xref: /linux/kernel/bpf/core.c (revision 3f41368fbfe1b3d5922d317fe1a0a0cab6846802)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/bpf.h>
26 #include <linux/btf.h>
27 #include <linux/objtool.h>
28 #include <linux/overflow.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 #include <linux/execmem.h>
41 
42 #include <asm/barrier.h>
43 #include <asm/unaligned.h>
44 
45 /* Registers */
46 #define BPF_R0	regs[BPF_REG_0]
47 #define BPF_R1	regs[BPF_REG_1]
48 #define BPF_R2	regs[BPF_REG_2]
49 #define BPF_R3	regs[BPF_REG_3]
50 #define BPF_R4	regs[BPF_REG_4]
51 #define BPF_R5	regs[BPF_REG_5]
52 #define BPF_R6	regs[BPF_REG_6]
53 #define BPF_R7	regs[BPF_REG_7]
54 #define BPF_R8	regs[BPF_REG_8]
55 #define BPF_R9	regs[BPF_REG_9]
56 #define BPF_R10	regs[BPF_REG_10]
57 
58 /* Named registers */
59 #define DST	regs[insn->dst_reg]
60 #define SRC	regs[insn->src_reg]
61 #define FP	regs[BPF_REG_FP]
62 #define AX	regs[BPF_REG_AX]
63 #define ARG1	regs[BPF_REG_ARG1]
64 #define CTX	regs[BPF_REG_CTX]
65 #define OFF	insn->off
66 #define IMM	insn->imm
67 
68 struct bpf_mem_alloc bpf_global_ma;
69 bool bpf_global_ma_set;
70 
71 /* No hurry in this branch
72  *
73  * Exported for the bpf jit load helper.
74  */
75 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
76 {
77 	u8 *ptr = NULL;
78 
79 	if (k >= SKF_NET_OFF) {
80 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81 	} else if (k >= SKF_LL_OFF) {
82 		if (unlikely(!skb_mac_header_was_set(skb)))
83 			return NULL;
84 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
85 	}
86 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
87 		return ptr;
88 
89 	return NULL;
90 }
91 
92 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
93 enum page_size_enum {
94 	__PAGE_SIZE = PAGE_SIZE
95 };
96 
97 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
98 {
99 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
100 	struct bpf_prog_aux *aux;
101 	struct bpf_prog *fp;
102 
103 	size = round_up(size, __PAGE_SIZE);
104 	fp = __vmalloc(size, gfp_flags);
105 	if (fp == NULL)
106 		return NULL;
107 
108 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
109 	if (aux == NULL) {
110 		vfree(fp);
111 		return NULL;
112 	}
113 	fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
114 	if (!fp->active) {
115 		vfree(fp);
116 		kfree(aux);
117 		return NULL;
118 	}
119 
120 	fp->pages = size / PAGE_SIZE;
121 	fp->aux = aux;
122 	fp->aux->prog = fp;
123 	fp->jit_requested = ebpf_jit_enabled();
124 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
125 #ifdef CONFIG_CGROUP_BPF
126 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
127 #endif
128 
129 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
130 #ifdef CONFIG_FINEIBT
131 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
132 #endif
133 	mutex_init(&fp->aux->used_maps_mutex);
134 	mutex_init(&fp->aux->dst_mutex);
135 
136 	return fp;
137 }
138 
139 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
140 {
141 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
142 	struct bpf_prog *prog;
143 	int cpu;
144 
145 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
146 	if (!prog)
147 		return NULL;
148 
149 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
150 	if (!prog->stats) {
151 		free_percpu(prog->active);
152 		kfree(prog->aux);
153 		vfree(prog);
154 		return NULL;
155 	}
156 
157 	for_each_possible_cpu(cpu) {
158 		struct bpf_prog_stats *pstats;
159 
160 		pstats = per_cpu_ptr(prog->stats, cpu);
161 		u64_stats_init(&pstats->syncp);
162 	}
163 	return prog;
164 }
165 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
166 
167 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
168 {
169 	if (!prog->aux->nr_linfo || !prog->jit_requested)
170 		return 0;
171 
172 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
173 					  sizeof(*prog->aux->jited_linfo),
174 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
175 	if (!prog->aux->jited_linfo)
176 		return -ENOMEM;
177 
178 	return 0;
179 }
180 
181 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
182 {
183 	if (prog->aux->jited_linfo &&
184 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
185 		kvfree(prog->aux->jited_linfo);
186 		prog->aux->jited_linfo = NULL;
187 	}
188 
189 	kfree(prog->aux->kfunc_tab);
190 	prog->aux->kfunc_tab = NULL;
191 }
192 
193 /* The jit engine is responsible to provide an array
194  * for insn_off to the jited_off mapping (insn_to_jit_off).
195  *
196  * The idx to this array is the insn_off.  Hence, the insn_off
197  * here is relative to the prog itself instead of the main prog.
198  * This array has one entry for each xlated bpf insn.
199  *
200  * jited_off is the byte off to the end of the jited insn.
201  *
202  * Hence, with
203  * insn_start:
204  *      The first bpf insn off of the prog.  The insn off
205  *      here is relative to the main prog.
206  *      e.g. if prog is a subprog, insn_start > 0
207  * linfo_idx:
208  *      The prog's idx to prog->aux->linfo and jited_linfo
209  *
210  * jited_linfo[linfo_idx] = prog->bpf_func
211  *
212  * For i > linfo_idx,
213  *
214  * jited_linfo[i] = prog->bpf_func +
215  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
216  */
217 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
218 			       const u32 *insn_to_jit_off)
219 {
220 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
221 	const struct bpf_line_info *linfo;
222 	void **jited_linfo;
223 
224 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
225 		/* Userspace did not provide linfo */
226 		return;
227 
228 	linfo_idx = prog->aux->linfo_idx;
229 	linfo = &prog->aux->linfo[linfo_idx];
230 	insn_start = linfo[0].insn_off;
231 	insn_end = insn_start + prog->len;
232 
233 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
234 	jited_linfo[0] = prog->bpf_func;
235 
236 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
237 
238 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
239 		/* The verifier ensures that linfo[i].insn_off is
240 		 * strictly increasing
241 		 */
242 		jited_linfo[i] = prog->bpf_func +
243 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
244 }
245 
246 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
247 				  gfp_t gfp_extra_flags)
248 {
249 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
250 	struct bpf_prog *fp;
251 	u32 pages;
252 
253 	size = round_up(size, PAGE_SIZE);
254 	pages = size / PAGE_SIZE;
255 	if (pages <= fp_old->pages)
256 		return fp_old;
257 
258 	fp = __vmalloc(size, gfp_flags);
259 	if (fp) {
260 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
261 		fp->pages = pages;
262 		fp->aux->prog = fp;
263 
264 		/* We keep fp->aux from fp_old around in the new
265 		 * reallocated structure.
266 		 */
267 		fp_old->aux = NULL;
268 		fp_old->stats = NULL;
269 		fp_old->active = NULL;
270 		__bpf_prog_free(fp_old);
271 	}
272 
273 	return fp;
274 }
275 
276 void __bpf_prog_free(struct bpf_prog *fp)
277 {
278 	if (fp->aux) {
279 		mutex_destroy(&fp->aux->used_maps_mutex);
280 		mutex_destroy(&fp->aux->dst_mutex);
281 		kfree(fp->aux->poke_tab);
282 		kfree(fp->aux);
283 	}
284 	free_percpu(fp->stats);
285 	free_percpu(fp->active);
286 	vfree(fp);
287 }
288 
289 int bpf_prog_calc_tag(struct bpf_prog *fp)
290 {
291 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
292 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
293 	u32 digest[SHA1_DIGEST_WORDS];
294 	u32 ws[SHA1_WORKSPACE_WORDS];
295 	u32 i, bsize, psize, blocks;
296 	struct bpf_insn *dst;
297 	bool was_ld_map;
298 	u8 *raw, *todo;
299 	__be32 *result;
300 	__be64 *bits;
301 
302 	raw = vmalloc(raw_size);
303 	if (!raw)
304 		return -ENOMEM;
305 
306 	sha1_init(digest);
307 	memset(ws, 0, sizeof(ws));
308 
309 	/* We need to take out the map fd for the digest calculation
310 	 * since they are unstable from user space side.
311 	 */
312 	dst = (void *)raw;
313 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
314 		dst[i] = fp->insnsi[i];
315 		if (!was_ld_map &&
316 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
317 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
318 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
319 			was_ld_map = true;
320 			dst[i].imm = 0;
321 		} else if (was_ld_map &&
322 			   dst[i].code == 0 &&
323 			   dst[i].dst_reg == 0 &&
324 			   dst[i].src_reg == 0 &&
325 			   dst[i].off == 0) {
326 			was_ld_map = false;
327 			dst[i].imm = 0;
328 		} else {
329 			was_ld_map = false;
330 		}
331 	}
332 
333 	psize = bpf_prog_insn_size(fp);
334 	memset(&raw[psize], 0, raw_size - psize);
335 	raw[psize++] = 0x80;
336 
337 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
338 	blocks = bsize / SHA1_BLOCK_SIZE;
339 	todo   = raw;
340 	if (bsize - psize >= sizeof(__be64)) {
341 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
342 	} else {
343 		bits = (__be64 *)(todo + bsize + bits_offset);
344 		blocks++;
345 	}
346 	*bits = cpu_to_be64((psize - 1) << 3);
347 
348 	while (blocks--) {
349 		sha1_transform(digest, todo, ws);
350 		todo += SHA1_BLOCK_SIZE;
351 	}
352 
353 	result = (__force __be32 *)digest;
354 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
355 		result[i] = cpu_to_be32(digest[i]);
356 	memcpy(fp->tag, result, sizeof(fp->tag));
357 
358 	vfree(raw);
359 	return 0;
360 }
361 
362 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
363 				s32 end_new, s32 curr, const bool probe_pass)
364 {
365 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
366 	s32 delta = end_new - end_old;
367 	s64 imm = insn->imm;
368 
369 	if (curr < pos && curr + imm + 1 >= end_old)
370 		imm += delta;
371 	else if (curr >= end_new && curr + imm + 1 < end_new)
372 		imm -= delta;
373 	if (imm < imm_min || imm > imm_max)
374 		return -ERANGE;
375 	if (!probe_pass)
376 		insn->imm = imm;
377 	return 0;
378 }
379 
380 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
381 				s32 end_new, s32 curr, const bool probe_pass)
382 {
383 	s64 off_min, off_max, off;
384 	s32 delta = end_new - end_old;
385 
386 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
387 		off = insn->imm;
388 		off_min = S32_MIN;
389 		off_max = S32_MAX;
390 	} else {
391 		off = insn->off;
392 		off_min = S16_MIN;
393 		off_max = S16_MAX;
394 	}
395 
396 	if (curr < pos && curr + off + 1 >= end_old)
397 		off += delta;
398 	else if (curr >= end_new && curr + off + 1 < end_new)
399 		off -= delta;
400 	if (off < off_min || off > off_max)
401 		return -ERANGE;
402 	if (!probe_pass) {
403 		if (insn->code == (BPF_JMP32 | BPF_JA))
404 			insn->imm = off;
405 		else
406 			insn->off = off;
407 	}
408 	return 0;
409 }
410 
411 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
412 			    s32 end_new, const bool probe_pass)
413 {
414 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
415 	struct bpf_insn *insn = prog->insnsi;
416 	int ret = 0;
417 
418 	for (i = 0; i < insn_cnt; i++, insn++) {
419 		u8 code;
420 
421 		/* In the probing pass we still operate on the original,
422 		 * unpatched image in order to check overflows before we
423 		 * do any other adjustments. Therefore skip the patchlet.
