xref: /linux/kernel/bpf/core.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 
41 #include <asm/barrier.h>
42 #include <asm/unaligned.h>
43 
44 /* Registers */
45 #define BPF_R0	regs[BPF_REG_0]
46 #define BPF_R1	regs[BPF_REG_1]
47 #define BPF_R2	regs[BPF_REG_2]
48 #define BPF_R3	regs[BPF_REG_3]
49 #define BPF_R4	regs[BPF_REG_4]
50 #define BPF_R5	regs[BPF_REG_5]
51 #define BPF_R6	regs[BPF_REG_6]
52 #define BPF_R7	regs[BPF_REG_7]
53 #define BPF_R8	regs[BPF_REG_8]
54 #define BPF_R9	regs[BPF_REG_9]
55 #define BPF_R10	regs[BPF_REG_10]
56 
57 /* Named registers */
58 #define DST	regs[insn->dst_reg]
59 #define SRC	regs[insn->src_reg]
60 #define FP	regs[BPF_REG_FP]
61 #define AX	regs[BPF_REG_AX]
62 #define ARG1	regs[BPF_REG_ARG1]
63 #define CTX	regs[BPF_REG_CTX]
64 #define OFF	insn->off
65 #define IMM	insn->imm
66 
67 struct bpf_mem_alloc bpf_global_ma;
68 bool bpf_global_ma_set;
69 
70 /* No hurry in this branch
71  *
72  * Exported for the bpf jit load helper.
73  */
74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75 {
76 	u8 *ptr = NULL;
77 
78 	if (k >= SKF_NET_OFF) {
79 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
80 	} else if (k >= SKF_LL_OFF) {
81 		if (unlikely(!skb_mac_header_was_set(skb)))
82 			return NULL;
83 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
84 	}
85 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 		return ptr;
87 
88 	return NULL;
89 }
90 
91 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
92 enum page_size_enum {
93 	__PAGE_SIZE = PAGE_SIZE
94 };
95 
96 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
97 {
98 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
99 	struct bpf_prog_aux *aux;
100 	struct bpf_prog *fp;
101 
102 	size = round_up(size, __PAGE_SIZE);
103 	fp = __vmalloc(size, gfp_flags);
104 	if (fp == NULL)
105 		return NULL;
106 
107 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
108 	if (aux == NULL) {
109 		vfree(fp);
110 		return NULL;
111 	}
112 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
113 	if (!fp->active) {
114 		vfree(fp);
115 		kfree(aux);
116 		return NULL;
117 	}
118 
119 	fp->pages = size / PAGE_SIZE;
120 	fp->aux = aux;
121 	fp->aux->prog = fp;
122 	fp->jit_requested = ebpf_jit_enabled();
123 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
124 #ifdef CONFIG_CGROUP_BPF
125 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
126 #endif
127 
128 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
129 #ifdef CONFIG_FINEIBT
130 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
131 #endif
132 	mutex_init(&fp->aux->used_maps_mutex);
133 	mutex_init(&fp->aux->dst_mutex);
134 
135 	return fp;
136 }
137 
138 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
139 {
140 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
141 	struct bpf_prog *prog;
142 	int cpu;
143 
144 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
145 	if (!prog)
146 		return NULL;
147 
148 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
149 	if (!prog->stats) {
150 		free_percpu(prog->active);
151 		kfree(prog->aux);
152 		vfree(prog);
153 		return NULL;
154 	}
155 
156 	for_each_possible_cpu(cpu) {
157 		struct bpf_prog_stats *pstats;
158 
159 		pstats = per_cpu_ptr(prog->stats, cpu);
160 		u64_stats_init(&pstats->syncp);
161 	}
162 	return prog;
163 }
164 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
165 
166 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
167 {
168 	if (!prog->aux->nr_linfo || !prog->jit_requested)
169 		return 0;
170 
171 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
172 					  sizeof(*prog->aux->jited_linfo),
173 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
174 	if (!prog->aux->jited_linfo)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
180 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
181 {
182 	if (prog->aux->jited_linfo &&
183 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
184 		kvfree(prog->aux->jited_linfo);
185 		prog->aux->jited_linfo = NULL;
186 	}
187 
188 	kfree(prog->aux->kfunc_tab);
189 	prog->aux->kfunc_tab = NULL;
190 }
191 
192 /* The jit engine is responsible to provide an array
193  * for insn_off to the jited_off mapping (insn_to_jit_off).
194  *
195  * The idx to this array is the insn_off.  Hence, the insn_off
196  * here is relative to the prog itself instead of the main prog.
197  * This array has one entry for each xlated bpf insn.
198  *
199  * jited_off is the byte off to the end of the jited insn.
200  *
201  * Hence, with
202  * insn_start:
203  *      The first bpf insn off of the prog.  The insn off
204  *      here is relative to the main prog.
205  *      e.g. if prog is a subprog, insn_start > 0
206  * linfo_idx:
207  *      The prog's idx to prog->aux->linfo and jited_linfo
208  *
209  * jited_linfo[linfo_idx] = prog->bpf_func
210  *
211  * For i > linfo_idx,
212  *
213  * jited_linfo[i] = prog->bpf_func +
214  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
215  */
216 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
217 			       const u32 *insn_to_jit_off)
218 {
219 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
220 	const struct bpf_line_info *linfo;
221 	void **jited_linfo;
222 
223 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
224 		/* Userspace did not provide linfo */
225 		return;
226 
227 	linfo_idx = prog->aux->linfo_idx;
228 	linfo = &prog->aux->linfo[linfo_idx];
229 	insn_start = linfo[0].insn_off;
230 	insn_end = insn_start + prog->len;
231 
232 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
233 	jited_linfo[0] = prog->bpf_func;
234 
235 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
236 
237 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
238 		/* The verifier ensures that linfo[i].insn_off is
239 		 * strictly increasing
240 		 */
241 		jited_linfo[i] = prog->bpf_func +
242 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
243 }
244 
245 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
246 				  gfp_t gfp_extra_flags)
247 {
248 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
249 	struct bpf_prog *fp;
250 	u32 pages;
251 
252 	size = round_up(size, PAGE_SIZE);
253 	pages = size / PAGE_SIZE;
254 	if (pages <= fp_old->pages)
255 		return fp_old;
256 
257 	fp = __vmalloc(size, gfp_flags);
258 	if (fp) {
259 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
260 		fp->pages = pages;
261 		fp->aux->prog = fp;
262 
263 		/* We keep fp->aux from fp_old around in the new
264 		 * reallocated structure.
265 		 */
266 		fp_old->aux = NULL;
267 		fp_old->stats = NULL;
268 		fp_old->active = NULL;
269 		__bpf_prog_free(fp_old);
270 	}
271 
272 	return fp;
273 }
274 
275 void __bpf_prog_free(struct bpf_prog *fp)
276 {
277 	if (fp->aux) {
278 		mutex_destroy(&fp->aux->used_maps_mutex);
279 		mutex_destroy(&fp->aux->dst_mutex);
280 		kfree(fp->aux->poke_tab);
281 		kfree(fp->aux);
282 	}
283 	free_percpu(fp->stats);
284 	free_percpu(fp->active);
285 	vfree(fp);
286 }
287 
288 int bpf_prog_calc_tag(struct bpf_prog *fp)
289 {
290 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
291 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
292 	u32 digest[SHA1_DIGEST_WORDS];
293 	u32 ws[SHA1_WORKSPACE_WORDS];
294 	u32 i, bsize, psize, blocks;
295 	struct bpf_insn *dst;
296 	bool was_ld_map;
297 	u8 *raw, *todo;
298 	__be32 *result;
299 	__be64 *bits;
300 
301 	raw = vmalloc(raw_size);
302 	if (!raw)
303 		return -ENOMEM;
304 
305 	sha1_init(digest);
306 	memset(ws, 0, sizeof(ws));
307 
308 	/* We need to take out the map fd for the digest calculation
309 	 * since they are unstable from user space side.
310 	 */
311 	dst = (void *)raw;
312 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
313 		dst[i] = fp->insnsi[i];
314 		if (!was_ld_map &&
315 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
316 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
317 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
318 			was_ld_map = true;
319 			dst[i].imm = 0;
320 		} else if (was_ld_map &&
321 			   dst[i].code == 0 &&
322 			   dst[i].dst_reg == 0 &&
323 			   dst[i].src_reg == 0 &&
324 			   dst[i].off == 0) {
325 			was_ld_map = false;
326 			dst[i].imm = 0;
327 		} else {
328 			was_ld_map = false;
329 		}
330 	}
331 
332 	psize = bpf_prog_insn_size(fp);
333 	memset(&raw[psize], 0, raw_size - psize);
334 	raw[psize++] = 0x80;
335 
336 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
337 	blocks = bsize / SHA1_BLOCK_SIZE;
338 	todo   = raw;
339 	if (bsize - psize >= sizeof(__be64)) {
340 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
341 	} else {
342 		bits = (__be64 *)(todo + bsize + bits_offset);
343 		blocks++;
344 	}
345 	*bits = cpu_to_be64((psize - 1) << 3);
346 
347 	while (blocks--) {
348 		sha1_transform(digest, todo, ws);
349 		todo += SHA1_BLOCK_SIZE;
350 	}
351 
352 	result = (__force __be32 *)digest;
353 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
354 		result[i] = cpu_to_be32(digest[i]);
355 	memcpy(fp->tag, result, sizeof(fp->tag));
356 
357 	vfree(raw);
358 	return 0;
359 }
360 
361 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
362 				s32 end_new, s32 curr, const bool probe_pass)
363 {
364 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
365 	s32 delta = end_new - end_old;
366 	s64 imm = insn->imm;
367 
368 	if (curr < pos && curr + imm + 1 >= end_old)
369 		imm += delta;
370 	else if (curr >= end_new && curr + imm + 1 < end_new)
371 		imm -= delta;
372 	if (imm < imm_min || imm > imm_max)
373 		return -ERANGE;
374 	if (!probe_pass)
375 		insn->imm = imm;
376 	return 0;
377 }
378 
379 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
380 				s32 end_new, s32 curr, const bool probe_pass)
381 {
382 	s64 off_min, off_max, off;
383 	s32 delta = end_new - end_old;
384 
385 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
386 		off = insn->imm;
387 		off_min = S32_MIN;
388 		off_max = S32_MAX;
389 	} else {
390 		off = insn->off;
391 		off_min = S16_MIN;
392 		off_max = S16_MAX;
393 	}
394 
395 	if (curr < pos && curr + off + 1 >= end_old)
396 		off += delta;
397 	else if (curr >= end_new && curr + off + 1 < end_new)
398 		off -= delta;
399 	if (off < off_min || off > off_max)
400 		return -ERANGE;
401 	if (!probe_pass) {
402 		if (insn->code == (BPF_JMP32 | BPF_JA))
403 			insn->imm = off;
404 		else
405 			insn->off = off;
406 	}
407 	return 0;
408 }
409 
410 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
411 			    s32 end_new, const bool probe_pass)
412 {
413 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
414 	struct bpf_insn *insn = prog->insnsi;
415 	int ret = 0;
416 
417 	for (i = 0; i < insn_cnt; i++, insn++) {
418 		u8 code;
419 
420 		/* In the probing pass we still operate on the original,
421 		 * unpatched image in order to check overflows before we
422 		 * do any other adjustments. Therefore skip the patchlet.
