutex);
2341 	for (i = 0; i < aux->used_map_cnt; i++) {
2342 		struct bpf_map *map = aux->used_maps[i];
2343 
2344 		if (!map_type_contains_progs(map))
2345 			continue;
2346 
2347 		if (!bpf_prog_map_compatible(map, fp)) {
2348 			ret = -EINVAL;
2349 			goto out;
2350 		}
2351 	}
2352 
2353 out:
2354 	mutex_unlock(&aux->used_maps_mutex);
2355 	return ret;
2356 }
2357 
2358 static void bpf_prog_select_func(struct bpf_prog *fp)
2359 {
2360 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2361 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2362 
2363 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2364 #else
2365 	fp->bpf_func = __bpf_prog_ret0_warn;
2366 #endif
2367 }
2368 
2369 /**
2370  *	bpf_prog_select_runtime - select exec runtime for BPF program
2371  *	@fp: bpf_prog populated with BPF program
2372  *	@err: pointer to error variable
2373  *
2374  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2375  * The BPF program will be executed via bpf_prog_run() function.
2376  *
2377  * Return: the &fp argument along with &err set to 0 for success or
2378  * a negative errno code on failure
2379  */
2380 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2381 {
2382 	/* In case of BPF to BPF calls, verifier did all the prep
2383 	 * work with regards to JITing, etc.
2384 	 */
2385 	bool jit_needed = false;
2386 
2387 	if (fp->bpf_func)
2388 		goto finalize;
2389 
2390 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2391 	    bpf_prog_has_kfunc_call(fp))
2392 		jit_needed = true;
2393 
2394 	bpf_prog_select_func(fp);
2395 
2396 	/* eBPF JITs can rewrite the program in case constant
2397 	 * blinding is active. However, in case of error during
2398 	 * blinding, bpf_int_jit_compile() must always return a
2399 	 * valid program, which in this case would simply not
2400 	 * be JITed, but falls back to the interpreter.
2401 	 */
2402 	if (!bpf_prog_is_offloaded(fp->aux)) {
2403 		*err = bpf_prog_alloc_jited_linfo(fp);
2404 		if (*err)
2405 			return fp;
2406 
2407 		fp = bpf_int_jit_compile(fp);
2408 		bpf_prog_jit_attempt_done(fp);
2409 		if (!fp->jited && jit_needed) {
2410 			*err = -ENOTSUPP;
2411 			return fp;
2412 		}
2413 	} else {
2414 		*err = bpf_prog_offload_compile(fp);
2415 		if (*err)
2416 			return fp;
2417 	}
2418 
2419 finalize:
2420 	*err = bpf_prog_lock_ro(fp);
2421 	if (*err)
2422 		return fp;
2423 
2424 	/* The tail call compatibility check can only be done at
2425 	 * this late stage as we need to determine, if we deal
2426 	 * with JITed or non JITed program concatenations and not
2427 	 * all eBPF JITs might immediately support all features.
2428 	 */
2429 	*err = bpf_check_tail_call(fp);
2430 
2431 	return fp;
2432 }
2433 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2434 
2435 static unsigned int __bpf_prog_ret1(const void *ctx,
2436 				    const struct bpf_insn *insn)
2437 {
2438 	return 1;
2439 }
2440 
2441 static struct bpf_prog_dummy {
2442 	struct bpf_prog prog;
2443 } dummy_bpf_prog = {
2444 	.prog = {
2445 		.bpf_func = __bpf_prog_ret1,
2446 	},
2447 };
2448 
2449 struct bpf_empty_prog_array bpf_empty_prog_array = {
2450 	.null_prog = NULL,
2451 };
2452 EXPORT_SYMBOL(bpf_empty_prog_array);
2453 
2454 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2455 {
2456 	if (prog_cnt)
2457 		return kzalloc(sizeof(struct bpf_prog_array) +
2458 			       sizeof(struct bpf_prog_array_item) *
2459 			       (prog_cnt + 1),
2460 			       flags);
2461 
2462 	return &bpf_empty_prog_array.hdr;
2463 }
2464 
2465 void bpf_prog_array_free(struct bpf_prog_array *progs)
2466 {
2467 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2468 		return;
2469 	kfree_rcu(progs, rcu);
2470 }
2471 
2472 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2473 {
2474 	struct bpf_prog_array *progs;
2475 
2476 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2477 	 * no need to call kfree_rcu(), just call kfree() directly.