424 		 */
425 		if (probe_pass && i == pos) {
426 			i = end_new;
427 			insn = prog->insnsi + end_old;
428 		}
429 		if (bpf_pseudo_func(insn)) {
430 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
431 						   end_new, i, probe_pass);
432 			if (ret)
433 				return ret;
434 			continue;
435 		}
436 		code = insn->code;
437 		if ((BPF_CLASS(code) != BPF_JMP &&
438 		     BPF_CLASS(code) != BPF_JMP32) ||
439 		    BPF_OP(code) == BPF_EXIT)
440 			continue;
441 		/* Adjust offset of jmps if we cross patch boundaries. */
442 		if (BPF_OP(code) == BPF_CALL) {
443 			if (insn->src_reg != BPF_PSEUDO_CALL)
444 				continue;
445 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
446 						   end_new, i, probe_pass);
447 		} else {
448 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
449 						   end_new, i, probe_pass);
450 		}
451 		if (ret)
452 			break;
453 	}
454 
455 	return ret;
456 }
457 
458 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
459 {
460 	struct bpf_line_info *linfo;
461 	u32 i, nr_linfo;
462 
463 	nr_linfo = prog->aux->nr_linfo;
464 	if (!nr_linfo || !delta)
465 		return;
466 
467 	linfo = prog->aux->linfo;
468 
469 	for (i = 0; i < nr_linfo; i++)
470 		if (off < linfo[i].insn_off)
471 			break;
472 
473 	/* Push all off < linfo[i].insn_off by delta */
474 	for (; i < nr_linfo; i++)
475 		linfo[i].insn_off += delta;
476 }
477 
478 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
479 				       const struct bpf_insn *patch, u32 len)
480 {
481 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
482 	const u32 cnt_max = S16_MAX;
483 	struct bpf_prog *prog_adj;
484 	int err;
485 
486 	/* Since our patchlet doesn't expand the image, we're done. */
487 	if (insn_delta == 0) {
488 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
489 		return prog;
490 	}
491 
492 	insn_adj_cnt = prog->len + insn_delta;
493 
494 	/* Reject anything that would potentially let the insn->off
495 	 * target overflow when we have excessive program expansions.
496 	 * We need to probe here before we do any reallocation where
497 	 * we afterwards may not fail anymore.
498 	 */
499 	if (insn_adj_cnt > cnt_max &&
500 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
501 		return ERR_PTR(err);
502 
503 	/* Several new instructions need to be inserted. Make room
504 	 * for them. Likely, there's no need for a new allocation as
505 	 * last page could have large enough tailroom.
506 	 */
507 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
508 				    GFP_USER);
509 	if (!prog_adj)
510 		return ERR_PTR(-ENOMEM);
511 
512 	prog_adj->len = insn_adj_cnt;
513 
514 	/* Patching happens in 3 steps:
515 	 *
516 	 * 1) Move over tail of insnsi from next instruction onwards,
517 	 *    so we can patch the single target insn with one or more
518 	 *    new ones (patching is always from 1 to n insns, n > 0).
519 	 * 2) Inject new instructions at the target location.
520 	 * 3) Adjust branch offsets if necessary.
521 	 */
522 	insn_rest = insn_adj_cnt - off - len;
523 
524 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
525 		sizeof(*patch) * insn_rest);
526 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
527 
528 	/* We are guaranteed to not fail at this point, otherwise
529 	 * the ship has sailed to reverse to the original state. An
530 	 * overflow cannot happen at this point.
531 	 */
532 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
533 
534 	bpf_adj_linfo(prog_adj, off, insn_delta);
535 
536 	return prog_adj;
537 }
538 
539 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
540 {
541 	/* Branch offsets can't overflow when program is shrinking, no need
542 	 * to call bpf_adj_branches(..., true) here
543 	 */
544 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
545 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
546 	prog->len -= cnt;
547 
548 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
549 }
550 
551 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
552 {
553 	int i;
554 
555 	for (i = 0; i < fp->aux->real_func_cnt; i++)
556 		bpf_prog_kallsyms_del(fp->aux->func[i]);
557 }
558 
559 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
560 {
561 	bpf_prog_kallsyms_del_subprogs(fp);
562 	bpf_prog_kallsyms_del(fp);
563 }
564 
565 #ifdef CONFIG_BPF_JIT
566 /* All BPF JIT sysctl knobs here. */
567 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
568 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
569 int bpf_jit_harden   __read_mostly;
570 long bpf_jit_limit   __read_mostly;
571 long bpf_jit_limit_max __read_mostly;
572 
573 static void
574 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
575 {
576 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
577 
578 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
579 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
580 }
581 
582 static void
583 bpf_prog_ksym_set_name(struct bpf_prog *prog)
584 {
585 	char *sym = prog->aux->ksym.name;
586 	const char *end = sym + KSYM_NAME_LEN;
587 	const struct btf_type *type;
588 	const char *func_name;
589 
590 	BUILD_BUG_ON(sizeof("bpf_prog_") +
591 		     sizeof(prog->tag) * 2 +
592 		     /* name has been null terminated.
593 		      * We should need +1 for the '_' preceding
594 		      * the name.  However, the null character
595 		      * is double counted between the name and the
596 		      * sizeof("bpf_prog_") above, so we omit
597 		      * the +1 here.
598 		      */
599 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
600 
601 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
602 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
603 
604 	/* prog->aux->name will be ignored if full btf name is available */
605 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
606 		type = btf_type_by_id(prog->aux->btf,
607 				      prog->aux->func_info[prog->aux->func_idx].type_id);
608 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
609 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
610 		return;
611 	}
612 
613 	if (prog->aux->name[0])
614 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
615 	else
616 		*sym = 0;
617 }
618 
619 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
620 {
621 	return container_of(n, struct bpf_ksym, tnode)->start;
622 }
623 
624 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
625 					  struct latch_tree_node *b)
626 {
627 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
628 }
629 
630 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
631 {
632 	unsigned long val = (unsigned long)key;
633 	const struct bpf_ksym *ksym;
634 
635 	ksym = container_of(n, struct bpf_ksym, tnode);
636 
637 	if (val < ksym->start)
638 		return -1;
639 	/* Ensure that we detect return addresses as part of the program, when
640 	 * the final instruction is a call for a program part of the stack
641 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
642 	 */
643 	if (val > ksym->end)
644 		return  1;
645 
646 	return 0;
647 }
648 
649 static const struct latch_tree_ops bpf_tree_ops = {
650 	.less	= bpf_tree_less,
651 	.comp	= bpf_tree_comp,
652 };
653 
654 static DEFINE_SPINLOCK(bpf_lock);
655 static LIST_HEAD(bpf_kallsyms);
656 static struct latch_tree_root bpf_tree __cacheline_aligned;
657 
658 void bpf_ksym_add(struct bpf_ksym *ksym)
659 {
660 	spin_lock_bh(&bpf_lock);
661 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
662 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
663 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
664 	spin_unlock_bh(&bpf_lock);
665 }
666 
667 static void __bpf_ksym_del(struct bpf_ksym *ksym)
668 {
669 	if (list_empty(&ksym->lnode))
670 		return;
671 
672 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
673 	list_del_rcu(&ksym->lnode);
674 }
675 
676 void bpf_ksym_del(struct bpf_ksym *ksym)
677 {
678 	spin_lock_bh(&bpf_lock);
679 	__bpf_ksym_del(ksym);
680 	spin_unlock_bh(&bpf_lock);
681 }
682 
683 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
684 {
685 	return fp->jited && !bpf_prog_was_classic(fp);
686 }
687 
688 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
689 {
690 	if (!bpf_prog_kallsyms_candidate(fp) ||
691 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
692 		return;
693 
694 	bpf_prog_ksym_set_addr(fp);
695 	bpf_prog_ksym_set_name(fp);
696 	fp->aux->ksym.prog = true;
697 
698 	bpf_ksym_add(&fp->aux->ksym);
699 
700 #ifdef CONFIG_FINEIBT
701 	/*
702 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
703 	 * and hence unwinder needs help.
704 	 */
705 	if (cfi_mode != CFI_FINEIBT)
706 		return;
707 
708 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
709 		 "__cfi_%s", fp->aux->ksym.name);
710 
711 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
712 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
713 
714 	bpf_ksym_add(&fp->aux->ksym_prefix);
715 #endif
716 }
717 
718 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
719 {
720 	if (!bpf_prog_kallsyms_candidate(fp))
721 		return;
722 
723 	bpf_ksym_del(&fp->aux->ksym);
724 #ifdef CONFIG_FINEIBT
725 	if (cfi_mode != CFI_FINEIBT)
726 		return;
727 	bpf_ksym_del(&fp->aux->ksym_prefix);
728 #endif
729 }
730 
731 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
732 {
733 	struct latch_tree_node *n;
734 
735 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
736 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
737 }
738 
739 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
740 				 unsigned long *off, char *sym)
741 {
742 	struct bpf_ksym *ksym;
743 	char *ret = NULL;
744 
745 	rcu_read_lock();
746 	ksym = bpf_ksym_find(addr);
747 	if (ksym) {
748 		unsigned long symbol_start = ksym->start;
749 		unsigned long symbol_end = ksym->end;
750 
751 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
752 
753 		ret = sym;
754 		if (size)
755 			*size = symbol_end - symbol_start;
756 		if (off)
757 			*off  = addr - symbol_start;
758 	}
759 	rcu_read_unlock();
760 
761 	return ret;
762 }
763 
764 bool is_bpf_text_address(unsigned long addr)
765 {
766 	bool ret;
767 
768 	rcu_read_lock();
769 	ret = bpf_ksym_find(addr) != NULL;
770 	rcu_read_unlock();
771 
772 	return ret;
773 }
774 
775 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
776 {
777 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
778 
779 	return ksym && ksym->prog ?
780 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
781 	       NULL;
782 }
783 
784 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
785 {
786 	const struct exception_table_entry *e = NULL;
787 	struct bpf_prog *prog;
788 
789 	rcu_read_lock();
790 	prog = bpf_prog_ksym_find(addr);
791 	if (!prog)
792 		goto out;
793 	if (!prog->aux->num_exentries)
794 		goto out;
795 
796 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
797 out:
798 	rcu_read_unlock();
799 	return e;
800 }
801 
802 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
803 		    char *sym)
804 {
805 	struct bpf_ksym *ksym;
806 	unsigned int it = 0;
807 	int ret = -ERANGE;
808 
809 	if (!bpf_jit_kallsyms_enabled())
810 		return ret;
811 
812 	rcu_read_lock();
813 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
814 		if (it++ != symnum)
815 			continue;
816 
817 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
818 
819 		*value = ksym->start;
820 		*type  = BPF_SYM_ELF_TYPE;
821 
822 		ret = 0;
823 		break;
824 	}
825 	rcu_read_unlock();
826 
827 	return ret;
828 }
829 
830 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
831 				struct bpf_jit_poke_descriptor *poke)
832 {
833 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
834 	static const u32 poke_tab_max = 1024;
835 	u32 slot = prog->aux->size_poke_tab;
836 	u32 size = slot + 1;
837 
838 	if (size > poke_tab_max)
839 		return -ENOSPC;
840 	if (poke->tailcall_target || poke->tailcall_target_stable ||
841 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
842 		return -EINVAL;
843 
844 	switch (poke->reason) {
845 	case BPF_POKE_REASON_TAIL_CALL:
846 		if (!poke->tail_call.map)
847 			return -EINVAL;
848 		break;
849 	default:
850 		return -EINVAL;
851 	}
852 
853 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
854 	if (!tab)
855 		return -ENOMEM;
856 
857 	memcpy(&tab[slot], poke, sizeof(*poke));
858 	prog->aux->size_poke_tab = size;
859 	prog->aux->poke_tab = tab;
860 
861 	return slot;
862 }
863 
864 /*
865  * BPF program pack allocator.
866  *
867  * Most BPF programs are pretty small. Allocating a hole page for each
868  * program is sometime a waste. Many small bpf program also adds pressure
869  * to instruction TLB. To solve this issue, we introduce a BPF program pack
870  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
871  * to host BPF programs.