423 		 */
424 		if (probe_pass && i == pos) {
425 			i = end_new;
426 			insn = prog->insnsi + end_old;
427 		}
428 		if (bpf_pseudo_func(insn)) {
429 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
430 						   end_new, i, probe_pass);
431 			if (ret)
432 				return ret;
433 			continue;
434 		}
435 		code = insn->code;
436 		if ((BPF_CLASS(code) != BPF_JMP &&
437 		     BPF_CLASS(code) != BPF_JMP32) ||
438 		    BPF_OP(code) == BPF_EXIT)
439 			continue;
440 		/* Adjust offset of jmps if we cross patch boundaries. */
441 		if (BPF_OP(code) == BPF_CALL) {
442 			if (insn->src_reg != BPF_PSEUDO_CALL)
443 				continue;
444 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
445 						   end_new, i, probe_pass);
446 		} else {
447 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
448 						   end_new, i, probe_pass);
449 		}
450 		if (ret)
451 			break;
452 	}
453 
454 	return ret;
455 }
456 
457 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
458 {
459 	struct bpf_line_info *linfo;
460 	u32 i, nr_linfo;
461 
462 	nr_linfo = prog->aux->nr_linfo;
463 	if (!nr_linfo || !delta)
464 		return;
465 
466 	linfo = prog->aux->linfo;
467 
468 	for (i = 0; i < nr_linfo; i++)
469 		if (off < linfo[i].insn_off)
470 			break;
471 
472 	/* Push all off < linfo[i].insn_off by delta */
473 	for (; i < nr_linfo; i++)
474 		linfo[i].insn_off += delta;
475 }
476 
477 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
478 				       const struct bpf_insn *patch, u32 len)
479 {
480 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
481 	const u32 cnt_max = S16_MAX;
482 	struct bpf_prog *prog_adj;
483 	int err;
484 
485 	/* Since our patchlet doesn't expand the image, we're done. */
486 	if (insn_delta == 0) {
487 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
488 		return prog;
489 	}
490 
491 	insn_adj_cnt = prog->len + insn_delta;
492 
493 	/* Reject anything that would potentially let the insn->off
494 	 * target overflow when we have excessive program expansions.
495 	 * We need to probe here before we do any reallocation where
496 	 * we afterwards may not fail anymore.
497 	 */
498 	if (insn_adj_cnt > cnt_max &&
499 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
500 		return ERR_PTR(err);
501 
502 	/* Several new instructions need to be inserted. Make room
503 	 * for them. Likely, there's no need for a new allocation as
504 	 * last page could have large enough tailroom.
505 	 */
506 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
507 				    GFP_USER);
508 	if (!prog_adj)
509 		return ERR_PTR(-ENOMEM);
510 
511 	prog_adj->len = insn_adj_cnt;
512 
513 	/* Patching happens in 3 steps:
514 	 *
515 	 * 1) Move over tail of insnsi from next instruction onwards,
516 	 *    so we can patch the single target insn with one or more
517 	 *    new ones (patching is always from 1 to n insns, n > 0).
518 	 * 2) Inject new instructions at the target location.
519 	 * 3) Adjust branch offsets if necessary.
520 	 */
521 	insn_rest = insn_adj_cnt - off - len;
522 
523 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
524 		sizeof(*patch) * insn_rest);
525 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
526 
527 	/* We are guaranteed to not fail at this point, otherwise
528 	 * the ship has sailed to reverse to the original state. An
529 	 * overflow cannot happen at this point.
530 	 */
531 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
532 
533 	bpf_adj_linfo(prog_adj, off, insn_delta);
534 
535 	return prog_adj;
536 }
537 
538 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
539 {
540 	/* Branch offsets can't overflow when program is shrinking, no need
541 	 * to call bpf_adj_branches(..., true) here
542 	 */
543 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
544 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
545 	prog->len -= cnt;
546 
547 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
548 }
549 
550 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
551 {
552 	int i;
553 
554 	for (i = 0; i < fp->aux->real_func_cnt; i++)
555 		bpf_prog_kallsyms_del(fp->aux->func[i]);
556 }
557 
558 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
559 {
560 	bpf_prog_kallsyms_del_subprogs(fp);
561 	bpf_prog_kallsyms_del(fp);
562 }
563 
564 #ifdef CONFIG_BPF_JIT
565 /* All BPF JIT sysctl knobs here. */
566 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
567 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
568 int bpf_jit_harden   __read_mostly;
569 long bpf_jit_limit   __read_mostly;
570 long bpf_jit_limit_max __read_mostly;
571 
572 static void
573 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
574 {
575 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
576 
577 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
578 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
579 }
580 
581 static void
582 bpf_prog_ksym_set_name(struct bpf_prog *prog)
583 {
584 	char *sym = prog->aux->ksym.name;
585 	const char *end = sym + KSYM_NAME_LEN;
586 	const struct btf_type *type;
587 	const char *func_name;
588 
589 	BUILD_BUG_ON(sizeof("bpf_prog_") +
590 		     sizeof(prog->tag) * 2 +
591 		     /* name has been null terminated.
592 		      * We should need +1 for the '_' preceding
593 		      * the name.  However, the null character
594 		      * is double counted between the name and the
595 		      * sizeof("bpf_prog_") above, so we omit
596 		      * the +1 here.
597 		      */
598 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
599 
600 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
601 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
602 
603 	/* prog->aux->name will be ignored if full btf name is available */
604 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
605 		type = btf_type_by_id(prog->aux->btf,
606 				      prog->aux->func_info[prog->aux->func_idx].type_id);
607 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
608 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
609 		return;
610 	}
611 
612 	if (prog->aux->name[0])
613 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
614 	else
615 		*sym = 0;
616 }
617 
618 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
619 {
620 	return container_of(n, struct bpf_ksym, tnode)->start;
621 }
622 
623 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
624 					  struct latch_tree_node *b)
625 {
626 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
627 }
628 
629 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
630 {
631 	unsigned long val = (unsigned long)key;
632 	const struct bpf_ksym *ksym;
633 
634 	ksym = container_of(n, struct bpf_ksym, tnode);
635 
636 	if (val < ksym->start)
637 		return -1;
638 	/* Ensure that we detect return addresses as part of the program, when
639 	 * the final instruction is a call for a program part of the stack
640 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
641 	 */
642 	if (val > ksym->end)
643 		return  1;
644 
645 	return 0;
646 }
647 
648 static const struct latch_tree_ops bpf_tree_ops = {
649 	.less	= bpf_tree_less,
650 	.comp	= bpf_tree_comp,
651 };
652 
653 static DEFINE_SPINLOCK(bpf_lock);
654 static LIST_HEAD(bpf_kallsyms);
655 static struct latch_tree_root bpf_tree __cacheline_aligned;
656 
657 void bpf_ksym_add(struct bpf_ksym *ksym)
658 {
659 	spin_lock_bh(&bpf_lock);
660 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
661 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
662 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
663 	spin_unlock_bh(&bpf_lock);
664 }
665 
666 static void __bpf_ksym_del(struct bpf_ksym *ksym)
667 {
668 	if (list_empty(&ksym->lnode))
669 		return;
670 
671 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
672 	list_del_rcu(&ksym->lnode);
673 }
674 
675 void bpf_ksym_del(struct bpf_ksym *ksym)
676 {
677 	spin_lock_bh(&bpf_lock);
678 	__bpf_ksym_del(ksym);
679 	spin_unlock_bh(&bpf_lock);
680 }
681 
682 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
683 {
684 	return fp->jited && !bpf_prog_was_classic(fp);
685 }
686 
687 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
688 {
689 	if (!bpf_prog_kallsyms_candidate(fp) ||
690 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
691 		return;
692 
693 	bpf_prog_ksym_set_addr(fp);
694 	bpf_prog_ksym_set_name(fp);
695 	fp->aux->ksym.prog = true;
696 
697 	bpf_ksym_add(&fp->aux->ksym);
698 
699 #ifdef CONFIG_FINEIBT
700 	/*
701 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
702 	 * and hence unwinder needs help.
703 	 */
704 	if (cfi_mode != CFI_FINEIBT)
705 		return;
706 
707 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
708 		 "__cfi_%s", fp->aux->ksym.name);
709 
710 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
711 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
712 
713 	bpf_ksym_add(&fp->aux->ksym_prefix);
714 #endif
715 }
716 
717 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
718 {
719 	if (!bpf_prog_kallsyms_candidate(fp))
720 		return;
721 
722 	bpf_ksym_del(&fp->aux->ksym);
723 #ifdef CONFIG_FINEIBT
724 	if (cfi_mode != CFI_FINEIBT)
725 		return;
726 	bpf_ksym_del(&fp->aux->ksym_prefix);
727 #endif
728 }
729 
730 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
731 {
732 	struct latch_tree_node *n;
733 
734 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
735 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
736 }
737 
738 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
739 				 unsigned long *off, char *sym)
740 {
741 	struct bpf_ksym *ksym;
742 	char *ret = NULL;
743 
744 	rcu_read_lock();
745 	ksym = bpf_ksym_find(addr);
746 	if (ksym) {
747 		unsigned long symbol_start = ksym->start;
748 		unsigned long symbol_end = ksym->end;
749 
750 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
751 
752 		ret = sym;
753 		if (size)
754 			*size = symbol_end - symbol_start;
755 		if (off)
756 			*off  = addr - symbol_start;
757 	}
758 	rcu_read_unlock();
759 
760 	return ret;
761 }
762 
763 bool is_bpf_text_address(unsigned long addr)
764 {
765 	bool ret;
766 
767 	rcu_read_lock();
768 	ret = bpf_ksym_find(addr) != NULL;
769 	rcu_read_unlock();
770 
771 	return ret;
772 }
773 
774 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
775 {
776 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
777 
778 	return ksym && ksym->prog ?
779 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
780 	       NULL;
781 }
782 
783 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
784 {
785 	const struct exception_table_entry *e = NULL;
786 	struct bpf_prog *prog;
787 
788 	rcu_read_lock();
789 	prog = bpf_prog_ksym_find(addr);
790 	if (!prog)
791 		goto out;
792 	if (!prog->aux->num_exentries)
793 		goto out;
794 
795 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
796 out:
797 	rcu_read_unlock();
798 	return e;
799 }
800 
801 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
802 		    char *sym)
803 {
804 	struct bpf_ksym *ksym;
805 	unsigned int it = 0;
806 	int ret = -ERANGE;
807 
808 	if (!bpf_jit_kallsyms_enabled())
809 		return ret;
810 
811 	rcu_read_lock();
812 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
813 		if (it++ != symnum)
814 			continue;
815 
816 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
817 
818 		*value = ksym->start;
819 		*type  = BPF_SYM_ELF_TYPE;
820 
821 		ret = 0;
822 		break;
823 	}
824 	rcu_read_unlock();
825 
826 	return ret;
827 }
828 
829 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
830 				struct bpf_jit_poke_descriptor *poke)
831 {
832 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
833 	static const u32 poke_tab_max = 1024;
834 	u32 slot = prog->aux->size_poke_tab;
835 	u32 size = slot + 1;
836 
837 	if (size > poke_tab_max)
838 		return -ENOSPC;
839 	if (poke->tailcall_target || poke->tailcall_target_stable ||
840 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
841 		return -EINVAL;
842 
843 	switch (poke->reason) {
844 	case BPF_POKE_REASON_TAIL_CALL:
845 		if (!poke->tail_call.map)
846 			return -EINVAL;
847 		break;
848 	default:
849 		return -EINVAL;
850 	}
851 
852 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
853 	if (!tab)
854 		return -ENOMEM;
855 
856 	memcpy(&tab[slot], poke, sizeof(*poke));
857 	prog->aux->size_poke_tab = size;
858 	prog->aux->poke_tab = tab;
859 
860 	return slot;
861 }
862 
863 /*
864  * BPF program pack allocator.