2478 	 */
2479 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2480 	if (rcu_trace_implies_rcu_gp())
2481 		kfree(progs);
2482 	else
2483 		kfree_rcu(progs, rcu);
2484 }
2485 
2486 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2487 {
2488 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2489 		return;
2490 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2491 }
2492 
2493 int bpf_prog_array_length(struct bpf_prog_array *array)
2494 {
2495 	struct bpf_prog_array_item *item;
2496 	u32 cnt = 0;
2497 
2498 	for (item = array->items; item->prog; item++)
2499 		if (item->prog != &dummy_bpf_prog.prog)
2500 			cnt++;
2501 	return cnt;
2502 }
2503 
2504 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2505 {
2506 	struct bpf_prog_array_item *item;
2507 
2508 	for (item = array->items; item->prog; item++)
2509 		if (item->prog != &dummy_bpf_prog.prog)
2510 			return false;
2511 	return true;
2512 }
2513 
2514 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2515 				     u32 *prog_ids,
2516 				     u32 request_cnt)
2517 {
2518 	struct bpf_prog_array_item *item;
2519 	int i = 0;
2520 
2521 	for (item = array->items; item->prog; item++) {
2522 		if (item->prog == &dummy_bpf_prog.prog)
2523 			continue;
2524 		prog_ids[i] = item->prog->aux->id;
2525 		if (++i == request_cnt) {
2526 			item++;
2527 			break;
2528 		}
2529 	}
2530 
2531 	return !!(item->prog);
2532 }
2533 
2534 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2535 				__u32 __user *prog_ids, u32 cnt)
2536 {
2537 	unsigned long err = 0;
2538 	bool nospc;
2539 	u32 *ids;
2540 
2541 	/* users of this function are doing:
2542 	 * cnt = bpf_prog_array_length();
2543 	 * if (cnt > 0)
2544 	 *     bpf_prog_array_copy_to_user(..., cnt);
2545 	 * so below kcalloc doesn't need extra cnt > 0 check.
2546 	 */
2547 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2548 	if (!ids)
2549 		return -ENOMEM;
2550 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2551 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2552 	kfree(ids);
2553 	if (err)
2554 		return -EFAULT;
2555 	if (nospc)
2556 		return -ENOSPC;
2557 	return 0;
2558 }
2559 
2560 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2561 				struct bpf_prog *old_prog)
2562 {
2563 	struct bpf_prog_array_item *item;
2564 
2565 	for (item = array->items; item->prog; item++)
2566 		if (item->prog == old_prog) {
2567 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2568 			break;
2569 		}
2570 }
2571 
2572 /**
2573  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2574  *                                   index into the program array with
2575  *                                   a dummy no-op program.
2576  * @array: a bpf_prog_array
2577  * @index: the index of the program to replace
2578  *
2579  * Skips over dummy programs, by not counting them, when calculating
2580  * the position of the program to replace.
2581  *
2582  * Return:
2583  * * 0		- Success
2584  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2585  * * -ENOENT	- Index out of range
2586  */
2587 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2588 {
2589 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2590 }
2591 
2592 /**
2593  * bpf_prog_array_update_at() - Updates the program at the given index
2594  *                              into the program array.
2595  * @array: a bpf_prog_array
2596  * @index: the index of the program to update
2597  * @prog: the program to insert into the array
2598  *
2599  * Skips over dummy programs, by not counting them, when calculating
2600  * the position of the program to update.