872  */
873 #define BPF_PROG_CHUNK_SHIFT	6
874 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
875 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
876 
877 struct bpf_prog_pack {
878 	struct list_head list;
879 	void *ptr;
880 	unsigned long bitmap[];
881 };
882 
883 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
884 {
885 	memset(area, 0, size);
886 }
887 
888 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
889 
890 static DEFINE_MUTEX(pack_mutex);
891 static LIST_HEAD(pack_list);
892 
893 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
894  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
895  */
896 #ifdef PMD_SIZE
897 /* PMD_SIZE is really big for some archs. It doesn't make sense to
898  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
899  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
900  * greater than or equal to 2MB.
901  */
902 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
903 #else
904 #define BPF_PROG_PACK_SIZE PAGE_SIZE
905 #endif
906 
907 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
908 
909 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
910 {
911 	struct bpf_prog_pack *pack;
912 	int err;
913 
914 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
915 		       GFP_KERNEL);
916 	if (!pack)
917 		return NULL;
918 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
919 	if (!pack->ptr)
920 		goto out;
921 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
922 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
923 
924 	set_vm_flush_reset_perms(pack->ptr);
925 	err = set_memory_rox((unsigned long)pack->ptr,
926 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
927 	if (err)
928 		goto out;
929 	list_add_tail(&pack->list, &pack_list);
930 	return pack;
931 
932 out:
933 	bpf_jit_free_exec(pack->ptr);
934 	kfree(pack);
935 	return NULL;
936 }
937 
938 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
939 {
940 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
941 	struct bpf_prog_pack *pack;
942 	unsigned long pos;
943 	void *ptr = NULL;
944 
945 	mutex_lock(&pack_mutex);
946 	if (size > BPF_PROG_PACK_SIZE) {
947 		size = round_up(size, PAGE_SIZE);
948 		ptr = bpf_jit_alloc_exec(size);
949 		if (ptr) {
950 			int err;
951 
952 			bpf_fill_ill_insns(ptr, size);
953 			set_vm_flush_reset_perms(ptr);
954 			err = set_memory_rox((unsigned long)ptr,
955 					     size / PAGE_SIZE);
956 			if (err) {
957 				bpf_jit_free_exec(ptr);
958 				ptr = NULL;
959 			}
960 		}
961 		goto out;
962 	}
963 	list_for_each_entry(pack, &pack_list, list) {
964 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
965 						 nbits, 0);
966 		if (pos < BPF_PROG_CHUNK_COUNT)
967 			goto found_free_area;
968 	}
969 
970 	pack = alloc_new_pack(bpf_fill_ill_insns);
971 	if (!pack)
972 		goto out;
973 
974 	pos = 0;
975 
976 found_free_area:
977 	bitmap_set(pack->bitmap, pos, nbits);
978 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
979 
980 out:
981 	mutex_unlock(&pack_mutex);
982 	return ptr;
983 }
984 
985 void bpf_prog_pack_free(void *ptr, u32 size)
986 {
987 	struct bpf_prog_pack *pack = NULL, *tmp;
988 	unsigned int nbits;
989 	unsigned long pos;
990 
991 	mutex_lock(&pack_mutex);
992 	if (size > BPF_PROG_PACK_SIZE) {
993 		bpf_jit_free_exec(ptr);
994 		goto out;
995 	}
996 
997 	list_for_each_entry(tmp, &pack_list, list) {
998 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
999 			pack = tmp;
1000 			break;
1001 		}
1002 	}
1003 
1004 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1005 		goto out;
1006 
1007 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1008 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1009 
1010 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1011 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1012 
1013 	bitmap_clear(pack->bitmap, pos, nbits);
1014 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1015 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1016 		list_del(&pack->list);
1017 		bpf_jit_free_exec(pack->ptr);
1018 		kfree(pack);
1019 	}
1020 out:
1021 	mutex_unlock(&pack_mutex);
1022 }
1023 
1024 static atomic_long_t bpf_jit_current;
1025 
1026 /* Can be overridden by an arch's JIT compiler if it has a custom,
1027  * dedicated BPF backend memory area, or if neither of the two
1028  * below apply.
1029  */
1030 u64 __weak bpf_jit_alloc_exec_limit(void)
1031 {
1032 #if defined(MODULES_VADDR)
1033 	return MODULES_END - MODULES_VADDR;
1034 #else
1035 	return VMALLOC_END - VMALLOC_START;
1036 #endif
1037 }
1038 
1039 static int __init bpf_jit_charge_init(void)
1040 {
1041 	/* Only used as heuristic here to derive limit. */
1042 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1043 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1044 					    PAGE_SIZE), LONG_MAX);
1045 	return 0;
1046 }
1047 pure_initcall(bpf_jit_charge_init);
1048 
1049 int bpf_jit_charge_modmem(u32 size)
1050 {
1051 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1052 		if (!bpf_capable()) {
1053 			atomic_long_sub(size, &bpf_jit_current);
1054 			return -EPERM;
1055 		}
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 void bpf_jit_uncharge_modmem(u32 size)
1062 {
1063 	atomic_long_sub(size, &bpf_jit_current);
1064 }
1065 
1066 void *__weak bpf_jit_alloc_exec(unsigned long size)
1067 {
1068 	return execmem_alloc(EXECMEM_BPF, size);
1069 }
1070 
1071 void __weak bpf_jit_free_exec(void *addr)
1072 {
1073 	execmem_free(addr);
1074 }
1075 
1076 struct bpf_binary_header *
1077 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1078 		     unsigned int alignment,
1079 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1080 {
1081 	struct bpf_binary_header *hdr;
1082 	u32 size, hole, start;
1083 
1084 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1085 		     alignment > BPF_IMAGE_ALIGNMENT);
1086 
1087 	/* Most of BPF filters are really small, but if some of them
1088 	 * fill a page, allow at least 128 extra bytes to insert a
1089 	 * random section of illegal instructions.
1090 	 */
1091 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1092 
1093 	if (bpf_jit_charge_modmem(size))
1094 		return NULL;
1095 	hdr = bpf_jit_alloc_exec(size);
1096 	if (!hdr) {
1097 		bpf_jit_uncharge_modmem(size);
1098 		return NULL;
1099 	}
1100 
1101 	/* Fill space with illegal/arch-dep instructions. */
1102 	bpf_fill_ill_insns(hdr, size);
1103 
1104 	hdr->size = size;
1105 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1106 		     PAGE_SIZE - sizeof(*hdr));
1107 	start = get_random_u32_below(hole) & ~(alignment - 1);
1108 
1109 	/* Leave a random number of instructions before BPF code. */
1110 	*image_ptr = &hdr->image[start];
1111 
1112 	return hdr;
1113 }
1114 
1115 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1116 {
1117 	u32 size = hdr->size;
1118 
1119 	bpf_jit_free_exec(hdr);
1120 	bpf_jit_uncharge_modmem(size);
1121 }
1122 
1123 /* Allocate jit binary from bpf_prog_pack allocator.
1124  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1125  * to the memory. To solve this problem, a RW buffer is also allocated at
1126  * as the same time. The JIT engine should calculate offsets based on the
1127  * RO memory address, but write JITed program to the RW buffer. Once the
1128  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1129  * the JITed program to the RO memory.
1130  */
1131 struct bpf_binary_header *
1132 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1133 			  unsigned int alignment,
1134 			  struct bpf_binary_header **rw_header,
1135 			  u8 **rw_image,
1136 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1137 {
1138 	struct bpf_binary_header *ro_header;
1139 	u32 size, hole, start;
1140 
1141 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1142 		     alignment > BPF_IMAGE_ALIGNMENT);
1143 
1144 	/* add 16 bytes for a random section of illegal instructions */
1145 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1146 
1147 	if (bpf_jit_charge_modmem(size))
1148 		return NULL;
1149 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1150 	if (!ro_header) {
1151 		bpf_jit_uncharge_modmem(size);
1152 		return NULL;
1153 	}
1154 
1155 	*rw_header = kvmalloc(size, GFP_KERNEL);
1156 	if (!*rw_header) {
1157 		bpf_prog_pack_free(ro_header, size);
1158 		bpf_jit_uncharge_modmem(size);
1159 		return NULL;
1160 	}
1161 
1162 	/* Fill space with illegal/arch-dep instructions. */
1163 	bpf_fill_ill_insns(*rw_header, size);
1164 	(*rw_header)->size = size;
1165 
1166 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1167 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1168 	start = get_random_u32_below(hole) & ~(alignment - 1);
1169 
1170 	*image_ptr = &ro_header->image[start];
1171 	*rw_image = &(*rw_header)->image[start];
1172 
1173 	return ro_header;
1174 }
1175 
1176 /* Copy JITed text from rw_header to its final location, the ro_header. */
1177 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1178 				 struct bpf_binary_header *ro_header,
1179 				 struct bpf_binary_header *rw_header)
1180 {
1181 	void *ptr;
1182 
1183 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1184 
1185 	kvfree(rw_header);
1186 
1187 	if (IS_ERR(ptr)) {
1188 		bpf_prog_pack_free(ro_header, ro_header->size);
1189 		return PTR_ERR(ptr);
1190 	}
1191 	return 0;
1192 }
1193 
1194 /* bpf_jit_binary_pack_free is called in two different scenarios:
1195  *   1) when the program is freed after;
1196  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1197  * For case 2), we need to free both the RO memory and the RW buffer.
1198  *
1199  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1200  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1201  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1202  * bpf_arch_text_copy (when jit fails).
1203  */
1204 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1205 			      struct bpf_binary_header *rw_header)
1206 {
1207 	u32 size = ro_header->size;
1208 
1209 	bpf_prog_pack_free(ro_header, size);
1210 	kvfree(rw_header);
1211 	bpf_jit_uncharge_modmem(size);
1212 }
1213 
1214 struct bpf_binary_header *
1215 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1216 {
1217 	unsigned long real_start = (unsigned long)fp->bpf_func;
1218 	unsigned long addr;
1219 
1220 	addr = real_start & BPF_PROG_CHUNK_MASK;
1221 	return (void *)addr;
1222 }
1223 
1224 static inline struct bpf_binary_header *
1225 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1226 {
1227 	unsigned long real_start = (unsigned long)fp->bpf_func;
1228 	unsigned long addr;
1229 
1230 	addr = real_start & PAGE_MASK;
1231 	return (void *)addr;
1232 }
1233 
1234 /* This symbol is only overridden by archs that have different
1235  * requirements than the usual eBPF JITs, f.e. when they only
1236  * implement cBPF JIT, do not set images read-only, etc.
1237  */
1238 void __weak bpf_jit_free(struct bpf_prog *fp)
1239 {
1240 	if (fp->jited) {
1241 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1242 
1243 		bpf_jit_binary_free(hdr);
1244 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1245 	}
1246 
1247 	bpf_prog_unlock_free(fp);
1248 }
1249 
1250 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1251 			  const struct bpf_insn *insn, bool extra_pass,
1252 			  u64 *func_addr, bool *func_addr_fixed)
1253 {
1254 	s16 off = insn->off;
1255 	s32 imm = insn->imm;
1256 	u8 *addr;
1257 	int err;
1258 
1259 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1260 	if (!*func_addr_fixed) {
1261 		/* Place-holder address till the last pass has collected
1262 		 * all addresses for JITed subprograms in which case we
1263 		 * can pick them up from prog->aux.
1264 		 */
1265 		if (!extra_pass)
1266 			addr = NULL;
1267 		else if (prog->aux->func &&
1268 			 off >= 0 && off < prog->aux->real_func_cnt)
1269 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1270 		else
1271 			return -EINVAL;
1272 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1273 		   bpf_jit_supports_far_kfunc_call()) {
1274 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1275 		if (err)
1276 			return err;
1277 	} else {
1278 		/* Address of a BPF helper call. Since part of the core
1279 		 * kernel, it's always at a fixed location. __bpf_call_base
1280 		 * and the helper with imm relative to it are both in core
1281 		 * kernel.