865  *
866  * Most BPF programs are pretty small. Allocating a hole page for each
867  * program is sometime a waste. Many small bpf program also adds pressure
868  * to instruction TLB. To solve this issue, we introduce a BPF program pack
869  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
870  * to host BPF programs.
871  */
872 #define BPF_PROG_CHUNK_SHIFT	6
873 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
874 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
875 
876 struct bpf_prog_pack {
877 	struct list_head list;
878 	void *ptr;
879 	unsigned long bitmap[];
880 };
881 
882 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
883 {
884 	memset(area, 0, size);
885 }
886 
887 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
888 
889 static DEFINE_MUTEX(pack_mutex);
890 static LIST_HEAD(pack_list);
891 
892 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
893  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
894  */
895 #ifdef PMD_SIZE
896 /* PMD_SIZE is really big for some archs. It doesn't make sense to
897  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
898  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
899  * greater than or equal to 2MB.
900  */
901 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
902 #else
903 #define BPF_PROG_PACK_SIZE PAGE_SIZE
904 #endif
905 
906 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
907 
908 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
909 {
910 	struct bpf_prog_pack *pack;
911 
912 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
913 		       GFP_KERNEL);
914 	if (!pack)
915 		return NULL;
916 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
917 	if (!pack->ptr) {
918 		kfree(pack);
919 		return NULL;
920 	}
921 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
922 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
923 	list_add_tail(&pack->list, &pack_list);
924 
925 	set_vm_flush_reset_perms(pack->ptr);
926 	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
927 	return pack;
928 }
929 
930 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
931 {
932 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
933 	struct bpf_prog_pack *pack;
934 	unsigned long pos;
935 	void *ptr = NULL;
936 
937 	mutex_lock(&pack_mutex);
938 	if (size > BPF_PROG_PACK_SIZE) {
939 		size = round_up(size, PAGE_SIZE);
940 		ptr = bpf_jit_alloc_exec(size);
941 		if (ptr) {
942 			bpf_fill_ill_insns(ptr, size);
943 			set_vm_flush_reset_perms(ptr);
944 			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
945 		}
946 		goto out;
947 	}
948 	list_for_each_entry(pack, &pack_list, list) {
949 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
950 						 nbits, 0);
951 		if (pos < BPF_PROG_CHUNK_COUNT)
952 			goto found_free_area;
953 	}
954 
955 	pack = alloc_new_pack(bpf_fill_ill_insns);
956 	if (!pack)
957 		goto out;
958 
959 	pos = 0;
960 
961 found_free_area:
962 	bitmap_set(pack->bitmap, pos, nbits);
963 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
964 
965 out:
966 	mutex_unlock(&pack_mutex);
967 	return ptr;
968 }
969 
970 void bpf_prog_pack_free(void *ptr, u32 size)
971 {
972 	struct bpf_prog_pack *pack = NULL, *tmp;
973 	unsigned int nbits;
974 	unsigned long pos;
975 
976 	mutex_lock(&pack_mutex);
977 	if (size > BPF_PROG_PACK_SIZE) {
978 		bpf_jit_free_exec(ptr);
979 		goto out;
980 	}
981 
982 	list_for_each_entry(tmp, &pack_list, list) {
983 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
984 			pack = tmp;
985 			break;
986 		}
987 	}
988 
989 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
990 		goto out;
991 
992 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
993 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
994 
995 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
996 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
997 
998 	bitmap_clear(pack->bitmap, pos, nbits);
999 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1000 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1001 		list_del(&pack->list);
1002 		bpf_jit_free_exec(pack->ptr);
1003 		kfree(pack);
1004 	}
1005 out:
1006 	mutex_unlock(&pack_mutex);
1007 }
1008 
1009 static atomic_long_t bpf_jit_current;
1010 
1011 /* Can be overridden by an arch's JIT compiler if it has a custom,
1012  * dedicated BPF backend memory area, or if neither of the two
1013  * below apply.
1014  */
1015 u64 __weak bpf_jit_alloc_exec_limit(void)
1016 {
1017 #if defined(MODULES_VADDR)
1018 	return MODULES_END - MODULES_VADDR;
1019 #else
1020 	return VMALLOC_END - VMALLOC_START;
1021 #endif
1022 }
1023 
1024 static int __init bpf_jit_charge_init(void)
1025 {
1026 	/* Only used as heuristic here to derive limit. */
1027 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1028 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1029 					    PAGE_SIZE), LONG_MAX);
1030 	return 0;
1031 }
1032 pure_initcall(bpf_jit_charge_init);
1033 
1034 int bpf_jit_charge_modmem(u32 size)
1035 {
1036 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1037 		if (!bpf_capable()) {
1038 			atomic_long_sub(size, &bpf_jit_current);
1039 			return -EPERM;
1040 		}
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 void bpf_jit_uncharge_modmem(u32 size)
1047 {
1048 	atomic_long_sub(size, &bpf_jit_current);
1049 }
1050 
1051 void *__weak bpf_jit_alloc_exec(unsigned long size)
1052 {
1053 	return module_alloc(size);
1054 }
1055 
1056 void __weak bpf_jit_free_exec(void *addr)
1057 {
1058 	module_memfree(addr);
1059 }
1060 
1061 struct bpf_binary_header *
1062 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1063 		     unsigned int alignment,
1064 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1065 {
1066 	struct bpf_binary_header *hdr;
1067 	u32 size, hole, start;
1068 
1069 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1070 		     alignment > BPF_IMAGE_ALIGNMENT);
1071 
1072 	/* Most of BPF filters are really small, but if some of them
1073 	 * fill a page, allow at least 128 extra bytes to insert a
1074 	 * random section of illegal instructions.
1075 	 */
1076 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1077 
1078 	if (bpf_jit_charge_modmem(size))
1079 		return NULL;
1080 	hdr = bpf_jit_alloc_exec(size);
1081 	if (!hdr) {
1082 		bpf_jit_uncharge_modmem(size);
1083 		return NULL;
1084 	}
1085 
1086 	/* Fill space with illegal/arch-dep instructions. */
1087 	bpf_fill_ill_insns(hdr, size);
1088 
1089 	hdr->size = size;
1090 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1091 		     PAGE_SIZE - sizeof(*hdr));
1092 	start = get_random_u32_below(hole) & ~(alignment - 1);
1093 
1094 	/* Leave a random number of instructions before BPF code. */
1095 	*image_ptr = &hdr->image[start];
1096 
1097 	return hdr;
1098 }
1099 
1100 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1101 {
1102 	u32 size = hdr->size;
1103 
1104 	bpf_jit_free_exec(hdr);
1105 	bpf_jit_uncharge_modmem(size);
1106 }
1107 
1108 /* Allocate jit binary from bpf_prog_pack allocator.
1109  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1110  * to the memory. To solve this problem, a RW buffer is also allocated at
1111  * as the same time. The JIT engine should calculate offsets based on the
1112  * RO memory address, but write JITed program to the RW buffer. Once the
1113  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1114  * the JITed program to the RO memory.
1115  */
1116 struct bpf_binary_header *
1117 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1118 			  unsigned int alignment,
1119 			  struct bpf_binary_header **rw_header,
1120 			  u8 **rw_image,
1121 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1122 {
1123 	struct bpf_binary_header *ro_header;
1124 	u32 size, hole, start;
1125 
1126 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1127 		     alignment > BPF_IMAGE_ALIGNMENT);
1128 
1129 	/* add 16 bytes for a random section of illegal instructions */
1130 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1131 
1132 	if (bpf_jit_charge_modmem(size))
1133 		return NULL;
1134 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1135 	if (!ro_header) {
1136 		bpf_jit_uncharge_modmem(size);
1137 		return NULL;
1138 	}
1139 
1140 	*rw_header = kvmalloc(size, GFP_KERNEL);
1141 	if (!*rw_header) {
1142 		bpf_prog_pack_free(ro_header, size);
1143 		bpf_jit_uncharge_modmem(size);
1144 		return NULL;
1145 	}
1146 
1147 	/* Fill space with illegal/arch-dep instructions. */
1148 	bpf_fill_ill_insns(*rw_header, size);
1149 	(*rw_header)->size = size;
1150 
1151 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1152 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1153 	start = get_random_u32_below(hole) & ~(alignment - 1);
1154 
1155 	*image_ptr = &ro_header->image[start];
1156 	*rw_image = &(*rw_header)->image[start];
1157 
1158 	return ro_header;
1159 }
1160 
1161 /* Copy JITed text from rw_header to its final location, the ro_header. */
1162 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1163 				 struct bpf_binary_header *ro_header,
1164 				 struct bpf_binary_header *rw_header)
1165 {
1166 	void *ptr;
1167 
1168 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1169 
1170 	kvfree(rw_header);
1171 
1172 	if (IS_ERR(ptr)) {
1173 		bpf_prog_pack_free(ro_header, ro_header->size);
1174 		return PTR_ERR(ptr);
1175 	}
1176 	return 0;
1177 }
1178 
1179 /* bpf_jit_binary_pack_free is called in two different scenarios:
1180  *   1) when the program is freed after;
1181  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1182  * For case 2), we need to free both the RO memory and the RW buffer.
1183  *
1184  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1185  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1186  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1187  * bpf_arch_text_copy (when jit fails).
1188  */
1189 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1190 			      struct bpf_binary_header *rw_header)
1191 {
1192 	u32 size = ro_header->size;
1193 
1194 	bpf_prog_pack_free(ro_header, size);
1195 	kvfree(rw_header);
1196 	bpf_jit_uncharge_modmem(size);
1197 }
1198 
1199 struct bpf_binary_header *
1200 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1201 {
1202 	unsigned long real_start = (unsigned long)fp->bpf_func;
1203 	unsigned long addr;
1204 
1205 	addr = real_start & BPF_PROG_CHUNK_MASK;
1206 	return (void *)addr;
1207 }
1208 
1209 static inline struct bpf_binary_header *
1210 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1211 {
1212 	unsigned long real_start = (unsigned long)fp->bpf_func;
1213 	unsigned long addr;
1214 
1215 	addr = real_start & PAGE_MASK;
1216 	return (void *)addr;
1217 }
1218 
1219 /* This symbol is only overridden by archs that have different
1220  * requirements than the usual eBPF JITs, f.e. when they only
1221  * implement cBPF JIT, do not set images read-only, etc.
1222  */
1223 void __weak bpf_jit_free(struct bpf_prog *fp)
1224 {
1225 	if (fp->jited) {
1226 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1227 
1228 		bpf_jit_binary_free(hdr);
1229 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1230 	}
1231 
1232 	bpf_prog_unlock_free(fp);
1233 }
1234 
1235 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1236 			  const struct bpf_insn *insn, bool extra_pass,
1237 			  u64 *func_addr, bool *func_addr_fixed)
1238 {
1239 	s16 off = insn->off;
1240 	s32 imm = insn->imm;
1241 	u8 *addr;
1242 	int err;
1243 
1244 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1245 	if (!*func_addr_fixed) {
1246 		/* Place-holder address till the last pass has collected
1247 		 * all addresses for JITed subprograms in which case we
1248 		 * can pick them up from prog->aux.
1249 		 */
1250 		if (!extra_pass)
1251 			addr = NULL;
1252 		else if (prog->aux->func &&
1253 			 off >= 0 && off < prog->aux->real_func_cnt)
1254 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1255 		else
1256 			return -EINVAL;
1257 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1258 		   bpf_jit_supports_far_kfunc_call()) {
1259 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1260 		if (err)
1261 			return err;
1262 	} else {
1263 		/* Address of a BPF helper call. Since part of the core
1264 		 * kernel, it's always at a fixed location. __bpf_call_base
1265 		 * and the helper with imm relative to it are both in core
1266 		 * kernel.