2601  *
2602  * Return:
2603  * * 0		- Success
2604  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2605  * * -ENOENT	- Index out of range
2606  */
2607 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2608 			     struct bpf_prog *prog)
2609 {
2610 	struct bpf_prog_array_item *item;
2611 
2612 	if (unlikely(index < 0))
2613 		return -EINVAL;
2614 
2615 	for (item = array->items; item->prog; item++) {
2616 		if (item->prog == &dummy_bpf_prog.prog)
2617 			continue;
2618 		if (!index) {
2619 			WRITE_ONCE(item->prog, prog);
2620 			return 0;
2621 		}
2622 		index--;
2623 	}
2624 	return -ENOENT;
2625 }
2626 
2627 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2628 			struct bpf_prog *exclude_prog,
2629 			struct bpf_prog *include_prog,
2630 			u64 bpf_cookie,
2631 			struct bpf_prog_array **new_array)
2632 {
2633 	int new_prog_cnt, carry_prog_cnt = 0;
2634 	struct bpf_prog_array_item *existing, *new;
2635 	struct bpf_prog_array *array;
2636 	bool found_exclude = false;
2637 
2638 	/* Figure out how many existing progs we need to carry over to
2639 	 * the new array.
2640 	 */
2641 	if (old_array) {
2642 		existing = old_array->items;
2643 		for (; existing->prog; existing++) {
2644 			if (existing->prog == exclude_prog) {
2645 				found_exclude = true;
2646 				continue;
2647 			}
2648 			if (existing->prog != &dummy_bpf_prog.prog)
2649 				carry_prog_cnt++;
2650 			if (existing->prog == include_prog)
2651 				return -EEXIST;
2652 		}
2653 	}
2654 
2655 	if (exclude_prog && !found_exclude)
2656 		return -ENOENT;
2657 
2658 	/* How many progs (not NULL) will be in the new array? */
2659 	new_prog_cnt = carry_prog_cnt;
2660 	if (include_prog)
2661 		new_prog_cnt += 1;
2662 
2663 	/* Do we have any prog (not NULL) in the new array? */
2664 	if (!new_prog_cnt) {
2665 		*new_array = NULL;
2666 		return 0;
2667 	}
2668 
2669 	/* +1 as the end of prog_array is marked with NULL */
2670 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2671 	if (!array)
2672 		return -ENOMEM;
2673 	new = array->items;
2674 
2675 	/* Fill in the new prog array */
2676 	if (carry_prog_cnt) {
2677 		existing = old_array->items;
2678 		for (; existing->prog; existing++) {
2679 			if (existing->prog == exclude_prog ||
2680 			    existing->prog == &dummy_bpf_prog.prog)
2681 				continue;
2682 
2683 			new->prog = existing->prog;
2684 			new->bpf_cookie = existing->bpf_cookie;
2685 			new++;
2686 		}
2687 	}
2688 	if (include_prog) {
2689 		new->prog = include_prog;
2690 		new->bpf_cookie = bpf_cookie;
2691 		new++;
2692 	}
2693 	new->prog = NULL;
2694 	*new_array = array;
2695 	return 0;
2696 }
2697 
2698 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2699 			     u32 *prog_ids, u32 request_cnt,
2700 			     u32 *prog_cnt)
2701 {
2702 	u32 cnt = 0;
2703 
2704 	if (array)
2705 		cnt = bpf_prog_array_length(array);
2706 
2707 	*prog_cnt = cnt;
2708 
2709 	/* return early if user requested only program count or nothing to copy */
2710 	if (!request_cnt || !cnt)
2711 		return 0;
2712 
2713 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2714 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2715 								     : 0;
2716 }
2717 
2718 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2719 			  struct bpf_map **used_maps, u32 len)
2720 {
2721 	struct bpf_map *map;
2722 	bool sleepable;
2723 	u32 i;
2724 
2725 	sleepable = aux->prog->sleepable;
2726 	for (i = 0; i < len; i++) {
2727 		map = used_maps[i];
2728 		if (map->ops->map_poke_untrack)
2729 			map->ops->map_poke_untrack(map, aux);
2730 		if (sleepable)
2731 			atomic64_dec(&map->sleepable_refcnt);
2732 		bpf_map_put(map);
2733 	}
2734 }
2735 
2736 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2737 {
2738 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2739 	kfree(aux->used_maps);
2740 }
2741 
2742 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2743 			  struct btf_mod_pair *used_btfs, u32 len)
2744 {
2745 #ifdef CONFIG_BPF_SYSCALL
2746 	struct btf_mod_pair *btf_mod;
2747 	u32 i;
2748 
2749 	for (i = 0; i < len; i++) {
2750 		btf_mod = &used_btfs[i];
2751 		if (btf_mod->module)
2752 			module_put(btf_mod->module);
2753 		btf_put(btf_mod->btf);
2754 	}
2755 #endif
2756 }
2757 
2758 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2759 {
2760 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2761 	kfree(aux->used_btfs);
2762 }
2763 
2764 static void bpf_prog_free_deferred(struct work_struct *work)
2765 {
2766 	struct bpf_prog_aux *aux;
2767 	int i;
2768 
2769 	aux = container_of(work, struct bpf_prog_aux, work);
2770 #ifdef CONFIG_BPF_SYSCALL
2771 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2772 #endif
2773 #ifdef CONFIG_CGROUP_BPF