1282 		 */
1283 		addr = (u8 *)__bpf_call_base + imm;
1284 	}
1285 
1286 	*func_addr = (unsigned long)addr;
1287 	return 0;
1288 }
1289 
1290 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1291 			      const struct bpf_insn *aux,
1292 			      struct bpf_insn *to_buff,
1293 			      bool emit_zext)
1294 {
1295 	struct bpf_insn *to = to_buff;
1296 	u32 imm_rnd = get_random_u32();
1297 	s16 off;
1298 
1299 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1300 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1301 
1302 	/* Constraints on AX register:
1303 	 *
1304 	 * AX register is inaccessible from user space. It is mapped in
1305 	 * all JITs, and used here for constant blinding rewrites. It is
1306 	 * typically "stateless" meaning its contents are only valid within
1307 	 * the executed instruction, but not across several instructions.
1308 	 * There are a few exceptions however which are further detailed
1309 	 * below.
1310 	 *
1311 	 * Constant blinding is only used by JITs, not in the interpreter.
1312 	 * The interpreter uses AX in some occasions as a local temporary
1313 	 * register e.g. in DIV or MOD instructions.
1314 	 *
1315 	 * In restricted circumstances, the verifier can also use the AX
1316 	 * register for rewrites as long as they do not interfere with
1317 	 * the above cases!
1318 	 */
1319 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1320 		goto out;
1321 
1322 	if (from->imm == 0 &&
1323 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1324 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1325 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1326 		goto out;
1327 	}
1328 
1329 	switch (from->code) {
1330 	case BPF_ALU | BPF_ADD | BPF_K:
1331 	case BPF_ALU | BPF_SUB | BPF_K:
1332 	case BPF_ALU | BPF_AND | BPF_K:
1333 	case BPF_ALU | BPF_OR  | BPF_K:
1334 	case BPF_ALU | BPF_XOR | BPF_K:
1335 	case BPF_ALU | BPF_MUL | BPF_K:
1336 	case BPF_ALU | BPF_MOV | BPF_K:
1337 	case BPF_ALU | BPF_DIV | BPF_K:
1338 	case BPF_ALU | BPF_MOD | BPF_K:
1339 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1340 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1341 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1342 		break;
1343 
1344 	case BPF_ALU64 | BPF_ADD | BPF_K:
1345 	case BPF_ALU64 | BPF_SUB | BPF_K:
1346 	case BPF_ALU64 | BPF_AND | BPF_K:
1347 	case BPF_ALU64 | BPF_OR  | BPF_K:
1348 	case BPF_ALU64 | BPF_XOR | BPF_K:
1349 	case BPF_ALU64 | BPF_MUL | BPF_K:
1350 	case BPF_ALU64 | BPF_MOV | BPF_K:
1351 	case BPF_ALU64 | BPF_DIV | BPF_K:
1352 	case BPF_ALU64 | BPF_MOD | BPF_K:
1353 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1354 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1355 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1356 		break;
1357 
1358 	case BPF_JMP | BPF_JEQ  | BPF_K:
1359 	case BPF_JMP | BPF_JNE  | BPF_K:
1360 	case BPF_JMP | BPF_JGT  | BPF_K:
1361 	case BPF_JMP | BPF_JLT  | BPF_K:
1362 	case BPF_JMP | BPF_JGE  | BPF_K:
1363 	case BPF_JMP | BPF_JLE  | BPF_K:
1364 	case BPF_JMP | BPF_JSGT | BPF_K:
1365 	case BPF_JMP | BPF_JSLT | BPF_K:
1366 	case BPF_JMP | BPF_JSGE | BPF_K:
1367 	case BPF_JMP | BPF_JSLE | BPF_K:
1368 	case BPF_JMP | BPF_JSET | BPF_K:
1369 		/* Accommodate for extra offset in case of a backjump. */
1370 		off = from->off;
1371 		if (off < 0)
1372 			off -= 2;
1373 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1374 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1375 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1376 		break;
1377 
1378 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1379 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1380 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1381 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1382 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1383 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1384 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1385 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1386 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1387 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1388 	case BPF_JMP32 | BPF_JSET | BPF_K:
1389 		/* Accommodate for extra offset in case of a backjump. */
1390 		off = from->off;
1391 		if (off < 0)
1392 			off -= 2;
1393 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1394 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1395 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1396 				      off);
1397 		break;
1398 
1399 	case BPF_LD | BPF_IMM | BPF_DW:
1400 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1401 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1402 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1403 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1404 		break;
1405 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1406 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1407 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1408 		if (emit_zext)
1409 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1410 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1411 		break;
1412 
1413 	case BPF_ST | BPF_MEM | BPF_DW:
1414 	case BPF_ST | BPF_MEM | BPF_W:
1415 	case BPF_ST | BPF_MEM | BPF_H:
1416 	case BPF_ST | BPF_MEM | BPF_B:
1417 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1418 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1419 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1420 		break;
1421 	}
1422 out:
1423 	return to - to_buff;
1424 }
1425 
1426 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1427 					      gfp_t gfp_extra_flags)
1428 {
1429 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1430 	struct bpf_prog *fp;
1431 
1432 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1433 	if (fp != NULL) {
1434 		/* aux->prog still points to the fp_other one, so
1435 		 * when promoting the clone to the real program,
1436 		 * this still needs to be adapted.
1437 		 */
1438 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1439 	}
1440 
1441 	return fp;
1442 }
1443 
1444 static void bpf_prog_clone_free(struct bpf_prog *fp)
1445 {
1446 	/* aux was stolen by the other clone, so we cannot free
1447 	 * it from this path! It will be freed eventually by the
1448 	 * other program on release.
1449 	 *
1450 	 * At this point, we don't need a deferred release since
1451 	 * clone is guaranteed to not be locked.
1452 	 */
1453 	fp->aux = NULL;
1454 	fp->stats = NULL;
1455 	fp->active = NULL;
1456 	__bpf_prog_free(fp);
1457 }
1458 
1459 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1460 {
1461 	/* We have to repoint aux->prog to self, as we don't
1462 	 * know whether fp here is the clone or the original.
1463 	 */
1464 	fp->aux->prog = fp;
1465 	bpf_prog_clone_free(fp_other);
1466 }
1467 
1468 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1469 {
1470 	struct bpf_insn insn_buff[16], aux[2];
1471 	struct bpf_prog *clone, *tmp;
1472 	int insn_delta, insn_cnt;
1473 	struct bpf_insn *insn;
1474 	int i, rewritten;
1475 
1476 	if (!prog->blinding_requested || prog->blinded)
1477 		return prog;
1478 
1479 	clone = bpf_prog_clone_create(prog, GFP_USER);
1480 	if (!clone)
1481 		return ERR_PTR(-ENOMEM);
1482 
1483 	insn_cnt = clone->len;
1484 	insn = clone->insnsi;
1485 
1486 	for (i = 0; i < insn_cnt; i++, insn++) {
1487 		if (bpf_pseudo_func(insn)) {
1488 			/* ld_imm64 with an address of bpf subprog is not
1489 			 * a user controlled constant. Don't randomize it,
1490 			 * since it will conflict with jit_subprogs() logic.
1491 			 */
1492 			insn++;
1493 			i++;
1494 			continue;
1495 		}
1496 
1497 		/* We temporarily need to hold the original ld64 insn
1498 		 * so that we can still access the first part in the
1499 		 * second blinding run.
1500 		 */
1501 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1502 		    insn[1].code == 0)
1503 			memcpy(aux, insn, sizeof(aux));
1504 
1505 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1506 						clone->aux->verifier_zext);
1507 		if (!rewritten)
1508 			continue;
1509 
1510 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1511 		if (IS_ERR(tmp)) {
1512 			/* Patching may have repointed aux->prog during
1513 			 * realloc from the original one, so we need to
1514 			 * fix it up here on error.
1515 			 */
1516 			bpf_jit_prog_release_other(prog, clone);
1517 			return tmp;
1518 		}
1519 
1520 		clone = tmp;
1521 		insn_delta = rewritten - 1;
1522 
1523 		/* Walk new program and skip insns we just inserted. */
1524 		insn = clone->insnsi + i + insn_delta;
1525 		insn_cnt += insn_delta;
1526 		i        += insn_delta;
1527 	}
1528 
1529 	clone->blinded = 1;
1530 	return clone;
1531 }
1532 #endif /* CONFIG_BPF_JIT */
1533 
1534 /* Base function for offset calculation. Needs to go into .text section,
1535  * therefore keeping it non-static as well; will also be used by JITs
1536  * anyway later on, so do not let the compiler omit it. This also needs
1537  * to go into kallsyms for correlation from e.g. bpftool, so naming
1538  * must not change.