1267 		 */
1268 		addr = (u8 *)__bpf_call_base + imm;
1269 	}
1270 
1271 	*func_addr = (unsigned long)addr;
1272 	return 0;
1273 }
1274 
1275 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1276 			      const struct bpf_insn *aux,
1277 			      struct bpf_insn *to_buff,
1278 			      bool emit_zext)
1279 {
1280 	struct bpf_insn *to = to_buff;
1281 	u32 imm_rnd = get_random_u32();
1282 	s16 off;
1283 
1284 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1285 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1286 
1287 	/* Constraints on AX register:
1288 	 *
1289 	 * AX register is inaccessible from user space. It is mapped in
1290 	 * all JITs, and used here for constant blinding rewrites. It is
1291 	 * typically "stateless" meaning its contents are only valid within
1292 	 * the executed instruction, but not across several instructions.
1293 	 * There are a few exceptions however which are further detailed
1294 	 * below.
1295 	 *
1296 	 * Constant blinding is only used by JITs, not in the interpreter.
1297 	 * The interpreter uses AX in some occasions as a local temporary
1298 	 * register e.g. in DIV or MOD instructions.
1299 	 *
1300 	 * In restricted circumstances, the verifier can also use the AX
1301 	 * register for rewrites as long as they do not interfere with
1302 	 * the above cases!
1303 	 */
1304 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1305 		goto out;
1306 
1307 	if (from->imm == 0 &&
1308 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1309 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1310 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1311 		goto out;
1312 	}
1313 
1314 	switch (from->code) {
1315 	case BPF_ALU | BPF_ADD | BPF_K:
1316 	case BPF_ALU | BPF_SUB | BPF_K:
1317 	case BPF_ALU | BPF_AND | BPF_K:
1318 	case BPF_ALU | BPF_OR  | BPF_K:
1319 	case BPF_ALU | BPF_XOR | BPF_K:
1320 	case BPF_ALU | BPF_MUL | BPF_K:
1321 	case BPF_ALU | BPF_MOV | BPF_K:
1322 	case BPF_ALU | BPF_DIV | BPF_K:
1323 	case BPF_ALU | BPF_MOD | BPF_K:
1324 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1325 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1327 		break;
1328 
1329 	case BPF_ALU64 | BPF_ADD | BPF_K:
1330 	case BPF_ALU64 | BPF_SUB | BPF_K:
1331 	case BPF_ALU64 | BPF_AND | BPF_K:
1332 	case BPF_ALU64 | BPF_OR  | BPF_K:
1333 	case BPF_ALU64 | BPF_XOR | BPF_K:
1334 	case BPF_ALU64 | BPF_MUL | BPF_K:
1335 	case BPF_ALU64 | BPF_MOV | BPF_K:
1336 	case BPF_ALU64 | BPF_DIV | BPF_K:
1337 	case BPF_ALU64 | BPF_MOD | BPF_K:
1338 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1339 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1340 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1341 		break;
1342 
1343 	case BPF_JMP | BPF_JEQ  | BPF_K:
1344 	case BPF_JMP | BPF_JNE  | BPF_K:
1345 	case BPF_JMP | BPF_JGT  | BPF_K:
1346 	case BPF_JMP | BPF_JLT  | BPF_K:
1347 	case BPF_JMP | BPF_JGE  | BPF_K:
1348 	case BPF_JMP | BPF_JLE  | BPF_K:
1349 	case BPF_JMP | BPF_JSGT | BPF_K:
1350 	case BPF_JMP | BPF_JSLT | BPF_K:
1351 	case BPF_JMP | BPF_JSGE | BPF_K:
1352 	case BPF_JMP | BPF_JSLE | BPF_K:
1353 	case BPF_JMP | BPF_JSET | BPF_K:
1354 		/* Accommodate for extra offset in case of a backjump. */
1355 		off = from->off;
1356 		if (off < 0)
1357 			off -= 2;
1358 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1359 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1360 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1361 		break;
1362 
1363 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1364 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1365 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1366 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1367 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1368 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1369 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1370 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1371 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1372 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1373 	case BPF_JMP32 | BPF_JSET | BPF_K:
1374 		/* Accommodate for extra offset in case of a backjump. */
1375 		off = from->off;
1376 		if (off < 0)
1377 			off -= 2;
1378 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1379 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1380 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1381 				      off);
1382 		break;
1383 
1384 	case BPF_LD | BPF_IMM | BPF_DW:
1385 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1386 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1387 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1388 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1389 		break;
1390 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1391 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1392 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1393 		if (emit_zext)
1394 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1395 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1396 		break;
1397 
1398 	case BPF_ST | BPF_MEM | BPF_DW:
1399 	case BPF_ST | BPF_MEM | BPF_W:
1400 	case BPF_ST | BPF_MEM | BPF_H:
1401 	case BPF_ST | BPF_MEM | BPF_B:
1402 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1403 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1404 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1405 		break;
1406 	}
1407 out:
1408 	return to - to_buff;
1409 }
1410 
1411 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1412 					      gfp_t gfp_extra_flags)
1413 {
1414 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1415 	struct bpf_prog *fp;
1416 
1417 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1418 	if (fp != NULL) {
1419 		/* aux->prog still points to the fp_other one, so
1420 		 * when promoting the clone to the real program,
1421 		 * this still needs to be adapted.
1422 		 */
1423 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1424 	}
1425 
1426 	return fp;
1427 }
1428 
1429 static void bpf_prog_clone_free(struct bpf_prog *fp)
1430 {
1431 	/* aux was stolen by the other clone, so we cannot free
1432 	 * it from this path! It will be freed eventually by the
1433 	 * other program on release.
1434 	 *
1435 	 * At this point, we don't need a deferred release since
1436 	 * clone is guaranteed to not be locked.
1437 	 */
1438 	fp->aux = NULL;
1439 	fp->stats = NULL;
1440 	fp->active = NULL;
1441 	__bpf_prog_free(fp);
1442 }
1443 
1444 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1445 {
1446 	/* We have to repoint aux->prog to self, as we don't
1447 	 * know whether fp here is the clone or the original.
1448 	 */
1449 	fp->aux->prog = fp;
1450 	bpf_prog_clone_free(fp_other);
1451 }
1452 
1453 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1454 {
1455 	struct bpf_insn insn_buff[16], aux[2];
1456 	struct bpf_prog *clone, *tmp;
1457 	int insn_delta, insn_cnt;
1458 	struct bpf_insn *insn;
1459 	int i, rewritten;
1460 
1461 	if (!prog->blinding_requested || prog->blinded)
1462 		return prog;
1463 
1464 	clone = bpf_prog_clone_create(prog, GFP_USER);
1465 	if (!clone)
1466 		return ERR_PTR(-ENOMEM);
1467 
1468 	insn_cnt = clone->len;
1469 	insn = clone->insnsi;
1470 
1471 	for (i = 0; i < insn_cnt; i++, insn++) {
1472 		if (bpf_pseudo_func(insn)) {
1473 			/* ld_imm64 with an address of bpf subprog is not
1474 			 * a user controlled constant. Don't randomize it,
1475 			 * since it will conflict with jit_subprogs() logic.
1476 			 */
1477 			insn++;
1478 			i++;
1479 			continue;
1480 		}
1481 
1482 		/* We temporarily need to hold the original ld64 insn
1483 		 * so that we can still access the first part in the
1484 		 * second blinding run.
1485 		 */
1486 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1487 		    insn[1].code == 0)
1488 			memcpy(aux, insn, sizeof(aux));
1489 
1490 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1491 						clone->aux->verifier_zext);
1492 		if (!rewritten)
1493 			continue;
1494 
1495 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1496 		if (IS_ERR(tmp)) {
1497 			/* Patching may have repointed aux->prog during
1498 			 * realloc from the original one, so we need to
1499 			 * fix it up here on error.
1500 			 */
1501 			bpf_jit_prog_release_other(prog, clone);
1502 			return tmp;
1503 		}
1504 
1505 		clone = tmp;
1506 		insn_delta = rewritten - 1;
1507 
1508 		/* Walk new program and skip insns we just inserted. */
1509 		insn = clone->insnsi + i + insn_delta;
1510 		insn_cnt += insn_delta;
1511 		i        += insn_delta;
1512 	}
1513 
1514 	clone->blinded = 1;
1515 	return clone;
1516 }
1517 #endif /* CONFIG_BPF_JIT */
1518 
1519 /* Base function for offset calculation. Needs to go into .text section,
1520  * therefore keeping it non-static as well; will also be used by JITs
1521  * anyway later on, so do not let the compiler omit it. This also needs
1522  * to go into kallsyms for correlation from e.g. bpftool, so naming
1523  * must not change.