2774 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2775 		bpf_cgroup_atype_put(aux->cgroup_atype);
2776 #endif
2777 	bpf_free_used_maps(aux);
2778 	bpf_free_used_btfs(aux);
2779 	if (bpf_prog_is_dev_bound(aux))
2780 		bpf_prog_dev_bound_destroy(aux->prog);
2781 #ifdef CONFIG_PERF_EVENTS
2782 	if (aux->prog->has_callchain_buf)
2783 		put_callchain_buffers();
2784 #endif
2785 	if (aux->dst_trampoline)
2786 		bpf_trampoline_put(aux->dst_trampoline);
2787 	for (i = 0; i < aux->real_func_cnt; i++) {
2788 		/* We can just unlink the subprog poke descriptor table as
2789 		 * it was originally linked to the main program and is also
2790 		 * released along with it.
2791 		 */
2792 		aux->func[i]->aux->poke_tab = NULL;
2793 		bpf_jit_free(aux->func[i]);
2794 	}
2795 	if (aux->real_func_cnt) {
2796 		kfree(aux->func);
2797 		bpf_prog_unlock_free(aux->prog);
2798 	} else {
2799 		bpf_jit_free(aux->prog);
2800 	}
2801 }
2802 
2803 void bpf_prog_free(struct bpf_prog *fp)
2804 {
2805 	struct bpf_prog_aux *aux = fp->aux;
2806 
2807 	if (aux->dst_prog)
2808 		bpf_prog_put(aux->dst_prog);
2809 	bpf_token_put(aux->token);
2810 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2811 	schedule_work(&aux->work);
2812 }
2813 EXPORT_SYMBOL_GPL(bpf_prog_free);
2814 
2815 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2816 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2817 
2818 void bpf_user_rnd_init_once(void)
2819 {
2820 	prandom_init_once(&bpf_user_rnd_state);
2821 }
2822 
2823 BPF_CALL_0(bpf_user_rnd_u32)
2824 {
2825 	/* Should someone ever have the rather unwise idea to use some
2826 	 * of the registers passed into this function, then note that
2827 	 * this function is called from native eBPF and classic-to-eBPF
2828 	 * transformations. Register assignments from both sides are
2829 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2830 	 */
2831 	struct rnd_state *state;
2832 	u32 res;
2833 
2834 	state = &get_cpu_var(bpf_user_rnd_state);
2835 	res = prandom_u32_state(state);
2836 	put_cpu_var(bpf_user_rnd_state);
2837 
2838 	return res;
2839 }
2840 
2841 BPF_CALL_0(bpf_get_raw_cpu_id)
2842 {
2843 	return raw_smp_processor_id();
2844 }
2845 
2846 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2847 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2848 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2849 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2850 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2851 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2852 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2853 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2854 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2855 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2856 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2857 
2858 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2859 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2860 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2861 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2862 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2863 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2864 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2865 
2866 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2867 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2868 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2869 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2870 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2871 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2872 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2873 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2874 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2875 const struct bpf_func_proto bpf_set_retval_proto __weak;
2876 const struct bpf_func_proto bpf_get_retval_proto __weak;
2877 
2878 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2879 {
2880 	return NULL;
2881 }
2882 
2883 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2884 {
2885 	return NULL;
2886 }
2887 
2888 u64 __weak
2889 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2890 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2891 {
2892 	return -ENOTSUPP;
2893 }
2894 EXPORT_SYMBOL_GPL(bpf_event_output);
2895 
2896 /* Always built-in helper functions. */
2897 const struct bpf_func_proto bpf_tail_call_proto = {
2898 	.func		= NULL,
2899 	.gpl_only	= false,
2900 	.ret_type	= RET_VOID,
2901 	.arg1_type	= ARG_PTR_TO_CTX,
2902 	.arg2_type	= ARG_CONST_MAP_PTR,
2903 	.arg3_type	= ARG_ANYTHING,
2904 };
2905 
2906 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2907  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2908  * eBPF and implicitly also cBPF can get JITed!