1539  */
1540 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1541 {
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(__bpf_call_base);
1545 
1546 /* All UAPI available opcodes. */
1547 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1548 	/* 32 bit ALU operations. */		\
1549 	/*   Register based. */			\
1550 	INSN_3(ALU, ADD,  X),			\
1551 	INSN_3(ALU, SUB,  X),			\
1552 	INSN_3(ALU, AND,  X),			\
1553 	INSN_3(ALU, OR,   X),			\
1554 	INSN_3(ALU, LSH,  X),			\
1555 	INSN_3(ALU, RSH,  X),			\
1556 	INSN_3(ALU, XOR,  X),			\
1557 	INSN_3(ALU, MUL,  X),			\
1558 	INSN_3(ALU, MOV,  X),			\
1559 	INSN_3(ALU, ARSH, X),			\
1560 	INSN_3(ALU, DIV,  X),			\
1561 	INSN_3(ALU, MOD,  X),			\
1562 	INSN_2(ALU, NEG),			\
1563 	INSN_3(ALU, END, TO_BE),		\
1564 	INSN_3(ALU, END, TO_LE),		\
1565 	/*   Immediate based. */		\
1566 	INSN_3(ALU, ADD,  K),			\
1567 	INSN_3(ALU, SUB,  K),			\
1568 	INSN_3(ALU, AND,  K),			\
1569 	INSN_3(ALU, OR,   K),			\
1570 	INSN_3(ALU, LSH,  K),			\
1571 	INSN_3(ALU, RSH,  K),			\
1572 	INSN_3(ALU, XOR,  K),			\
1573 	INSN_3(ALU, MUL,  K),			\
1574 	INSN_3(ALU, MOV,  K),			\
1575 	INSN_3(ALU, ARSH, K),			\
1576 	INSN_3(ALU, DIV,  K),			\
1577 	INSN_3(ALU, MOD,  K),			\
1578 	/* 64 bit ALU operations. */		\
1579 	/*   Register based. */			\
1580 	INSN_3(ALU64, ADD,  X),			\
1581 	INSN_3(ALU64, SUB,  X),			\
1582 	INSN_3(ALU64, AND,  X),			\
1583 	INSN_3(ALU64, OR,   X),			\
1584 	INSN_3(ALU64, LSH,  X),			\
1585 	INSN_3(ALU64, RSH,  X),			\
1586 	INSN_3(ALU64, XOR,  X),			\
1587 	INSN_3(ALU64, MUL,  X),			\
1588 	INSN_3(ALU64, MOV,  X),			\
1589 	INSN_3(ALU64, ARSH, X),			\
1590 	INSN_3(ALU64, DIV,  X),			\
1591 	INSN_3(ALU64, MOD,  X),			\
1592 	INSN_2(ALU64, NEG),			\
1593 	INSN_3(ALU64, END, TO_LE),		\
1594 	/*   Immediate based. */		\
1595 	INSN_3(ALU64, ADD,  K),			\
1596 	INSN_3(ALU64, SUB,  K),			\
1597 	INSN_3(ALU64, AND,  K),			\
1598 	INSN_3(ALU64, OR,   K),			\
1599 	INSN_3(ALU64, LSH,  K),			\
1600 	INSN_3(ALU64, RSH,  K),			\
1601 	INSN_3(ALU64, XOR,  K),			\
1602 	INSN_3(ALU64, MUL,  K),			\
1603 	INSN_3(ALU64, MOV,  K),			\
1604 	INSN_3(ALU64, ARSH, K),			\
1605 	INSN_3(ALU64, DIV,  K),			\
1606 	INSN_3(ALU64, MOD,  K),			\
1607 	/* Call instruction. */			\
1608 	INSN_2(JMP, CALL),			\
1609 	/* Exit instruction. */			\
1610 	INSN_2(JMP, EXIT),			\
1611 	/* 32-bit Jump instructions. */		\
1612 	/*   Register based. */			\
1613 	INSN_3(JMP32, JEQ,  X),			\
1614 	INSN_3(JMP32, JNE,  X),			\
1615 	INSN_3(JMP32, JGT,  X),			\
1616 	INSN_3(JMP32, JLT,  X),			\
1617 	INSN_3(JMP32, JGE,  X),			\
1618 	INSN_3(JMP32, JLE,  X),			\
1619 	INSN_3(JMP32, JSGT, X),			\
1620 	INSN_3(JMP32, JSLT, X),			\
1621 	INSN_3(JMP32, JSGE, X),			\
1622 	INSN_3(JMP32, JSLE, X),			\
1623 	INSN_3(JMP32, JSET, X),			\
1624 	/*   Immediate based. */		\
1625 	INSN_3(JMP32, JEQ,  K),			\
1626 	INSN_3(JMP32, JNE,  K),			\
1627 	INSN_3(JMP32, JGT,  K),			\
1628 	INSN_3(JMP32, JLT,  K),			\
1629 	INSN_3(JMP32, JGE,  K),			\
1630 	INSN_3(JMP32, JLE,  K),			\
1631 	INSN_3(JMP32, JSGT, K),			\
1632 	INSN_3(JMP32, JSLT, K),			\
1633 	INSN_3(JMP32, JSGE, K),			\
1634 	INSN_3(JMP32, JSLE, K),			\
1635 	INSN_3(JMP32, JSET, K),			\
1636 	/* Jump instructions. */		\
1637 	/*   Register based. */			\
1638 	INSN_3(JMP, JEQ,  X),			\
1639 	INSN_3(JMP, JNE,  X),			\
1640 	INSN_3(JMP, JGT,  X),			\
1641 	INSN_3(JMP, JLT,  X),			\
1642 	INSN_3(JMP, JGE,  X),			\
1643 	INSN_3(JMP, JLE,  X),			\
1644 	INSN_3(JMP, JSGT, X),			\
1645 	INSN_3(JMP, JSLT, X),			\
1646 	INSN_3(JMP, JSGE, X),			\
1647 	INSN_3(JMP, JSLE, X),			\
1648 	INSN_3(JMP, JSET, X),			\
1649 	/*   Immediate based. */		\
1650 	INSN_3(JMP, JEQ,  K),			\
1651 	INSN_3(JMP, JNE,  K),			\
1652 	INSN_3(JMP, JGT,  K),			\
1653 	INSN_3(JMP, JLT,  K),			\
1654 	INSN_3(JMP, JGE,  K),			\
1655 	INSN_3(JMP, JLE,  K),			\
1656 	INSN_3(JMP, JSGT, K),			\
1657 	INSN_3(JMP, JSLT, K),			\
1658 	INSN_3(JMP, JSGE, K),			\
1659 	INSN_3(JMP, JSLE, K),			\
1660 	INSN_3(JMP, JSET, K),			\
1661 	INSN_2(JMP, JA),			\
1662 	INSN_2(JMP32, JA),			\
1663 	/* Store instructions. */		\
1664 	/*   Register based. */			\
1665 	INSN_3(STX, MEM,  B),			\
1666 	INSN_3(STX, MEM,  H),			\
1667 	INSN_3(STX, MEM,  W),			\
1668 	INSN_3(STX, MEM,  DW),			\
1669 	INSN_3(STX, ATOMIC, W),			\
1670 	INSN_3(STX, ATOMIC, DW),		\
1671 	/*   Immediate based. */		\
1672 	INSN_3(ST, MEM, B),			\
1673 	INSN_3(ST, MEM, H),			\
1674 	INSN_3(ST, MEM, W),			\
1675 	INSN_3(ST, MEM, DW),			\
1676 	/* Load instructions. */		\
1677 	/*   Register based. */			\
1678 	INSN_3(LDX, MEM, B),			\
1679 	INSN_3(LDX, MEM, H),			\
1680 	INSN_3(LDX, MEM, W),			\
1681 	INSN_3(LDX, MEM, DW),			\
1682 	INSN_3(LDX, MEMSX, B),			\
1683 	INSN_3(LDX, MEMSX, H),			\
1684 	INSN_3(LDX, MEMSX, W),			\
1685 	/*   Immediate based. */		\
1686 	INSN_3(LD, IMM, DW)
1687 
1688 bool bpf_opcode_in_insntable(u8 code)
1689 {
1690 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1691 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1692 	static const bool public_insntable[256] = {
1693 		[0 ... 255] = false,
1694 		/* Now overwrite non-defaults ... */
1695 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1696 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1697 		[BPF_LD | BPF_ABS | BPF_B] = true,
1698 		[BPF_LD | BPF_ABS | BPF_H] = true,
1699 		[BPF_LD | BPF_ABS | BPF_W] = true,
1700 		[BPF_LD | BPF_IND | BPF_B] = true,
1701 		[BPF_LD | BPF_IND | BPF_H] = true,
1702 		[BPF_LD | BPF_IND | BPF_W] = true,
1703 		[BPF_JMP | BPF_JCOND] = true,
1704 	};
1705 #undef BPF_INSN_3_TBL
1706 #undef BPF_INSN_2_TBL
1707 	return public_insntable[code];
1708 }
1709 
1710 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1711 /**
1712  *	___bpf_prog_run - run eBPF program on a given context
1713  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1714  *	@insn: is the array of eBPF instructions
1715  *
1716  * Decode and execute eBPF instructions.
1717  *
1718  * Return: whatever value is in %BPF_R0 at program exit
1719  */
1720 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1721 {
1722 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1723 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1724 	static const void * const jumptable[256] __annotate_jump_table = {
1725 		[0 ... 255] = &&default_label,
1726 		/* Now overwrite non-defaults ... */
1727 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1728 		/* Non-UAPI available opcodes. */
1729 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1730 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1731 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1732 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1733 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1734 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1735 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1736 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1737 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1738 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1739 	};
1740 #undef BPF_INSN_3_LBL
1741 #undef BPF_INSN_2_LBL
1742 	u32 tail_call_cnt = 0;
1743 
1744 #define CONT	 ({ insn++; goto select_insn; })
1745 #define CONT_JMP ({ insn++; goto select_insn; })
1746 
1747 select_insn:
1748 	goto *jumptable[insn->code];
1749 
1750 	/* Explicitly mask the register-based shift amounts with 63 or 31
1751 	 * to avoid undefined behavior. Normally this won't affect the
1752 	 * generated code, for example, in case of native 64 bit archs such
1753 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1754 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1755 	 * the BPF shift operations to machine instructions which produce
1756 	 * implementation-defined results in such a case; the resulting
1757 	 * contents of the register may be arbitrary, but program behaviour
1758 	 * as a whole remains defined. In other words, in case of JIT backends,
1759 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1760 	 */
1761 	/* ALU (shifts) */
1762 #define SHT(OPCODE, OP)					\
1763 	ALU64_##OPCODE##_X:				\
1764 		DST = DST OP (SRC & 63);		\
1765 		CONT;					\
1766 	ALU_##OPCODE##_X:				\
1767 		DST = (u32) DST OP ((u32) SRC & 31);	\
1768 		CONT;					\
1769 	ALU64_##OPCODE##_K:				\
1770 		DST = DST OP IMM;			\
1771 		CONT;					\
1772 	ALU_##OPCODE##_K:				\
1773 		DST = (u32) DST OP (u32) IMM;		\
1774 		CONT;
1775 	/* ALU (rest) */
1776 #define ALU(OPCODE, OP)					\
1777 	ALU64_##OPCODE##_X:				\
1778 		DST = DST OP SRC;			\
1779 		CONT;					\
1780 	ALU_##OPCODE##_X:				\
1781 		DST = (u32) DST OP (u32) SRC;		\
1782 		CONT;					\
1783 	ALU64_##OPCODE##_K:				\
1784 		DST = DST OP IMM;			\
1785 		CONT;					\
1786 	ALU_##OPCODE##_K:				\
1787 		DST = (u32) DST OP (u32) IMM;		\
1788 		CONT;
1789 	ALU(ADD,  +)
1790 	ALU(SUB,  -)
1791 	ALU(AND,  &)
1792 	ALU(OR,   |)
1793 	ALU(XOR,  ^)
1794 	ALU(MUL,  *)
1795 	SHT(LSH, <<)
1796 	SHT(RSH, >>)
1797 #undef SHT
1798 #undef ALU
1799 	ALU_NEG:
1800 		DST = (u32) -DST;
1801 		CONT;
1802 	ALU64_NEG:
1803 		DST = -DST;
1804 		CONT;
1805 	ALU_MOV_X:
1806 		switch (OFF) {
1807 		case 0:
1808 			DST = (u32) SRC;
1809 			break;
1810 		case 8:
1811 			DST = (u32)(s8) SRC;
1812 			break;
1813 		case 16:
1814 			DST = (u32)(s16) SRC;
1815 			break;
1816 		}
1817 		CONT;
1818 	ALU_MOV_K:
1819 		DST = (u32) IMM;
1820 		CONT;
1821 	ALU64_MOV_X:
1822 		switch (OFF) {
1823 		case 0:
1824 			DST = SRC;
1825 			break;
1826 		case 8:
1827 			DST = (s8) SRC;
1828 			break;
1829 		case 16:
1830 			DST = (s16) SRC;
1831 			break;
1832 		case 32:
1833 			DST = (s32) SRC;
1834 			break;
1835 		}
1836 		CONT;
1837 	ALU64_MOV_K:
1838 		DST = IMM;
1839 		CONT;
1840 	LD_IMM_DW:
1841 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1842 		insn++;