1524  */
1525 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1526 {
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL_GPL(__bpf_call_base);
1530 
1531 /* All UAPI available opcodes. */
1532 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1533 	/* 32 bit ALU operations. */		\
1534 	/*   Register based. */			\
1535 	INSN_3(ALU, ADD,  X),			\
1536 	INSN_3(ALU, SUB,  X),			\
1537 	INSN_3(ALU, AND,  X),			\
1538 	INSN_3(ALU, OR,   X),			\
1539 	INSN_3(ALU, LSH,  X),			\
1540 	INSN_3(ALU, RSH,  X),			\
1541 	INSN_3(ALU, XOR,  X),			\
1542 	INSN_3(ALU, MUL,  X),			\
1543 	INSN_3(ALU, MOV,  X),			\
1544 	INSN_3(ALU, ARSH, X),			\
1545 	INSN_3(ALU, DIV,  X),			\
1546 	INSN_3(ALU, MOD,  X),			\
1547 	INSN_2(ALU, NEG),			\
1548 	INSN_3(ALU, END, TO_BE),		\
1549 	INSN_3(ALU, END, TO_LE),		\
1550 	/*   Immediate based. */		\
1551 	INSN_3(ALU, ADD,  K),			\
1552 	INSN_3(ALU, SUB,  K),			\
1553 	INSN_3(ALU, AND,  K),			\
1554 	INSN_3(ALU, OR,   K),			\
1555 	INSN_3(ALU, LSH,  K),			\
1556 	INSN_3(ALU, RSH,  K),			\
1557 	INSN_3(ALU, XOR,  K),			\
1558 	INSN_3(ALU, MUL,  K),			\
1559 	INSN_3(ALU, MOV,  K),			\
1560 	INSN_3(ALU, ARSH, K),			\
1561 	INSN_3(ALU, DIV,  K),			\
1562 	INSN_3(ALU, MOD,  K),			\
1563 	/* 64 bit ALU operations. */		\
1564 	/*   Register based. */			\
1565 	INSN_3(ALU64, ADD,  X),			\
1566 	INSN_3(ALU64, SUB,  X),			\
1567 	INSN_3(ALU64, AND,  X),			\
1568 	INSN_3(ALU64, OR,   X),			\
1569 	INSN_3(ALU64, LSH,  X),			\
1570 	INSN_3(ALU64, RSH,  X),			\
1571 	INSN_3(ALU64, XOR,  X),			\
1572 	INSN_3(ALU64, MUL,  X),			\
1573 	INSN_3(ALU64, MOV,  X),			\
1574 	INSN_3(ALU64, ARSH, X),			\
1575 	INSN_3(ALU64, DIV,  X),			\
1576 	INSN_3(ALU64, MOD,  X),			\
1577 	INSN_2(ALU64, NEG),			\
1578 	INSN_3(ALU64, END, TO_LE),		\
1579 	/*   Immediate based. */		\
1580 	INSN_3(ALU64, ADD,  K),			\
1581 	INSN_3(ALU64, SUB,  K),			\
1582 	INSN_3(ALU64, AND,  K),			\
1583 	INSN_3(ALU64, OR,   K),			\
1584 	INSN_3(ALU64, LSH,  K),			\
1585 	INSN_3(ALU64, RSH,  K),			\
1586 	INSN_3(ALU64, XOR,  K),			\
1587 	INSN_3(ALU64, MUL,  K),			\
1588 	INSN_3(ALU64, MOV,  K),			\
1589 	INSN_3(ALU64, ARSH, K),			\
1590 	INSN_3(ALU64, DIV,  K),			\
1591 	INSN_3(ALU64, MOD,  K),			\
1592 	/* Call instruction. */			\
1593 	INSN_2(JMP, CALL),			\
1594 	/* Exit instruction. */			\
1595 	INSN_2(JMP, EXIT),			\
1596 	/* 32-bit Jump instructions. */		\
1597 	/*   Register based. */			\
1598 	INSN_3(JMP32, JEQ,  X),			\
1599 	INSN_3(JMP32, JNE,  X),			\
1600 	INSN_3(JMP32, JGT,  X),			\
1601 	INSN_3(JMP32, JLT,  X),			\
1602 	INSN_3(JMP32, JGE,  X),			\
1603 	INSN_3(JMP32, JLE,  X),			\
1604 	INSN_3(JMP32, JSGT, X),			\
1605 	INSN_3(JMP32, JSLT, X),			\
1606 	INSN_3(JMP32, JSGE, X),			\
1607 	INSN_3(JMP32, JSLE, X),			\
1608 	INSN_3(JMP32, JSET, X),			\
1609 	/*   Immediate based. */		\
1610 	INSN_3(JMP32, JEQ,  K),			\
1611 	INSN_3(JMP32, JNE,  K),			\
1612 	INSN_3(JMP32, JGT,  K),			\
1613 	INSN_3(JMP32, JLT,  K),			\
1614 	INSN_3(JMP32, JGE,  K),			\
1615 	INSN_3(JMP32, JLE,  K),			\
1616 	INSN_3(JMP32, JSGT, K),			\
1617 	INSN_3(JMP32, JSLT, K),			\
1618 	INSN_3(JMP32, JSGE, K),			\
1619 	INSN_3(JMP32, JSLE, K),			\
1620 	INSN_3(JMP32, JSET, K),			\
1621 	/* Jump instructions. */		\
1622 	/*   Register based. */			\
1623 	INSN_3(JMP, JEQ,  X),			\
1624 	INSN_3(JMP, JNE,  X),			\
1625 	INSN_3(JMP, JGT,  X),			\
1626 	INSN_3(JMP, JLT,  X),			\
1627 	INSN_3(JMP, JGE,  X),			\
1628 	INSN_3(JMP, JLE,  X),			\
1629 	INSN_3(JMP, JSGT, X),			\
1630 	INSN_3(JMP, JSLT, X),			\
1631 	INSN_3(JMP, JSGE, X),			\
1632 	INSN_3(JMP, JSLE, X),			\
1633 	INSN_3(JMP, JSET, X),			\
1634 	/*   Immediate based. */		\
1635 	INSN_3(JMP, JEQ,  K),			\
1636 	INSN_3(JMP, JNE,  K),			\
1637 	INSN_3(JMP, JGT,  K),			\
1638 	INSN_3(JMP, JLT,  K),			\
1639 	INSN_3(JMP, JGE,  K),			\
1640 	INSN_3(JMP, JLE,  K),			\
1641 	INSN_3(JMP, JSGT, K),			\
1642 	INSN_3(JMP, JSLT, K),			\
1643 	INSN_3(JMP, JSGE, K),			\
1644 	INSN_3(JMP, JSLE, K),			\
1645 	INSN_3(JMP, JSET, K),			\
1646 	INSN_2(JMP, JA),			\
1647 	INSN_2(JMP32, JA),			\
1648 	/* Store instructions. */		\
1649 	/*   Register based. */			\
1650 	INSN_3(STX, MEM,  B),			\
1651 	INSN_3(STX, MEM,  H),			\
1652 	INSN_3(STX, MEM,  W),			\
1653 	INSN_3(STX, MEM,  DW),			\
1654 	INSN_3(STX, ATOMIC, W),			\
1655 	INSN_3(STX, ATOMIC, DW),		\
1656 	/*   Immediate based. */		\
1657 	INSN_3(ST, MEM, B),			\
1658 	INSN_3(ST, MEM, H),			\
1659 	INSN_3(ST, MEM, W),			\
1660 	INSN_3(ST, MEM, DW),			\
1661 	/* Load instructions. */		\
1662 	/*   Register based. */			\
1663 	INSN_3(LDX, MEM, B),			\
1664 	INSN_3(LDX, MEM, H),			\
1665 	INSN_3(LDX, MEM, W),			\
1666 	INSN_3(LDX, MEM, DW),			\
1667 	INSN_3(LDX, MEMSX, B),			\
1668 	INSN_3(LDX, MEMSX, H),			\
1669 	INSN_3(LDX, MEMSX, W),			\
1670 	/*   Immediate based. */		\
1671 	INSN_3(LD, IMM, DW)
1672 
1673 bool bpf_opcode_in_insntable(u8 code)
1674 {
1675 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1676 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1677 	static const bool public_insntable[256] = {
1678 		[0 ... 255] = false,
1679 		/* Now overwrite non-defaults ... */
1680 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1681 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1682 		[BPF_LD | BPF_ABS | BPF_B] = true,
1683 		[BPF_LD | BPF_ABS | BPF_H] = true,
1684 		[BPF_LD | BPF_ABS | BPF_W] = true,
1685 		[BPF_LD | BPF_IND | BPF_B] = true,
1686 		[BPF_LD | BPF_IND | BPF_H] = true,
1687 		[BPF_LD | BPF_IND | BPF_W] = true,
1688 		[BPF_JMP | BPF_JCOND] = true,
1689 	};
1690 #undef BPF_INSN_3_TBL
1691 #undef BPF_INSN_2_TBL
1692 	return public_insntable[code];
1693 }
1694 
1695 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1696 /**
1697  *	___bpf_prog_run - run eBPF program on a given context
1698  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1699  *	@insn: is the array of eBPF instructions
1700  *
1701  * Decode and execute eBPF instructions.
1702  *
1703  * Return: whatever value is in %BPF_R0 at program exit
1704  */
1705 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1706 {
1707 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1708 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1709 	static const void * const jumptable[256] __annotate_jump_table = {
1710 		[0 ... 255] = &&default_label,
1711 		/* Now overwrite non-defaults ... */
1712 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1713 		/* Non-UAPI available opcodes. */
1714 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1715 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1716 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1717 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1718 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1719 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1720 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1721 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1722 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1723 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1724 	};
1725 #undef BPF_INSN_3_LBL
1726 #undef BPF_INSN_2_LBL
1727 	u32 tail_call_cnt = 0;
1728 
1729 #define CONT	 ({ insn++; goto select_insn; })
1730 #define CONT_JMP ({ insn++; goto select_insn; })
1731 
1732 select_insn:
1733 	goto *jumptable[insn->code];
1734 
1735 	/* Explicitly mask the register-based shift amounts with 63 or 31
1736 	 * to avoid undefined behavior. Normally this won't affect the
1737 	 * generated code, for example, in case of native 64 bit archs such
1738 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1739 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1740 	 * the BPF shift operations to machine instructions which produce
1741 	 * implementation-defined results in such a case; the resulting
1742 	 * contents of the register may be arbitrary, but program behaviour
1743 	 * as a whole remains defined. In other words, in case of JIT backends,
1744 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1745 	 */
1746 	/* ALU (shifts) */
1747 #define SHT(OPCODE, OP)					\
1748 	ALU64_##OPCODE##_X:				\
1749 		DST = DST OP (SRC & 63);		\
1750 		CONT;					\
1751 	ALU_##OPCODE##_X:				\
1752 		DST = (u32) DST OP ((u32) SRC & 31);	\
1753 		CONT;					\
1754 	ALU64_##OPCODE##_K:				\
1755 		DST = DST OP IMM;			\
1756 		CONT;					\
1757 	ALU_##OPCODE##_K:				\
1758 		DST = (u32) DST OP (u32) IMM;		\
1759 		CONT;
1760 	/* ALU (rest) */
1761 #define ALU(OPCODE, OP)					\
1762 	ALU64_##OPCODE##_X:				\
1763 		DST = DST OP SRC;			\
1764 		CONT;					\
1765 	ALU_##OPCODE##_X:				\
1766 		DST = (u32) DST OP (u32) SRC;		\
1767 		CONT;					\
1768 	ALU64_##OPCODE##_K:				\
1769 		DST = DST OP IMM;			\
1770 		CONT;					\
1771 	ALU_##OPCODE##_K:				\
1772 		DST = (u32) DST OP (u32) IMM;		\
1773 		CONT;
1774 	ALU(ADD,  +)
1775 	ALU(SUB,  -)
1776 	ALU(AND,  &)
1777 	ALU(OR,   |)
1778 	ALU(XOR,  ^)
1779 	ALU(MUL,  *)
1780 	SHT(LSH, <<)
1781 	SHT(RSH, >>)
1782 #undef SHT
1783 #undef ALU
1784 	ALU_NEG:
1785 		DST = (u32) -DST;
1786 		CONT;
1787 	ALU64_NEG:
1788 		DST = -DST;
1789 		CONT;
1790 	ALU_MOV_X:
1791 		switch (OFF) {
1792 		case 0:
1793 			DST = (u32) SRC;
1794 			break;
1795 		case 8:
1796 			DST = (u32)(s8) SRC;
1797 			break;
1798 		case 16:
1799 			DST = (u32)(s16) SRC;
1800 			break;
1801 		}
1802 		CONT;
1803 	ALU_MOV_K:
1804 		DST = (u32) IMM;
1805 		CONT;
1806 	ALU64_MOV_X:
1807 		switch (OFF) {
1808 		case 0:
1809 			DST = SRC;
1810 			break;
1811 		case 8:
1812 			DST = (s8) SRC;
1813 			break;
1814 		case 16:
1815 			DST = (s16) SRC;
1816 			break;
1817 		case 32:
1818 			DST = (s32) SRC;
1819 			break;
1820 		}
1821 		CONT;
1822 	ALU64_MOV_K:
1823 		DST = IMM;
1824 		CONT;
1825 	LD_IMM_DW:
1826 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1827 		insn++;