2909  */
2910 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2911 {
2912 	return prog;
2913 }
2914 
2915 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2916  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2917  */
2918 void __weak bpf_jit_compile(struct bpf_prog *prog)
2919 {
2920 }
2921 
2922 bool __weak bpf_helper_changes_pkt_data(void *func)
2923 {
2924 	return false;
2925 }
2926 
2927 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2928  * analysis code and wants explicit zero extension inserted by verifier.
2929  * Otherwise, return FALSE.
2930  *
2931  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2932  * you don't override this. JITs that don't want these extra insns can detect
2933  * them using insn_is_zext.
2934  */
2935 bool __weak bpf_jit_needs_zext(void)
2936 {
2937 	return false;
2938 }
2939 
2940 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2941 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2942 {
2943 	return false;
2944 }
2945 
2946 bool __weak bpf_jit_supports_kfunc_call(void)
2947 {
2948 	return false;
2949 }
2950 
2951 bool __weak bpf_jit_supports_far_kfunc_call(void)
2952 {
2953 	return false;
2954 }
2955 
2956 bool __weak bpf_jit_supports_arena(void)
2957 {
2958 	return false;
2959 }
2960 
2961 /* Return TRUE if the JIT backend satisfies the following two conditions:
2962  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2963  * 2) Under the specific arch, the implementation of xchg() is the same
2964  *    as atomic_xchg() on pointer-sized words.
2965  */
2966 bool __weak bpf_jit_supports_ptr_xchg(void)
2967 {
2968 	return false;
2969 }
2970 
2971 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2972  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2973  */
2974 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2975 			 int len)
2976 {
2977 	return -EFAULT;
2978 }
2979 
2980 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2981 			      void *addr1, void *addr2)
2982 {
2983 	return -ENOTSUPP;
2984 }
2985 
2986 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2987 {
2988 	return ERR_PTR(-ENOTSUPP);
2989 }
2990 
2991 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2992 {
2993 	return -ENOTSUPP;
2994 }
2995 
2996 bool __weak bpf_jit_supports_exceptions(void)
2997 {
2998 	return false;
2999 }
3000 
3001 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3002 {
3003 }
3004 
3005 /* for configs without MMU or 32-bit */
3006 __weak const struct bpf_map_ops arena_map_ops;
3007 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3008 {
3009 	return 0;
3010 }
3011 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3012 {
3013 	return 0;
3014 }
3015 
3016 #ifdef CONFIG_BPF_SYSCALL
3017 static int __init bpf_global_ma_init(void)
3018 {
3019 	int ret;
3020 
3021 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3022 	bpf_global_ma_set = !ret;
3023 	return ret;
3024 }
3025 late_initcall(bpf_global_ma_init);
3026 #endif
3027 
3028 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3029 EXPORT_SYMBOL(bpf_stats_enabled_key);
3030 
3031 /* All definitions of tracepoints related to BPF. */
3032 #define CREATE_TRACE_POINTS
3033 #include <linux/bpf_trace.h>
3034 
3035 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3036 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3037