1843 		CONT;
1844 	ALU_ARSH_X:
1845 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1846 		CONT;
1847 	ALU_ARSH_K:
1848 		DST = (u64) (u32) (((s32) DST) >> IMM);
1849 		CONT;
1850 	ALU64_ARSH_X:
1851 		(*(s64 *) &DST) >>= (SRC & 63);
1852 		CONT;
1853 	ALU64_ARSH_K:
1854 		(*(s64 *) &DST) >>= IMM;
1855 		CONT;
1856 	ALU64_MOD_X:
1857 		switch (OFF) {
1858 		case 0:
1859 			div64_u64_rem(DST, SRC, &AX);
1860 			DST = AX;
1861 			break;
1862 		case 1:
1863 			AX = div64_s64(DST, SRC);
1864 			DST = DST - AX * SRC;
1865 			break;
1866 		}
1867 		CONT;
1868 	ALU_MOD_X:
1869 		switch (OFF) {
1870 		case 0:
1871 			AX = (u32) DST;
1872 			DST = do_div(AX, (u32) SRC);
1873 			break;
1874 		case 1:
1875 			AX = abs((s32)DST);
1876 			AX = do_div(AX, abs((s32)SRC));
1877 			if ((s32)DST < 0)
1878 				DST = (u32)-AX;
1879 			else
1880 				DST = (u32)AX;
1881 			break;
1882 		}
1883 		CONT;
1884 	ALU64_MOD_K:
1885 		switch (OFF) {
1886 		case 0:
1887 			div64_u64_rem(DST, IMM, &AX);
1888 			DST = AX;
1889 			break;
1890 		case 1:
1891 			AX = div64_s64(DST, IMM);
1892 			DST = DST - AX * IMM;
1893 			break;
1894 		}
1895 		CONT;
1896 	ALU_MOD_K:
1897 		switch (OFF) {
1898 		case 0:
1899 			AX = (u32) DST;
1900 			DST = do_div(AX, (u32) IMM);
1901 			break;
1902 		case 1:
1903 			AX = abs((s32)DST);
1904 			AX = do_div(AX, abs((s32)IMM));
1905 			if ((s32)DST < 0)
1906 				DST = (u32)-AX;
1907 			else
1908 				DST = (u32)AX;
1909 			break;
1910 		}
1911 		CONT;
1912 	ALU64_DIV_X:
1913 		switch (OFF) {
1914 		case 0:
1915 			DST = div64_u64(DST, SRC);
1916 			break;
1917 		case 1:
1918 			DST = div64_s64(DST, SRC);
1919 			break;
1920 		}
1921 		CONT;
1922 	ALU_DIV_X:
1923 		switch (OFF) {
1924 		case 0:
1925 			AX = (u32) DST;
1926 			do_div(AX, (u32) SRC);
1927 			DST = (u32) AX;
1928 			break;
1929 		case 1:
1930 			AX = abs((s32)DST);
1931 			do_div(AX, abs((s32)SRC));
1932 			if (((s32)DST < 0) == ((s32)SRC < 0))
1933 				DST = (u32)AX;
1934 			else
1935 				DST = (u32)-AX;
1936 			break;
1937 		}
1938 		CONT;
1939 	ALU64_DIV_K:
1940 		switch (OFF) {
1941 		case 0:
1942 			DST = div64_u64(DST, IMM);
1943 			break;
1944 		case 1:
1945 			DST = div64_s64(DST, IMM);
1946 			break;
1947 		}
1948 		CONT;
1949 	ALU_DIV_K:
1950 		switch (OFF) {
1951 		case 0:
1952 			AX = (u32) DST;
1953 			do_div(AX, (u32) IMM);
1954 			DST = (u32) AX;
1955 			break;
1956 		case 1:
1957 			AX = abs((s32)DST);
1958 			do_div(AX, abs((s32)IMM));
1959 			if (((s32)DST < 0) == ((s32)IMM < 0))
1960 				DST = (u32)AX;
1961 			else
1962 				DST = (u32)-AX;
1963 			break;
1964 		}
1965 		CONT;
1966 	ALU_END_TO_BE:
1967 		switch (IMM) {
1968 		case 16:
1969 			DST = (__force u16) cpu_to_be16(DST);
1970 			break;
1971 		case 32:
1972 			DST = (__force u32) cpu_to_be32(DST);
1973 			break;
1974 		case 64:
1975 			DST = (__force u64) cpu_to_be64(DST);
1976 			break;
1977 		}
1978 		CONT;
1979 	ALU_END_TO_LE:
1980 		switch (IMM) {
1981 		case 16:
1982 			DST = (__force u16) cpu_to_le16(DST);
1983 			break;
1984 		case 32:
1985 			DST = (__force u32) cpu_to_le32(DST);
1986 			break;
1987 		case 64:
1988 			DST = (__force u64) cpu_to_le64(DST);
1989 			break;
1990 		}
1991 		CONT;
1992 	ALU64_END_TO_LE:
1993 		switch (IMM) {
1994 		case 16:
1995 			DST = (__force u16) __swab16(DST);
1996 			break;
1997 		case 32:
1998 			DST = (__force u32) __swab32(DST);
1999 			break;
2000 		case 64:
2001 			DST = (__force u64) __swab64(DST);
2002 			break;
2003 		}
2004 		CONT;
2005 
2006 	/* CALL */
2007 	JMP_CALL:
2008 		/* Function call scratches BPF_R1-BPF_R5 registers,
2009 		 * preserves BPF_R6-BPF_R9, and stores return value
2010 		 * into BPF_R0.
2011 		 */
2012 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2013 						       BPF_R4, BPF_R5);
2014 		CONT;
2015 
2016 	JMP_CALL_ARGS:
2017 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2018 							    BPF_R3, BPF_R4,
2019 							    BPF_R5,
2020 							    insn + insn->off + 1);
2021 		CONT;
2022 
2023 	JMP_TAIL_CALL: {
2024 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2025 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2026 		struct bpf_prog *prog;
2027 		u32 index = BPF_R3;
2028 
2029 		if (unlikely(index >= array->map.max_entries))
2030 			goto out;
2031 
2032 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2033 			goto out;
2034 
2035 		tail_call_cnt++;
2036 
2037 		prog = READ_ONCE(array->ptrs[index]);
2038 		if (!prog)
2039 			goto out;
2040 
2041 		/* ARG1 at this point is guaranteed to point to CTX from
2042 		 * the verifier side due to the fact that the tail call is
2043 		 * handled like a helper, that is, bpf_tail_call_proto,
2044 		 * where arg1_type is ARG_PTR_TO_CTX.
2045 		 */
2046 		insn = prog->insnsi;
2047 		goto select_insn;
2048 out:
2049 		CONT;
2050 	}
2051 	JMP_JA:
2052 		insn += insn->off;
2053 		CONT;
2054 	JMP32_JA:
2055 		insn += insn->imm;
2056 		CONT;
2057 	JMP_EXIT:
2058 		return BPF_R0;
2059 	/* JMP */
2060 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2061 	JMP_##OPCODE##_X:					\
2062 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2063 			insn += insn->off;			\
2064 			CONT_JMP;				\
2065 		}						\
2066 		CONT;						\
2067 	JMP32_##OPCODE##_X:					\
2068 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2069 			insn += insn->off;			\
2070 			CONT_JMP;				\
2071 		}						\
2072 		CONT;						\
2073 	JMP_##OPCODE##_K:					\
2074 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2075 			insn += insn->off;			\
2076 			CONT_JMP;				\
2077 		}						\
2078 		CONT;						\
2079 	JMP32_##OPCODE##_K:					\
2080 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2081 			insn += insn->off;			\
2082 			CONT_JMP;				\
2083 		}						\
2084 		CONT;
2085 	COND_JMP(u, JEQ, ==)
2086 	COND_JMP(u, JNE, !=)
2087 	COND_JMP(u, JGT, >)
2088 	COND_JMP(u, JLT, <)
2089 	COND_JMP(u, JGE, >=)
2090 	COND_JMP(u, JLE, <=)
2091 	COND_JMP(u, JSET, &)
2092 	COND_JMP(s, JSGT, >)
2093 	COND_JMP(s, JSLT, <)
2094 	COND_JMP(s, JSGE, >=)
2095 	COND_JMP(s, JSLE, <=)
2096 #undef COND_JMP
2097 	/* ST, STX and LDX*/
2098 	ST_NOSPEC:
2099 		/* Speculation barrier for mitigating Speculative Store Bypass.
2100 		 * In case of arm64, we rely on the firmware mitigation as
2101 		 * controlled via the ssbd kernel parameter. Whenever the
2102 		 * mitigation is enabled, it works for all of the kernel code
2103 		 * with no need to provide any additional instructions here.
2104 		 * In case of x86, we use 'lfence' insn for mitigation. We
2105 		 * reuse preexisting logic from Spectre v1 mitigation that
2106 		 * happens to produce the required code on x86 for v4 as well.
2107 		 */
2108 		barrier_nospec();
2109 		CONT;
2110 #define LDST(SIZEOP, SIZE)						\
2111 	STX_MEM_##SIZEOP:						\
2112 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2113 		CONT;							\
2114 	ST_MEM_##SIZEOP:						\
2115 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2116 		CONT;							\
2117 	LDX_MEM_##SIZEOP:						\
2118 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2119 		CONT;							\
2120 	LDX_PROBE_MEM_##SIZEOP:						\
2121 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2122 			      (const void *)(long) (SRC + insn->off));	\
2123 		DST = *((SIZE *)&DST);					\
2124 		CONT;
2125 
2126 	LDST(B,   u8)
2127 	LDST(H,  u16)
2128 	LDST(W,  u32)
2129 	LDST(DW, u64)
2130 #undef LDST
2131 
2132 #define LDSX(SIZEOP, SIZE)						\
2133 	LDX_MEMSX_##SIZEOP:						\
2134 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2135 		CONT;							\
2136 	LDX_PROBE_MEMSX_##SIZEOP:					\
2137 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2138 				      (const void *)(long) (SRC + insn->off));	\
2139 		DST = *((SIZE *)&DST);					\
2140 		CONT;
2141 
2142 	LDSX(B,   s8)
2143 	LDSX(H,  s16)
2144 	LDSX(W,  s32)
2145 #undef LDSX
2146 
2147 #define ATOMIC_ALU_OP(BOP, KOP)						\
2148 		case BOP:						\
2149 			if (BPF_SIZE(insn->code) == BPF_W)		\
2150 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2151 					     (DST + insn->off));	\
2152 			else						\
2153 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2154 					       (DST + insn->off));	\
2155 			break;						\
2156 		case BOP | BPF_FETCH:					\
2157 			if (BPF_SIZE(insn->code) == BPF_W)		\
2158 				SRC = (u32) atomic_fetch_##KOP(		\
2159 					(u32) SRC,			\
2160 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2161 			else						\
2162 				SRC = (u64) atomic64_fetch_##KOP(	\
2163 					(u64) SRC,			\
2164 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2165 			break;
2166 
2167 	STX_ATOMIC_DW:
2168 	STX_ATOMIC_W:
2169 		switch (IMM) {
2170 		ATOMIC_ALU_OP(BPF_ADD, add)
2171 		ATOMIC_ALU_OP(BPF_AND, and)
2172 		ATOMIC_ALU_OP(BPF_OR, or)
2173 		ATOMIC_ALU_OP(BPF_XOR, xor)
2174 #undef ATOMIC_ALU_OP
2175 
2176 		case BPF_XCHG:
2177 			if (BPF_SIZE(insn->code) == BPF_W)
2178 				SRC = (u32) atomic_xchg(
2179 					(atomic_t *)(unsigned long) (DST + insn->off),
2180 					(u32) SRC);
2181 			else
2182 				SRC = (u64) atomic64_xchg(
2183 					(atomic64_t *)(unsigned long) (DST + insn->off),
2184 					(u64) SRC);
2185 			break;
2186 		case BPF_CMPXCHG:
2187 			if (BPF_SIZE(insn->code) == BPF_W)
2188 				BPF_R0 = (u32) atomic_cmpxchg(
2189 					(atomic_t *)(unsigned long) (DST + insn->off),
2190 					(u32) BPF_R0, (u32) SRC);
2191 			else
2192 				BPF_R0 = (u64) atomic64_cmpxchg(
2193 					(atomic64_t *)(unsigned long) (DST + insn->off),
2194 					(u64) BPF_R0, (u64) SRC);
2195 			break;
2196 
2197 		default:
2198 			goto default_label;
2199 		}
2200 		CONT;
2201 
2202 	default_label:
2203 		/* If we ever reach this, we have a bug somewhere. Die hard here
2204 		 * instead of just returning 0; we could be somewhere in a subprog,
2205 		 * so execution could continue otherwise which we do /not/ want.