1828 		CONT;
1829 	ALU_ARSH_X:
1830 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1831 		CONT;
1832 	ALU_ARSH_K:
1833 		DST = (u64) (u32) (((s32) DST) >> IMM);
1834 		CONT;
1835 	ALU64_ARSH_X:
1836 		(*(s64 *) &DST) >>= (SRC & 63);
1837 		CONT;
1838 	ALU64_ARSH_K:
1839 		(*(s64 *) &DST) >>= IMM;
1840 		CONT;
1841 	ALU64_MOD_X:
1842 		switch (OFF) {
1843 		case 0:
1844 			div64_u64_rem(DST, SRC, &AX);
1845 			DST = AX;
1846 			break;
1847 		case 1:
1848 			AX = div64_s64(DST, SRC);
1849 			DST = DST - AX * SRC;
1850 			break;
1851 		}
1852 		CONT;
1853 	ALU_MOD_X:
1854 		switch (OFF) {
1855 		case 0:
1856 			AX = (u32) DST;
1857 			DST = do_div(AX, (u32) SRC);
1858 			break;
1859 		case 1:
1860 			AX = abs((s32)DST);
1861 			AX = do_div(AX, abs((s32)SRC));
1862 			if ((s32)DST < 0)
1863 				DST = (u32)-AX;
1864 			else
1865 				DST = (u32)AX;
1866 			break;
1867 		}
1868 		CONT;
1869 	ALU64_MOD_K:
1870 		switch (OFF) {
1871 		case 0:
1872 			div64_u64_rem(DST, IMM, &AX);
1873 			DST = AX;
1874 			break;
1875 		case 1:
1876 			AX = div64_s64(DST, IMM);
1877 			DST = DST - AX * IMM;
1878 			break;
1879 		}
1880 		CONT;
1881 	ALU_MOD_K:
1882 		switch (OFF) {
1883 		case 0:
1884 			AX = (u32) DST;
1885 			DST = do_div(AX, (u32) IMM);
1886 			break;
1887 		case 1:
1888 			AX = abs((s32)DST);
1889 			AX = do_div(AX, abs((s32)IMM));
1890 			if ((s32)DST < 0)
1891 				DST = (u32)-AX;
1892 			else
1893 				DST = (u32)AX;
1894 			break;
1895 		}
1896 		CONT;
1897 	ALU64_DIV_X:
1898 		switch (OFF) {
1899 		case 0:
1900 			DST = div64_u64(DST, SRC);
1901 			break;
1902 		case 1:
1903 			DST = div64_s64(DST, SRC);
1904 			break;
1905 		}
1906 		CONT;
1907 	ALU_DIV_X:
1908 		switch (OFF) {
1909 		case 0:
1910 			AX = (u32) DST;
1911 			do_div(AX, (u32) SRC);
1912 			DST = (u32) AX;
1913 			break;
1914 		case 1:
1915 			AX = abs((s32)DST);
1916 			do_div(AX, abs((s32)SRC));
1917 			if (((s32)DST < 0) == ((s32)SRC < 0))
1918 				DST = (u32)AX;
1919 			else
1920 				DST = (u32)-AX;
1921 			break;
1922 		}
1923 		CONT;
1924 	ALU64_DIV_K:
1925 		switch (OFF) {
1926 		case 0:
1927 			DST = div64_u64(DST, IMM);
1928 			break;
1929 		case 1:
1930 			DST = div64_s64(DST, IMM);
1931 			break;
1932 		}
1933 		CONT;
1934 	ALU_DIV_K:
1935 		switch (OFF) {
1936 		case 0:
1937 			AX = (u32) DST;
1938 			do_div(AX, (u32) IMM);
1939 			DST = (u32) AX;
1940 			break;
1941 		case 1:
1942 			AX = abs((s32)DST);
1943 			do_div(AX, abs((s32)IMM));
1944 			if (((s32)DST < 0) == ((s32)IMM < 0))
1945 				DST = (u32)AX;
1946 			else
1947 				DST = (u32)-AX;
1948 			break;
1949 		}
1950 		CONT;
1951 	ALU_END_TO_BE:
1952 		switch (IMM) {
1953 		case 16:
1954 			DST = (__force u16) cpu_to_be16(DST);
1955 			break;
1956 		case 32:
1957 			DST = (__force u32) cpu_to_be32(DST);
1958 			break;
1959 		case 64:
1960 			DST = (__force u64) cpu_to_be64(DST);
1961 			break;
1962 		}
1963 		CONT;
1964 	ALU_END_TO_LE:
1965 		switch (IMM) {
1966 		case 16:
1967 			DST = (__force u16) cpu_to_le16(DST);
1968 			break;
1969 		case 32:
1970 			DST = (__force u32) cpu_to_le32(DST);
1971 			break;
1972 		case 64:
1973 			DST = (__force u64) cpu_to_le64(DST);
1974 			break;
1975 		}
1976 		CONT;
1977 	ALU64_END_TO_LE:
1978 		switch (IMM) {
1979 		case 16:
1980 			DST = (__force u16) __swab16(DST);
1981 			break;
1982 		case 32:
1983 			DST = (__force u32) __swab32(DST);
1984 			break;
1985 		case 64:
1986 			DST = (__force u64) __swab64(DST);
1987 			break;
1988 		}
1989 		CONT;
1990 
1991 	/* CALL */
1992 	JMP_CALL:
1993 		/* Function call scratches BPF_R1-BPF_R5 registers,
1994 		 * preserves BPF_R6-BPF_R9, and stores return value
1995 		 * into BPF_R0.
1996 		 */
1997 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1998 						       BPF_R4, BPF_R5);
1999 		CONT;
2000 
2001 	JMP_CALL_ARGS:
2002 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2003 							    BPF_R3, BPF_R4,
2004 							    BPF_R5,
2005 							    insn + insn->off + 1);
2006 		CONT;
2007 
2008 	JMP_TAIL_CALL: {
2009 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2010 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2011 		struct bpf_prog *prog;
2012 		u32 index = BPF_R3;
2013 
2014 		if (unlikely(index >= array->map.max_entries))
2015 			goto out;
2016 
2017 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2018 			goto out;
2019 
2020 		tail_call_cnt++;
2021 
2022 		prog = READ_ONCE(array->ptrs[index]);
2023 		if (!prog)
2024 			goto out;
2025 
2026 		/* ARG1 at this point is guaranteed to point to CTX from
2027 		 * the verifier side due to the fact that the tail call is
2028 		 * handled like a helper, that is, bpf_tail_call_proto,
2029 		 * where arg1_type is ARG_PTR_TO_CTX.
2030 		 */
2031 		insn = prog->insnsi;
2032 		goto select_insn;
2033 out:
2034 		CONT;
2035 	}
2036 	JMP_JA:
2037 		insn += insn->off;
2038 		CONT;
2039 	JMP32_JA:
2040 		insn += insn->imm;
2041 		CONT;
2042 	JMP_EXIT:
2043 		return BPF_R0;
2044 	/* JMP */
2045 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2046 	JMP_##OPCODE##_X:					\
2047 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2048 			insn += insn->off;			\
2049 			CONT_JMP;				\
2050 		}						\
2051 		CONT;						\
2052 	JMP32_##OPCODE##_X:					\
2053 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2054 			insn += insn->off;			\
2055 			CONT_JMP;				\
2056 		}						\
2057 		CONT;						\
2058 	JMP_##OPCODE##_K:					\
2059 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2060 			insn += insn->off;			\
2061 			CONT_JMP;				\
2062 		}						\
2063 		CONT;						\
2064 	JMP32_##OPCODE##_K:					\
2065 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2066 			insn += insn->off;			\
2067 			CONT_JMP;				\
2068 		}						\
2069 		CONT;
2070 	COND_JMP(u, JEQ, ==)
2071 	COND_JMP(u, JNE, !=)
2072 	COND_JMP(u, JGT, >)
2073 	COND_JMP(u, JLT, <)
2074 	COND_JMP(u, JGE, >=)
2075 	COND_JMP(u, JLE, <=)
2076 	COND_JMP(u, JSET, &)
2077 	COND_JMP(s, JSGT, >)
2078 	COND_JMP(s, JSLT, <)
2079 	COND_JMP(s, JSGE, >=)
2080 	COND_JMP(s, JSLE, <=)
2081 #undef COND_JMP
2082 	/* ST, STX and LDX*/
2083 	ST_NOSPEC:
2084 		/* Speculation barrier for mitigating Speculative Store Bypass.
2085 		 * In case of arm64, we rely on the firmware mitigation as
2086 		 * controlled via the ssbd kernel parameter. Whenever the
2087 		 * mitigation is enabled, it works for all of the kernel code
2088 		 * with no need to provide any additional instructions here.
2089 		 * In case of x86, we use 'lfence' insn for mitigation. We
2090 		 * reuse preexisting logic from Spectre v1 mitigation that
2091 		 * happens to produce the required code on x86 for v4 as well.
2092 		 */
2093 		barrier_nospec();
2094 		CONT;
2095 #define LDST(SIZEOP, SIZE)						\
2096 	STX_MEM_##SIZEOP:						\
2097 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2098 		CONT;							\
2099 	ST_MEM_##SIZEOP:						\
2100 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2101 		CONT;							\
2102 	LDX_MEM_##SIZEOP:						\
2103 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2104 		CONT;							\
2105 	LDX_PROBE_MEM_##SIZEOP:						\
2106 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2107 			      (const void *)(long) (SRC + insn->off));	\
2108 		DST = *((SIZE *)&DST);					\
2109 		CONT;
2110 
2111 	LDST(B,   u8)
2112 	LDST(H,  u16)
2113 	LDST(W,  u32)
2114 	LDST(DW, u64)
2115 #undef LDST
2116 
2117 #define LDSX(SIZEOP, SIZE)						\
2118 	LDX_MEMSX_##SIZEOP:						\
2119 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2120 		CONT;							\
2121 	LDX_PROBE_MEMSX_##SIZEOP:					\
2122 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2123 				      (const void *)(long) (SRC + insn->off));	\
2124 		DST = *((SIZE *)&DST);					\
2125 		CONT;
2126 
2127 	LDSX(B,   s8)
2128 	LDSX(H,  s16)
2129 	LDSX(W,  s32)
2130 #undef LDSX
2131 
2132 #define ATOMIC_ALU_OP(BOP, KOP)						\
2133 		case BOP:						\
2134 			if (BPF_SIZE(insn->code) == BPF_W)		\
2135 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2136 					     (DST + insn->off));	\
2137 			else						\
2138 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2139 					       (DST + insn->off));	\
2140 			break;						\
2141 		case BOP | BPF_FETCH:					\
2142 			if (BPF_SIZE(insn->code) == BPF_W)		\
2143 				SRC = (u32) atomic_fetch_##KOP(		\
2144 					(u32) SRC,			\
2145 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2146 			else						\
2147 				SRC = (u64) atomic64_fetch_##KOP(	\
2148 					(u64) SRC,			\
2149 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2150 			break;
2151 
2152 	STX_ATOMIC_DW:
2153 	STX_ATOMIC_W:
2154 		switch (IMM) {
2155 		ATOMIC_ALU_OP(BPF_ADD, add)
2156 		ATOMIC_ALU_OP(BPF_AND, and)
2157 		ATOMIC_ALU_OP(BPF_OR, or)
2158 		ATOMIC_ALU_OP(BPF_XOR, xor)
2159 #undef ATOMIC_ALU_OP
2160 
2161 		case BPF_XCHG:
2162 			if (BPF_SIZE(insn->code) == BPF_W)
2163 				SRC = (u32) atomic_xchg(
2164 					(atomic_t *)(unsigned long) (DST + insn->off),
2165 					(u32) SRC);
2166 			else
2167 				SRC = (u64) atomic64_xchg(
2168 					(atomic64_t *)(unsigned long) (DST + insn->off),
2169 					(u64) SRC);
2170 			break;
2171 		case BPF_CMPXCHG:
2172 			if (BPF_SIZE(insn->code) == BPF_W)
2173 				BPF_R0 = (u32) atomic_cmpxchg(
2174 					(atomic_t *)(unsigned long) (DST + insn->off),
2175 					(u32) BPF_R0, (u32) SRC);
2176 			else
2177 				BPF_R0 = (u64) atomic64_cmpxchg(
2178 					(atomic64_t *)(unsigned long) (DST + insn->off),
2179 					(u64) BPF_R0, (u64) SRC);
2180 			break;
2181 
2182 		default:
2183 			goto default_label;
2184 		}
2185 		CONT;
2186 
2187 	default_label:
2188 		/* If we ever reach this, we have a bug somewhere. Die hard here
2189 		 * instead of just returning 0; we could be somewhere in a subprog,
2190 		 * so execution could continue otherwise which we do /not/ want.
2191 		 *
2192 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2193 		 */
2194 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2195 			insn->code, insn->imm);
2196 		BUG_ON(1);
2197 		return 0;
2198 }
2199 
2200 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2201 #define DEFINE_BPF_PROG_RUN(stack_size) \
2202 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2203 { \
2204 	u64 stack[stack_size / sizeof(u64)]; \
2205 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2206 \
2207 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2208 	ARG1 = (u64) (unsigned long) ctx; \
2209 	return ___bpf_prog_run(regs, insn); \
2210 }
2211 
2212 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2213 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2214 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2215 				      const struct bpf_insn *insn) \
2216 { \
2217 	u64 stack[stack_size / sizeof(u64)]; \
2218 	u64 regs[MAX_BPF_EXT_REG]; \
2219 \
2220 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2221 	BPF_R1 = r1; \
2222 	BPF_R2 = r2; \
2223 	BPF_R3 = r3; \
2224 	BPF_R4 = r4; \
2225 	BPF_R5 = r5; \
2226 	return ___bpf_prog_run(regs, insn); \
2227 }
2228 
2229 #define EVAL1(FN, X) FN(X)
2230 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2231 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2232 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2233 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2234 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2235 
2236 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2237 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2238 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2239 
2240 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2241 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2242 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2243 
2244 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2245 
2246 static unsigned int (*interpreters[])(const void *ctx,
2247 				      const struct bpf_insn *insn) = {
2248 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2249 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2250 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2251 };
2252 #undef PROG_NAME_LIST
2253 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2254 static __maybe_unused
2255 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2256 			   const struct bpf_insn *insn) = {
2257 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2258 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2259 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2260 };
2261 #undef PROG_NAME_LIST
2262 
2263 #ifdef CONFIG_BPF_SYSCALL
2264 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2265 {
2266 	stack_depth = max_t(u32, stack_depth, 1);
2267 	insn->off = (s16) insn->imm;
2268 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2269 		__bpf_call_base_args;
2270 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2271 }
2272 #endif
2273 #else
2274 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2275 					 const struct bpf_insn *insn)
2276 {
2277 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2278 	 * is not working properly, so warn about it!
2279 	 */
2280 	WARN_ON_ONCE(1);
2281 	return 0;
2282 }
2283 #endif
2284 
2285 bool bpf_prog_map_compatible(struct bpf_map *map,
2286 			     const struct bpf_prog *fp)
2287 {
2288 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2289 	bool ret;
2290 
2291 	if (fp->kprobe_override)
2292 		return false;
2293 
2294 	/* XDP programs inserted into maps are not guaranteed to run on
2295 	 * a particular netdev (and can run outside driver context entirely
2296 	 * in the case of devmap and cpumap). Until device checks
2297 	 * are implemented, prohibit adding dev-bound programs to program maps.
2298 	 */
2299 	if (bpf_prog_is_dev_bound(fp->aux))
2300 		return false;
2301 
2302 	spin_lock(&map->owner.lock);
2303 	if (!map->owner.type) {
2304 		/* There's no owner yet where we could check for
2305 		 * compatibility.
2306 		 */
2307 		map->owner.type  = prog_type;
2308 		map->owner.jited = fp->jited;
2309 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2310 		ret = true;
2311 	} else {
2312 		ret = map->owner.type  == prog_type &&
2313 		      map->owner.jited == fp->jited &&
2314 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2315 	}
2316 	spin_unlock(&map->owner.lock);
2317 
2318 	return ret;
2319 }
2320 
2321 static int bpf_check_tail_call(const struct bpf_prog *fp)
2322 {
2323 	struct bpf_prog_aux *aux = fp->aux;
2324 	int i, ret = 0;
2325 
2326 	mutex_lock(&aux->used_maps_mutex);
2327 	for (i = 0; i < aux->used_map_cnt; i++) {
2328 		struct bpf_map *map = aux->used_maps[i];
2329 
2330 		if (!map_type_contains_progs(map))
2331 			continue;
2332 
2333 		if (!bpf_prog_map_compatible(map, fp)) {
2334 			ret = -EINVAL;
2335 			goto out;
2336 		}
2337 	}
2338 
2339 out:
2340 	mutex_unlock(&aux->used_maps_mutex);
2341 	return ret;
2342 }
2343 
2344 static void bpf_prog_select_func(struct bpf_prog *fp)
2345 {
2346 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2347 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2348 
2349 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2350 #else
2351 	fp->bpf_func = __bpf_prog_ret0_warn;
2352 #endif
2353 }
2354 
2355 /**
2356  *	bpf_prog_select_runtime - select exec runtime for BPF program
2357  *	@fp: bpf_prog populated with BPF program
2358  *	@err: pointer to error variable
2359  *
2360  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2361  * The BPF program will be executed via bpf_prog_run() function.
2362  *
2363  * Return: the &fp argument along with &err set to 0 for success or
2364  * a negative errno code on failure
2365  */
2366 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2367 {
2368 	/* In case of BPF to BPF calls, verifier did all the prep
2369 	 * work with regards to JITing, etc.
2370 	 */
2371 	bool jit_needed = false;
2372 
2373 	if (fp->bpf_func)
2374 		goto finalize;
2375 
2376 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2377 	    bpf_prog_has_kfunc_call(fp))
2378 		jit_needed = true;
2379 
2380 	bpf_prog_select_func(fp);
2381 
2382 	/* eBPF JITs can rewrite the program in case constant
2383 	 * blinding is active. However, in case of error during
2384 	 * blinding, bpf_int_jit_compile() must always return a
2385 	 * valid program, which in this case would simply not
2386 	 * be JITed, but falls back to the interpreter.
2387 	 */
2388 	if (!bpf_prog_is_offloaded(fp->aux)) {
2389 		*err = bpf_prog_alloc_jited_linfo(fp);
2390 		if (*err)
2391 			return fp;
2392 
2393 		fp = bpf_int_jit_compile(fp);
2394 		bpf_prog_jit_attempt_done(fp);
2395 		if (!fp->jited && jit_needed) {
2396 			*err = -ENOTSUPP;
2397 			return fp;
2398 		}
2399 	} else {
2400 		*err = bpf_prog_offload_compile(fp);
2401 		if (*err)
2402 			return fp;
2403 	}
2404 
2405 finalize:
2406 	bpf_prog_lock_ro(fp);
2407 
2408 	/* The tail call compatibility check can only be done at
2409 	 * this late stage as we need to determine, if we deal
2410 	 * with JITed or non JITed program concatenations and not
2411 	 * all eBPF JITs might immediately support all features.
2412 	 */
2413 	*err = bpf_check_tail_call(fp);
2414 
2415 	return fp;
2416 }
2417 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2418 
2419 static unsigned int __bpf_prog_ret1(const void *ctx,
2420 				    const struct bpf_insn *insn)
2421 {
2422 	return 1;
2423 }
2424 
2425 static struct bpf_prog_dummy {
2426 	struct bpf_prog prog;
2427 } dummy_bpf_prog = {
2428 	.prog = {
2429 		.bpf_func = __bpf_prog_ret1,
2430 	},
2431 };
2432 
2433 struct bpf_empty_prog_array bpf_empty_prog_array = {
2434 	.null_prog = NULL,
2435 };
2436 EXPORT_SYMBOL(bpf_empty_prog_array);
2437 
2438 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2439 {
2440 	if (prog_cnt)
2441 		return kzalloc(sizeof(struct bpf_prog_array) +
2442 			       sizeof(struct bpf_prog_array_item) *
2443 			       (prog_cnt + 1),
2444 			       flags);
2445 
2446 	return &bpf_empty_prog_array.hdr;
2447 }
2448 
2449 void bpf_prog_array_free(struct bpf_prog_array *progs)
2450 {
2451 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2452 		return;
2453 	kfree_rcu(progs, rcu);
2454 }
2455 
2456 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2457 {
2458 	struct bpf_prog_array *progs;
2459 
2460 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2461 	 * no need to call kfree_rcu(), just call kfree() directly.
2462 	 */
2463 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2464 	if (rcu_trace_implies_rcu_gp())
2465 		kfree(progs);
2466 	else
2467 		kfree_rcu(progs, rcu);
2468 }
2469 
2470 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2471 {
2472 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2473 		return;
2474 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2475 }
2476 
2477 int bpf_prog_array_length(struct bpf_prog_array *array)
2478 {
2479 	struct bpf_prog_array_item *item;
2480 	u32 cnt = 0;
2481 
2482 	for (item = array->items; item->prog; item++)
2483 		if (item->prog != &dummy_bpf_prog.prog)
2484 			cnt++;
2485 	return cnt;
2486 }
2487 
2488 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2489 {
2490 	struct bpf_prog_array_item *item;
2491 
2492 	for (item = array->items; item->prog; item++)
2493 		if (item->prog != &dummy_bpf_prog.prog)
2494 			return false;
2495 	return true;
2496 }
2497 
2498 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2499 				     u32 *prog_ids,
2500 				     u32 request_cnt)
2501 {
2502 	struct bpf_prog_array_item *item;
2503 	int i = 0;
2504 
2505 	for (item = array->items; item->prog; item++) {
2506 		if (item->prog == &dummy_bpf_prog.prog)
2507 			continue;
2508 		prog_ids[i] = item->prog->aux->id;
2509 		if (++i == request_cnt) {
2510 			item++;
2511 			break;
2512 		}
2513 	}
2514 
2515 	return !!(item->prog);
2516 }
2517 
2518 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2519 				__u32 __user *prog_ids, u32 cnt)
2520 {
2521 	unsigned long err = 0;
2522 	bool nospc;
2523 	u32 *ids;
2524 
2525 	/* users of this function are doing:
2526 	 * cnt = bpf_prog_array_length();
2527 	 * if (cnt > 0)
2528 	 *     bpf_prog_array_copy_to_user(..., cnt);
2529 	 * so below kcalloc doesn't need extra cnt > 0 check.
2530 	 */
2531 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2532 	if (!ids)
2533 		return -ENOMEM;
2534 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2535 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2536 	kfree(ids);
2537 	if (err)
2538 		return -EFAULT;
2539 	if (nospc)
2540 		return -ENOSPC;
2541 	return 0;
2542 }
2543 
2544 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2545 				struct bpf_prog *old_prog)
2546 {
2547 	struct bpf_prog_array_item *item;
2548 
2549 	for (item = array->items; item->prog; item++)
2550 		if (item->prog == old_prog) {
2551 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2552 			break;
2553 		}
2554 }
2555 
2556 /**
2557  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2558  *                                   index into the program array with
2559  *                                   a dummy no-op program.
2560  * @array: a bpf_prog_array
2561  * @index: the index of the program to replace
2562  *
2563  * Skips over dummy programs, by not counting them, when calculating
2564  * the position of the program to replace.
2565  *
2566  * Return:
2567  * * 0		- Success
2568  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2569  * * -ENOENT	- Index out of range
2570  */
2571 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2572 {
2573 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2574 }
2575 
2576 /**
2577  * bpf_prog_array_update_at() - Updates the program at the given index
2578  *                              into the program array.
2579  * @array: a bpf_prog_array
2580  * @index: the index of the program to update
2581  * @prog: the program to insert into the array
2582  *
2583  * Skips over dummy programs, by not counting them, when calculating
2584  * the position of the program to update.