2206 		 *
2207 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2208 		 */
2209 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2210 			insn->code, insn->imm);
2211 		BUG_ON(1);
2212 		return 0;
2213 }
2214 
2215 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2216 #define DEFINE_BPF_PROG_RUN(stack_size) \
2217 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2218 { \
2219 	u64 stack[stack_size / sizeof(u64)]; \
2220 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2221 \
2222 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2223 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2224 	ARG1 = (u64) (unsigned long) ctx; \
2225 	return ___bpf_prog_run(regs, insn); \
2226 }
2227 
2228 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2229 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2230 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2231 				      const struct bpf_insn *insn) \
2232 { \
2233 	u64 stack[stack_size / sizeof(u64)]; \
2234 	u64 regs[MAX_BPF_EXT_REG]; \
2235 \
2236 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2237 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2238 	BPF_R1 = r1; \
2239 	BPF_R2 = r2; \
2240 	BPF_R3 = r3; \
2241 	BPF_R4 = r4; \
2242 	BPF_R5 = r5; \
2243 	return ___bpf_prog_run(regs, insn); \
2244 }
2245 
2246 #define EVAL1(FN, X) FN(X)
2247 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2248 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2249 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2250 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2251 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2252 
2253 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2254 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2255 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2256 
2257 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2258 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2259 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2260 
2261 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2262 
2263 static unsigned int (*interpreters[])(const void *ctx,
2264 				      const struct bpf_insn *insn) = {
2265 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2266 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2267 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2268 };
2269 #undef PROG_NAME_LIST
2270 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2271 static __maybe_unused
2272 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2273 			   const struct bpf_insn *insn) = {
2274 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2275 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2276 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2277 };
2278 #undef PROG_NAME_LIST
2279 
2280 #ifdef CONFIG_BPF_SYSCALL
2281 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2282 {
2283 	stack_depth = max_t(u32, stack_depth, 1);
2284 	insn->off = (s16) insn->imm;
2285 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2286 		__bpf_call_base_args;
2287 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2288 }
2289 #endif
2290 #else
2291 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2292 					 const struct bpf_insn *insn)
2293 {
2294 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2295 	 * is not working properly, so warn about it!
2296 	 */
2297 	WARN_ON_ONCE(1);
2298 	return 0;
2299 }
2300 #endif
2301 
2302 bool bpf_prog_map_compatible(struct bpf_map *map,
2303 			     const struct bpf_prog *fp)
2304 {
2305 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2306 	bool ret;
2307 
2308 	if (fp->kprobe_override)
2309 		return false;
2310 
2311 	/* XDP programs inserted into maps are not guaranteed to run on
2312 	 * a particular netdev (and can run outside driver context entirely
2313 	 * in the case of devmap and cpumap). Until device checks
2314 	 * are implemented, prohibit adding dev-bound programs to program maps.
2315 	 */
2316 	if (bpf_prog_is_dev_bound(fp->aux))
2317 		return false;
2318 
2319 	spin_lock(&map->owner.lock);
2320 	if (!map->owner.type) {
2321 		/* There's no owner yet where we could check for
2322 		 * compatibility.
2323 		 */
2324 		map->owner.type  = prog_type;
2325 		map->owner.jited = fp->jited;
2326 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2327 		ret = true;
2328 	} else {
2329 		ret = map->owner.type  == prog_type &&
2330 		      map->owner.jited == fp->jited &&
2331 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2332 	}
2333 	spin_unlock(&map->owner.lock);
2334 
2335 	return ret;
2336 }
2337 
2338 static int bpf_check_tail_call(const struct bpf_prog *fp)
2339 {
2340 	struct bpf_prog_aux *aux = fp->aux;
2341 	int i, ret = 0;
2342 
2343 	mutex_lock(&aux->used_maps_mutex);
2344 	for (i = 0; i < aux->used_map_cnt; i++) {
2345 		struct bpf_map *map = aux->used_maps[i];
2346 
2347 		if (!map_type_contains_progs(map))
2348 			continue;
2349 
2350 		if (!bpf_prog_map_compatible(map, fp)) {
2351 			ret = -EINVAL;
2352 			goto out;
2353 		}
2354 	}
2355 
2356 out:
2357 	mutex_unlock(&aux->used_maps_mutex);
2358 	return ret;
2359 }
2360 
2361 static void bpf_prog_select_func(struct bpf_prog *fp)
2362 {
2363 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2364 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2365 
2366 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2367 #else
2368 	fp->bpf_func = __bpf_prog_ret0_warn;
2369 #endif
2370 }
2371 
2372 /**
2373  *	bpf_prog_select_runtime - select exec runtime for BPF program
2374  *	@fp: bpf_prog populated with BPF program
2375  *	@err: pointer to error variable
2376  *
2377  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2378  * The BPF program will be executed via bpf_prog_run() function.
2379  *
2380  * Return: the &fp argument along with &err set to 0 for success or
2381  * a negative errno code on failure
2382  */
2383 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2384 {
2385 	/* In case of BPF to BPF calls, verifier did all the prep
2386 	 * work with regards to JITing, etc.
2387 	 */
2388 	bool jit_needed = false;
2389 
2390 	if (fp->bpf_func)
2391 		goto finalize;
2392 
2393 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2394 	    bpf_prog_has_kfunc_call(fp))
2395 		jit_needed = true;
2396 
2397 	bpf_prog_select_func(fp);
2398 
2399 	/* eBPF JITs can rewrite the program in case constant
2400 	 * blinding is active. However, in case of error during
2401 	 * blinding, bpf_int_jit_compile() must always return a
2402 	 * valid program, which in this case would simply not
2403 	 * be JITed, but falls back to the interpreter.
2404 	 */
2405 	if (!bpf_prog_is_offloaded(fp->aux)) {
2406 		*err = bpf_prog_alloc_jited_linfo(fp);
2407 		if (*err)
2408 			return fp;
2409 
2410 		fp = bpf_int_jit_compile(fp);
2411 		bpf_prog_jit_attempt_done(fp);
2412 		if (!fp->jited && jit_needed) {
2413 			*err = -ENOTSUPP;
2414 			return fp;
2415 		}
2416 	} else {
2417 		*err = bpf_prog_offload_compile(fp);
2418 		if (*err)
2419 			return fp;
2420 	}
2421 
2422 finalize:
2423 	*err = bpf_prog_lock_ro(fp);
2424 	if (*err)
2425 		return fp;
2426 
2427 	/* The tail call compatibility check can only be done at
2428 	 * this late stage as we need to determine, if we deal
2429 	 * with JITed or non JITed program concatenations and not
2430 	 * all eBPF JITs might immediately support all features.
2431 	 */
2432 	*err = bpf_check_tail_call(fp);
2433 
2434 	return fp;
2435 }
2436 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2437 
2438 static unsigned int __bpf_prog_ret1(const void *ctx,
2439 				    const struct bpf_insn *insn)
2440 {
2441 	return 1;
2442 }
2443 
2444 static struct bpf_prog_dummy {
2445 	struct bpf_prog prog;
2446 } dummy_bpf_prog = {
2447 	.prog = {
2448 		.bpf_func = __bpf_prog_ret1,
2449 	},
2450 };
2451 
2452 struct bpf_empty_prog_array bpf_empty_prog_array = {
2453 	.null_prog = NULL,
2454 };
2455 EXPORT_SYMBOL(bpf_empty_prog_array);
2456 
2457 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2458 {
2459 	struct bpf_prog_array *p;
2460 
2461 	if (prog_cnt)
2462 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2463 	else
2464 		p = &bpf_empty_prog_array.hdr;
2465 
2466 	return p;
2467 }
2468 
2469 void bpf_prog_array_free(struct bpf_prog_array *progs)
2470 {
2471 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2472 		return;
2473 	kfree_rcu(progs, rcu);
2474 }
2475 
2476 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2477 {
2478 	struct bpf_prog_array *progs;
2479 
2480 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2481 	 * no need to call kfree_rcu(), just call kfree() directly.
2482 	 */
2483 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2484 	if (rcu_trace_implies_rcu_gp())
2485 		kfree(progs);
2486 	else
2487 		kfree_rcu(progs, rcu);
2488 }
2489 
2490 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2491 {
2492 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2493 		return;
2494 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2495 }
2496 
2497 int bpf_prog_array_length(struct bpf_prog_array *array)
2498 {
2499 	struct bpf_prog_array_item *item;
2500 	u32 cnt = 0;
2501 
2502 	for (item = array->items; item->prog; item++)
2503 		if (item->prog != &dummy_bpf_prog.prog)
2504 			cnt++;
2505 	return cnt;
2506 }
2507 
2508 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2509 {
2510 	struct bpf_prog_array_item *item;
2511 
2512 	for (item = array->items; item->prog; item++)
2513 		if (item->prog != &dummy_bpf_prog.prog)
2514 			return false;
2515 	return true;
2516 }
2517 
2518 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2519 				     u32 *prog_ids,
2520 				     u32 request_cnt)
2521 {
2522 	struct bpf_prog_array_item *item;
2523 	int i = 0;
2524 
2525 	for (item = array->items; item->prog; item++) {
2526 		if (item->prog == &dummy_bpf_prog.prog)
2527 			continue;
2528 		prog_ids[i] = item->prog->aux->id;
2529 		if (++i == request_cnt) {
2530 			item++;
2531 			break;
2532 		}
2533 	}
2534 
2535 	return !!(item->prog);
2536 }
2537 
2538 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2539 				__u32 __user *prog_ids, u32 cnt)
2540 {
2541 	unsigned long err = 0;
2542 	bool nospc;
2543 	u32 *ids;
2544 
2545 	/* users of this function are doing:
2546 	 * cnt = bpf_prog_array_length();
2547 	 * if (cnt > 0)
2548 	 *     bpf_prog_array_copy_to_user(..., cnt);
2549 	 * so below kcalloc doesn't need extra cnt > 0 check.
2550 	 */
2551 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2552 	if (!ids)
2553 		return -ENOMEM;
2554 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2555 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2556 	kfree(ids);
2557 	if (err)
2558 		return -EFAULT;
2559 	if (nospc)
2560 		return -ENOSPC;
2561 	return 0;
2562 }
2563 
2564 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2565 				struct bpf_prog *old_prog)
2566 {
2567 	struct bpf_prog_array_item *item;
2568 
2569 	for (item = array->items; item->prog; item++)
2570 		if (item->prog == old_prog) {
2571 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2572 			break;
2573 		}
2574 }
2575 
2576 /**
2577  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2578  *                                   index into the program array with
2579  *                                   a dummy no-op program.
2580  * @array: a bpf_prog_array
2581  * @index: the index of the program to replace
2582  *
2583  * Skips over dummy programs, by not counting them, when calculating
2584  * the position of the program to replace.
2585  *
2586  * Return:
2587  * * 0		- Success
2588  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2589  * * -ENOENT	- Index out of range
2590  */
2591 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2592 {
2593 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2594 }
2595 
2596 /**
2597  * bpf_prog_array_update_at() - Updates the program at the given index
2598  *                              into the program array.
2599  * @array: a bpf_prog_array
2600  * @index: the index of the program to update
2601  * @prog: the program to insert into the array
2602  *
2603  * Skips over dummy programs, by not counting them, when calculating
2604  * the position of the program to update.
2605  *
2606  * Return:
2607  * * 0		- Success
2608  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2609  * * -ENOENT	- Index out of range
2610  */
2611 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2612 			     struct bpf_prog *prog)
2613 {
2614 	struct bpf_prog_array_item *item;
2615 
2616 	if (unlikely(index < 0))
2617 		return -EINVAL;
2618 
2619 	for (item = array->items; item->prog; item++) {
2620 		if (item->prog == &dummy_bpf_prog.prog)
2621 			continue;
2622 		if (!index) {
2623 			WRITE_ONCE(item->prog, prog);
2624 			return 0;
2625 		}
2626 		index--;
2627 	}
2628 	return -ENOENT;
2629 }
2630 
2631 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2632 			struct bpf_prog *exclude_prog,
2633 			struct bpf_prog *include_prog,
2634 			u64 bpf_cookie,
2635 			struct bpf_prog_array **new_array)
2636 {
2637 	int new_prog_cnt, carry_prog_cnt = 0;
2638 	struct bpf_prog_array_item *existing, *new;
2639 	struct bpf_prog_array *array;
2640 	bool found_exclude = false;
2641 
2642 	/* Figure out how many existing progs we need to carry over to
2643 	 * the new array.