2585  *
2586  * Return:
2587  * * 0		- Success
2588  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2589  * * -ENOENT	- Index out of range
2590  */
2591 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2592 			     struct bpf_prog *prog)
2593 {
2594 	struct bpf_prog_array_item *item;
2595 
2596 	if (unlikely(index < 0))
2597 		return -EINVAL;
2598 
2599 	for (item = array->items; item->prog; item++) {
2600 		if (item->prog == &dummy_bpf_prog.prog)
2601 			continue;
2602 		if (!index) {
2603 			WRITE_ONCE(item->prog, prog);
2604 			return 0;
2605 		}
2606 		index--;
2607 	}
2608 	return -ENOENT;
2609 }
2610 
2611 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2612 			struct bpf_prog *exclude_prog,
2613 			struct bpf_prog *include_prog,
2614 			u64 bpf_cookie,
2615 			struct bpf_prog_array **new_array)
2616 {
2617 	int new_prog_cnt, carry_prog_cnt = 0;
2618 	struct bpf_prog_array_item *existing, *new;
2619 	struct bpf_prog_array *array;
2620 	bool found_exclude = false;
2621 
2622 	/* Figure out how many existing progs we need to carry over to
2623 	 * the new array.
2624 	 */
2625 	if (old_array) {
2626 		existing = old_array->items;
2627 		for (; existing->prog; existing++) {
2628 			if (existing->prog == exclude_prog) {
2629 				found_exclude = true;
2630 				continue;
2631 			}
2632 			if (existing->prog != &dummy_bpf_prog.prog)
2633 				carry_prog_cnt++;
2634 			if (existing->prog == include_prog)
2635 				return -EEXIST;
2636 		}
2637 	}
2638 
2639 	if (exclude_prog && !found_exclude)
2640 		return -ENOENT;
2641 
2642 	/* How many progs (not NULL) will be in the new array? */
2643 	new_prog_cnt = carry_prog_cnt;
2644 	if (include_prog)
2645 		new_prog_cnt += 1;
2646 
2647 	/* Do we have any prog (not NULL) in the new array? */
2648 	if (!new_prog_cnt) {
2649 		*new_array = NULL;
2650 		return 0;
2651 	}
2652 
2653 	/* +1 as the end of prog_array is marked with NULL */
2654 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2655 	if (!array)
2656 		return -ENOMEM;
2657 	new = array->items;
2658 
2659 	/* Fill in the new prog array */
2660 	if (carry_prog_cnt) {
2661 		existing = old_array->items;
2662 		for (; existing->prog; existing++) {
2663 			if (existing->prog == exclude_prog ||
2664 			    existing->prog == &dummy_bpf_prog.prog)
2665 				continue;
2666 
2667 			new->prog = existing->prog;
2668 			new->bpf_cookie = existing->bpf_cookie;
2669 			new++;
2670 		}
2671 	}
2672 	if (include_prog) {
2673 		new->prog = include_prog;
2674 		new->bpf_cookie = bpf_cookie;
2675 		new++;
2676 	}
2677 	new->prog = NULL;
2678 	*new_array = array;
2679 	return 0;
2680 }
2681 
2682 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2683 			     u32 *prog_ids, u32 request_cnt,
2684 			     u32 *prog_cnt)
2685 {
2686 	u32 cnt = 0;
2687 
2688 	if (array)
2689 		cnt = bpf_prog_array_length(array);
2690 
2691 	*prog_cnt = cnt;
2692 
2693 	/* return early if user requested only program count or nothing to copy */
2694 	if (!request_cnt || !cnt)
2695 		return 0;
2696 
2697 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2698 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2699 								     : 0;
2700 }
2701 
2702 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2703 			  struct bpf_map **used_maps, u32 len)
2704 {
2705 	struct bpf_map *map;
2706 	bool sleepable;
2707 	u32 i;
2708 
2709 	sleepable = aux->prog->sleepable;
2710 	for (i = 0; i < len; i++) {
2711 		map = used_maps[i];
2712 		if (map->ops->map_poke_untrack)
2713 			map->ops->map_poke_untrack(map, aux);
2714 		if (sleepable)
2715 			atomic64_dec(&map->sleepable_refcnt);
2716 		bpf_map_put(map);
2717 	}
2718 }
2719 
2720 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2721 {
2722 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2723 	kfree(aux->used_maps);
2724 }
2725 
2726 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2727 			  struct btf_mod_pair *used_btfs, u32 len)
2728 {
2729 #ifdef CONFIG_BPF_SYSCALL
2730 	struct btf_mod_pair *btf_mod;
2731 	u32 i;
2732 
2733 	for (i = 0; i < len; i++) {
2734 		btf_mod = &used_btfs[i];
2735 		if (btf_mod->module)
2736 			module_put(btf_mod->module);
2737 		btf_put(btf_mod->btf);
2738 	}
2739 #endif
2740 }
2741 
2742 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2743 {
2744 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2745 	kfree(aux->used_btfs);
2746 }
2747 
2748 static void bpf_prog_free_deferred(struct work_struct *work)
2749 {
2750 	struct bpf_prog_aux *aux;
2751 	int i;
2752 
2753 	aux = container_of(work, struct bpf_prog_aux, work);
2754 #ifdef CONFIG_BPF_SYSCALL
2755 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2756 #endif
2757 #ifdef CONFIG_CGROUP_BPF
2758 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2759 		bpf_cgroup_atype_put(aux->cgroup_atype);
2760 #endif
2761 	bpf_free_used_maps(aux);
2762 	bpf_free_used_btfs(aux);
2763 	if (bpf_prog_is_dev_bound(aux))
2764 		bpf_prog_dev_bound_destroy(aux->prog);
2765 #ifdef CONFIG_PERF_EVENTS
2766 	if (aux->prog->has_callchain_buf)
2767 		put_callchain_buffers();
2768 #endif
2769 	if (aux->dst_trampoline)
2770 		bpf_trampoline_put(aux->dst_trampoline);
2771 	for (i = 0; i < aux->real_func_cnt; i++) {
2772 		/* We can just unlink the subprog poke descriptor table as
2773 		 * it was originally linked to the main program and is also
2774 		 * released along with it.
2775 		 */
2776 		aux->func[i]->aux->poke_tab = NULL;
2777 		bpf_jit_free(aux->func[i]);
2778 	}
2779 	if (aux->real_func_cnt) {
2780 		kfree(aux->func);
2781 		bpf_prog_unlock_free(aux->prog);
2782 	} else {
2783 		bpf_jit_free(aux->prog);
2784 	}
2785 }
2786 
2787 void bpf_prog_free(struct bpf_prog *fp)
2788 {
2789 	struct bpf_prog_aux *aux = fp->aux;
2790 
2791 	if (aux->dst_prog)
2792 		bpf_prog_put(aux->dst_prog);
2793 	bpf_token_put(aux->token);
2794 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2795 	schedule_work(&aux->work);
2796 }
2797 EXPORT_SYMBOL_GPL(bpf_prog_free);
2798 
2799 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2800 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2801 
2802 void bpf_user_rnd_init_once(void)
2803 {
2804 	prandom_init_once(&bpf_user_rnd_state);
2805 }
2806 
2807 BPF_CALL_0(bpf_user_rnd_u32)
2808 {
2809 	/* Should someone ever have the rather unwise idea to use some
2810 	 * of the registers passed into this function, then note that
2811 	 * this function is called from native eBPF and classic-to-eBPF
2812 	 * transformations. Register assignments from both sides are
2813 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2814 	 */
2815 	struct rnd_state *state;
2816 	u32 res;
2817 
2818 	state = &get_cpu_var(bpf_user_rnd_state);
2819 	res = prandom_u32_state(state);
2820 	put_cpu_var(bpf_user_rnd_state);
2821 
2822 	return res;
2823 }
2824 
2825 BPF_CALL_0(bpf_get_raw_cpu_id)
2826 {
2827 	return raw_smp_processor_id();
2828 }
2829 
2830 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2831 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2832 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2833 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2834 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2835 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2836 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2837 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2838 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2839 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2840 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2841 
2842 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2843 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2844 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2845 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2846 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2847 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2848 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2849 
2850 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2851 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2852 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2853 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2854 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2855 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2856 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2857 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2858 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2859 const struct bpf_func_proto bpf_set_retval_proto __weak;
2860 const struct bpf_func_proto bpf_get_retval_proto __weak;
2861 
2862 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2863 {
2864 	return NULL;
2865 }
2866 
2867 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2868 {
2869 	return NULL;
2870 }
2871 
2872 u64 __weak
2873 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2874 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2875 {
2876 	return -ENOTSUPP;
2877 }
2878 EXPORT_SYMBOL_GPL(bpf_event_output);
2879 
2880 /* Always built-in helper functions. */
2881 const struct bpf_func_proto bpf_tail_call_proto = {
2882 	.func		= NULL,
2883 	.gpl_only	= false,
2884 	.ret_type	= RET_VOID,
2885 	.arg1_type	= ARG_PTR_TO_CTX,
2886 	.arg2_type	= ARG_CONST_MAP_PTR,
2887 	.arg3_type	= ARG_ANYTHING,
2888 };
2889 
2890 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2891  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2892  * eBPF and implicitly also cBPF can get JITed!
2893  */
2894 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2895 {
2896 	return prog;
2897 }
2898 
2899 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2900  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2901  */
2902 void __weak bpf_jit_compile(struct bpf_prog *prog)
2903 {
2904 }
2905 
2906 bool __weak bpf_helper_changes_pkt_data(void *func)
2907 {
2908 	return false;
2909 }
2910 
2911 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2912  * analysis code and wants explicit zero extension inserted by verifier.
2913  * Otherwise, return FALSE.
2914  *
2915  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2916  * you don't override this. JITs that don't want these extra insns can detect
2917  * them using insn_is_zext.
2918  */
2919 bool __weak bpf_jit_needs_zext(void)
2920 {
2921 	return false;
2922 }
2923 
2924 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2925 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2926 {
2927 	return false;
2928 }
2929 
2930 bool __weak bpf_jit_supports_kfunc_call(void)
2931 {
2932 	return false;
2933 }
2934 
2935 bool __weak bpf_jit_supports_far_kfunc_call(void)
2936 {
2937 	return false;
2938 }
2939 
2940 bool __weak bpf_jit_supports_arena(void)
2941 {
2942 	return false;
2943 }
2944 
2945 /* Return TRUE if the JIT backend satisfies the following two conditions:
2946  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2947  * 2) Under the specific arch, the implementation of xchg() is the same
2948  *    as atomic_xchg() on pointer-sized words.
2949  */
2950 bool __weak bpf_jit_supports_ptr_xchg(void)
2951 {
2952 	return false;
2953 }
2954 
2955 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2956  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2957  */
2958 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2959 			 int len)
2960 {
2961 	return -EFAULT;
2962 }
2963 
2964 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2965 			      void *addr1, void *addr2)
2966 {
2967 	return -ENOTSUPP;
2968 }
2969 
2970 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2971 {
2972 	return ERR_PTR(-ENOTSUPP);
2973 }
2974 
2975 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2976 {
2977 	return -ENOTSUPP;
2978 }
2979 
2980 bool __weak bpf_jit_supports_exceptions(void)
2981 {
2982 	return false;
2983 }
2984 
2985 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2986 {
2987 }
2988 
2989 /* for configs without MMU or 32-bit */
2990 __weak const struct bpf_map_ops arena_map_ops;
2991 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
2992 {
2993 	return 0;
2994 }
2995 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
2996 {
2997 	return 0;
2998 }
2999 
3000 #ifdef CONFIG_BPF_SYSCALL
3001 static int __init bpf_global_ma_init(void)
3002 {
3003 	int ret;
3004 
3005 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3006 	bpf_global_ma_set = !ret;
3007 	return ret;
3008 }
3009 late_initcall(bpf_global_ma_init);
3010 #endif
3011 
3012 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3013 EXPORT_SYMBOL(bpf_stats_enabled_key);
3014 
3015 /* All definitions of tracepoints related to BPF. */
3016 #define CREATE_TRACE_POINTS
3017 #include <linux/bpf_trace.h>
3018 
3019 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3020 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3021