2644 	 */
2645 	if (old_array) {
2646 		existing = old_array->items;
2647 		for (; existing->prog; existing++) {
2648 			if (existing->prog == exclude_prog) {
2649 				found_exclude = true;
2650 				continue;
2651 			}
2652 			if (existing->prog != &dummy_bpf_prog.prog)
2653 				carry_prog_cnt++;
2654 			if (existing->prog == include_prog)
2655 				return -EEXIST;
2656 		}
2657 	}
2658 
2659 	if (exclude_prog && !found_exclude)
2660 		return -ENOENT;
2661 
2662 	/* How many progs (not NULL) will be in the new array? */
2663 	new_prog_cnt = carry_prog_cnt;
2664 	if (include_prog)
2665 		new_prog_cnt += 1;
2666 
2667 	/* Do we have any prog (not NULL) in the new array? */
2668 	if (!new_prog_cnt) {
2669 		*new_array = NULL;
2670 		return 0;
2671 	}
2672 
2673 	/* +1 as the end of prog_array is marked with NULL */
2674 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2675 	if (!array)
2676 		return -ENOMEM;
2677 	new = array->items;
2678 
2679 	/* Fill in the new prog array */
2680 	if (carry_prog_cnt) {
2681 		existing = old_array->items;
2682 		for (; existing->prog; existing++) {
2683 			if (existing->prog == exclude_prog ||
2684 			    existing->prog == &dummy_bpf_prog.prog)
2685 				continue;
2686 
2687 			new->prog = existing->prog;
2688 			new->bpf_cookie = existing->bpf_cookie;
2689 			new++;
2690 		}
2691 	}
2692 	if (include_prog) {
2693 		new->prog = include_prog;
2694 		new->bpf_cookie = bpf_cookie;
2695 		new++;
2696 	}
2697 	new->prog = NULL;
2698 	*new_array = array;
2699 	return 0;
2700 }
2701 
2702 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2703 			     u32 *prog_ids, u32 request_cnt,
2704 			     u32 *prog_cnt)
2705 {
2706 	u32 cnt = 0;
2707 
2708 	if (array)
2709 		cnt = bpf_prog_array_length(array);
2710 
2711 	*prog_cnt = cnt;
2712 
2713 	/* return early if user requested only program count or nothing to copy */
2714 	if (!request_cnt || !cnt)
2715 		return 0;
2716 
2717 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2718 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2719 								     : 0;
2720 }
2721 
2722 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2723 			  struct bpf_map **used_maps, u32 len)
2724 {
2725 	struct bpf_map *map;
2726 	bool sleepable;
2727 	u32 i;
2728 
2729 	sleepable = aux->prog->sleepable;
2730 	for (i = 0; i < len; i++) {
2731 		map = used_maps[i];
2732 		if (map->ops->map_poke_untrack)
2733 			map->ops->map_poke_untrack(map, aux);
2734 		if (sleepable)
2735 			atomic64_dec(&map->sleepable_refcnt);
2736 		bpf_map_put(map);
2737 	}
2738 }
2739 
2740 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2741 {
2742 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2743 	kfree(aux->used_maps);
2744 }
2745 
2746 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2747 			  struct btf_mod_pair *used_btfs, u32 len)
2748 {
2749 #ifdef CONFIG_BPF_SYSCALL
2750 	struct btf_mod_pair *btf_mod;
2751 	u32 i;
2752 
2753 	for (i = 0; i < len; i++) {
2754 		btf_mod = &used_btfs[i];
2755 		if (btf_mod->module)
2756 			module_put(btf_mod->module);
2757 		btf_put(btf_mod->btf);
2758 	}
2759 #endif
2760 }
2761 
2762 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2763 {
2764 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2765 	kfree(aux->used_btfs);
2766 }
2767 
2768 static void bpf_prog_free_deferred(struct work_struct *work)
2769 {
2770 	struct bpf_prog_aux *aux;
2771 	int i;
2772 
2773 	aux = container_of(work, struct bpf_prog_aux, work);
2774 #ifdef CONFIG_BPF_SYSCALL
2775 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2776 #endif
2777 #ifdef CONFIG_CGROUP_BPF
2778 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2779 		bpf_cgroup_atype_put(aux->cgroup_atype);
2780 #endif
2781 	bpf_free_used_maps(aux);
2782 	bpf_free_used_btfs(aux);
2783 	if (bpf_prog_is_dev_bound(aux))
2784 		bpf_prog_dev_bound_destroy(aux->prog);
2785 #ifdef CONFIG_PERF_EVENTS
2786 	if (aux->prog->has_callchain_buf)
2787 		put_callchain_buffers();
2788 #endif
2789 	if (aux->dst_trampoline)
2790 		bpf_trampoline_put(aux->dst_trampoline);
2791 	for (i = 0; i < aux->real_func_cnt; i++) {
2792 		/* We can just unlink the subprog poke descriptor table as
2793 		 * it was originally linked to the main program and is also
2794 		 * released along with it.
2795 		 */
2796 		aux->func[i]->aux->poke_tab = NULL;
2797 		bpf_jit_free(aux->func[i]);
2798 	}
2799 	if (aux->real_func_cnt) {
2800 		kfree(aux->func);
2801 		bpf_prog_unlock_free(aux->prog);
2802 	} else {
2803 		bpf_jit_free(aux->prog);
2804 	}
2805 }
2806 
2807 void bpf_prog_free(struct bpf_prog *fp)
2808 {
2809 	struct bpf_prog_aux *aux = fp->aux;
2810 
2811 	if (aux->dst_prog)
2812 		bpf_prog_put(aux->dst_prog);
2813 	bpf_token_put(aux->token);
2814 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2815 	schedule_work(&aux->work);
2816 }
2817 EXPORT_SYMBOL_GPL(bpf_prog_free);
2818 
2819 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2820 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2821 
2822 void bpf_user_rnd_init_once(void)
2823 {
2824 	prandom_init_once(&bpf_user_rnd_state);
2825 }
2826 
2827 BPF_CALL_0(bpf_user_rnd_u32)
2828 {
2829 	/* Should someone ever have the rather unwise idea to use some
2830 	 * of the registers passed into this function, then note that
2831 	 * this function is called from native eBPF and classic-to-eBPF
2832 	 * transformations. Register assignments from both sides are
2833 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2834 	 */
2835 	struct rnd_state *state;
2836 	u32 res;
2837 
2838 	state = &get_cpu_var(bpf_user_rnd_state);
2839 	res = prandom_u32_state(state);
2840 	put_cpu_var(bpf_user_rnd_state);
2841 
2842 	return res;
2843 }
2844 
2845 BPF_CALL_0(bpf_get_raw_cpu_id)
2846 {
2847 	return raw_smp_processor_id();
2848 }
2849 
2850 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2851 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2852 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2853 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2854 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2855 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2856 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2857 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2858 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2859 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2860 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2861 
2862 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2863 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2864 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2865 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2866 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2867 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2868 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2869 
2870 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2871 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2872 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2873 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2874 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2875 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2876 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2877 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2878 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2879 const struct bpf_func_proto bpf_set_retval_proto __weak;
2880 const struct bpf_func_proto bpf_get_retval_proto __weak;
2881 
2882 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2883 {
2884 	return NULL;
2885 }
2886 
2887 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2888 {
2889 	return NULL;
2890 }
2891 
2892 u64 __weak
2893 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2894 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2895 {
2896 	return -ENOTSUPP;
2897 }
2898 EXPORT_SYMBOL_GPL(bpf_event_output);
2899 
2900 /* Always built-in helper functions. */
2901 const struct bpf_func_proto bpf_tail_call_proto = {
2902 	.func		= NULL,
2903 	.gpl_only	= false,
2904 	.ret_type	= RET_VOID,
2905 	.arg1_type	= ARG_PTR_TO_CTX,
2906 	.arg2_type	= ARG_CONST_MAP_PTR,
2907 	.arg3_type	= ARG_ANYTHING,
2908 };
2909 
2910 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2911  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2912  * eBPF and implicitly also cBPF can get JITed!
2913  */
2914 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2915 {
2916 	return prog;
2917 }
2918 
2919 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2920  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2921  */
2922 void __weak bpf_jit_compile(struct bpf_prog *prog)
2923 {
2924 }
2925 
2926 bool __weak bpf_helper_changes_pkt_data(void *func)
2927 {
2928 	return false;
2929 }
2930 
2931 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2932  * analysis code and wants explicit zero extension inserted by verifier.
2933  * Otherwise, return FALSE.
2934  *
2935  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2936  * you don't override this. JITs that don't want these extra insns can detect
2937  * them using insn_is_zext.
2938  */
2939 bool __weak bpf_jit_needs_zext(void)
2940 {
2941 	return false;
2942 }
2943 
2944 /* Return true if the JIT inlines the call to the helper corresponding to
2945  * the imm.
2946  *
2947  * The verifier will not patch the insn->imm for the call to the helper if
2948  * this returns true.
2949  */
2950 bool __weak bpf_jit_inlines_helper_call(s32 imm)
2951 {
2952 	return false;
2953 }
2954 
2955 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2956 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2957 {
2958 	return false;
2959 }
2960 
2961 bool __weak bpf_jit_supports_percpu_insn(void)
2962 {
2963 	return false;
2964 }
2965 
2966 bool __weak bpf_jit_supports_kfunc_call(void)
2967 {
2968 	return false;
2969 }
2970 
2971 bool __weak bpf_jit_supports_far_kfunc_call(void)
2972 {
2973 	return false;
2974 }
2975 
2976 bool __weak bpf_jit_supports_arena(void)
2977 {
2978 	return false;
2979 }
2980 
2981 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2982 {
2983 	return false;
2984 }
2985 
2986 u64 __weak bpf_arch_uaddress_limit(void)
2987 {
2988 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
2989 	return TASK_SIZE;
2990 #else
2991 	return 0;
2992 #endif
2993 }
2994 
2995 /* Return TRUE if the JIT backend satisfies the following two conditions:
2996  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
2997  * 2) Under the specific arch, the implementation of xchg() is the same
2998  *    as atomic_xchg() on pointer-sized words.
2999  */
3000 bool __weak bpf_jit_supports_ptr_xchg(void)
3001 {
3002 	return false;
3003 }
3004 
3005 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3006  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3007  */
3008 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3009 			 int len)
3010 {
3011 	return -EFAULT;
3012 }
3013 
3014 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3015 			      void *addr1, void *addr2)
3016 {
3017 	return -ENOTSUPP;
3018 }
3019 
3020 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3021 {
3022 	return ERR_PTR(-ENOTSUPP);
3023 }
3024 
3025 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3026 {
3027 	return -ENOTSUPP;
3028 }
3029 
3030 bool __weak bpf_jit_supports_exceptions(void)
3031 {
3032 	return false;
3033 }
3034 
3035 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3036 {
3037 }
3038 
3039 /* for configs without MMU or 32-bit */
3040 __weak const struct bpf_map_ops arena_map_ops;
3041 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3042 {
3043 	return 0;
3044 }
3045 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3046 {
3047 	return 0;
3048 }
3049 
3050 #ifdef CONFIG_BPF_SYSCALL
3051 static int __init bpf_global_ma_init(void)
3052 {
3053 	int ret;
3054 
3055 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3056 	bpf_global_ma_set = !ret;
3057 	return ret;
3058 }
3059 late_initcall(bpf_global_ma_init);
3060 #endif
3061 
3062 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3063 EXPORT_SYMBOL(bpf_stats_enabled_key);
3064 
3065 /* All definitions of tracepoints related to BPF. */
3066 #define CREATE_TRACE_POINTS
3067 #include <linux/bpf_trace.h>
3068 
3069 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3070 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3071