xref: /linux/kernel/bpf/core.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <crypto/sha1.h>
22 #include <linux/filter.h>
23 #include <linux/skbuff.h>
24 #include <linux/vmalloc.h>
25 #include <linux/prandom.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/overflow.h>
30 #include <linux/rbtree_latch.h>
31 #include <linux/kallsyms.h>
32 #include <linux/rcupdate.h>
33 #include <linux/perf_event.h>
34 #include <linux/extable.h>
35 #include <linux/log2.h>
36 #include <linux/bpf_verifier.h>
37 #include <linux/nodemask.h>
38 #include <linux/nospec.h>
39 #include <linux/bpf_mem_alloc.h>
40 #include <linux/memcontrol.h>
41 #include <linux/execmem.h>
42 #include <crypto/sha2.h>
43 
44 #include <asm/barrier.h>
45 #include <linux/unaligned.h>
46 
47 /* Registers */
48 #define BPF_R0	regs[BPF_REG_0]
49 #define BPF_R1	regs[BPF_REG_1]
50 #define BPF_R2	regs[BPF_REG_2]
51 #define BPF_R3	regs[BPF_REG_3]
52 #define BPF_R4	regs[BPF_REG_4]
53 #define BPF_R5	regs[BPF_REG_5]
54 #define BPF_R6	regs[BPF_REG_6]
55 #define BPF_R7	regs[BPF_REG_7]
56 #define BPF_R8	regs[BPF_REG_8]
57 #define BPF_R9	regs[BPF_REG_9]
58 #define BPF_R10	regs[BPF_REG_10]
59 
60 /* Named registers */
61 #define DST	regs[insn->dst_reg]
62 #define SRC	regs[insn->src_reg]
63 #define FP	regs[BPF_REG_FP]
64 #define AX	regs[BPF_REG_AX]
65 #define ARG1	regs[BPF_REG_ARG1]
66 #define CTX	regs[BPF_REG_CTX]
67 #define OFF	insn->off
68 #define IMM	insn->imm
69 
70 struct bpf_mem_alloc bpf_global_ma;
71 bool bpf_global_ma_set;
72 
73 /* No hurry in this branch
74  *
75  * Exported for the bpf jit load helper.
76  */
77 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
78 {
79 	u8 *ptr = NULL;
80 
81 	if (k >= SKF_NET_OFF) {
82 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
83 	} else if (k >= SKF_LL_OFF) {
84 		if (unlikely(!skb_mac_header_was_set(skb)))
85 			return NULL;
86 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
87 	}
88 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
89 		return ptr;
90 
91 	return NULL;
92 }
93 
94 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
95 enum page_size_enum {
96 	__PAGE_SIZE = PAGE_SIZE
97 };
98 
99 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
100 {
101 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
102 	struct bpf_prog_aux *aux;
103 	struct bpf_prog *fp;
104 
105 	size = round_up(size, __PAGE_SIZE);
106 	fp = __vmalloc(size, gfp_flags);
107 	if (fp == NULL)
108 		return NULL;
109 
110 	aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
111 	if (aux == NULL) {
112 		vfree(fp);
113 		return NULL;
114 	}
115 	fp->active = __alloc_percpu_gfp(sizeof(u8[BPF_NR_CONTEXTS]), 4,
116 					bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
117 	if (!fp->active) {
118 		vfree(fp);
119 		kfree(aux);
120 		return NULL;
121 	}
122 
123 	fp->pages = size / PAGE_SIZE;
124 	fp->aux = aux;
125 	fp->aux->main_prog_aux = aux;
126 	fp->aux->prog = fp;
127 	fp->jit_requested = ebpf_jit_enabled();
128 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
129 #ifdef CONFIG_CGROUP_BPF
130 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
131 #endif
132 
133 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
134 #ifdef CONFIG_FINEIBT
135 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
136 #endif
137 	mutex_init(&fp->aux->used_maps_mutex);
138 	mutex_init(&fp->aux->ext_mutex);
139 	mutex_init(&fp->aux->dst_mutex);
140 	mutex_init(&fp->aux->st_ops_assoc_mutex);
141 
142 #ifdef CONFIG_BPF_SYSCALL
143 	bpf_prog_stream_init(fp);
144 #endif
145 
146 	return fp;
147 }
148 
149 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
150 {
151 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
152 	struct bpf_prog *prog;
153 	int cpu;
154 
155 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
156 	if (!prog)
157 		return NULL;
158 
159 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
160 	if (!prog->stats) {
161 		free_percpu(prog->active);
162 		kfree(prog->aux);
163 		vfree(prog);
164 		return NULL;
165 	}
166 
167 	for_each_possible_cpu(cpu) {
168 		struct bpf_prog_stats *pstats;
169 
170 		pstats = per_cpu_ptr(prog->stats, cpu);
171 		u64_stats_init(&pstats->syncp);
172 	}
173 	return prog;
174 }
175 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
176 
177 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
178 {
179 	if (!prog->aux->nr_linfo || !prog->jit_requested)
180 		return 0;
181 
182 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
183 					  sizeof(*prog->aux->jited_linfo),
184 					  bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
185 	if (!prog->aux->jited_linfo)
186 		return -ENOMEM;
187 
188 	return 0;
189 }
190 
191 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
192 {
193 	if (prog->aux->jited_linfo &&
194 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
195 		kvfree(prog->aux->jited_linfo);
196 		prog->aux->jited_linfo = NULL;
197 	}
198 
199 	kfree(prog->aux->kfunc_tab);
200 	prog->aux->kfunc_tab = NULL;
201 }
202 
203 /* The jit engine is responsible to provide an array
204  * for insn_off to the jited_off mapping (insn_to_jit_off).
205  *
206  * The idx to this array is the insn_off.  Hence, the insn_off
207  * here is relative to the prog itself instead of the main prog.
208  * This array has one entry for each xlated bpf insn.
209  *
210  * jited_off is the byte off to the end of the jited insn.
211  *
212  * Hence, with
213  * insn_start:
214  *      The first bpf insn off of the prog.  The insn off
215  *      here is relative to the main prog.
216  *      e.g. if prog is a subprog, insn_start > 0
217  * linfo_idx:
218  *      The prog's idx to prog->aux->linfo and jited_linfo
219  *
220  * jited_linfo[linfo_idx] = prog->bpf_func
221  *
222  * For i > linfo_idx,
223  *
224  * jited_linfo[i] = prog->bpf_func +
225  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
226  */
227 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
228 			       const u32 *insn_to_jit_off)
229 {
230 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
231 	const struct bpf_line_info *linfo;
232 	void **jited_linfo;
233 
234 	if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
235 		/* Userspace did not provide linfo */
236 		return;
237 
238 	linfo_idx = prog->aux->linfo_idx;
239 	linfo = &prog->aux->linfo[linfo_idx];
240 	insn_start = linfo[0].insn_off;
241 	insn_end = insn_start + prog->len;
242 
243 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
244 	jited_linfo[0] = prog->bpf_func;
245 
246 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
247 
248 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
249 		/* The verifier ensures that linfo[i].insn_off is
250 		 * strictly increasing
251 		 */
252 		jited_linfo[i] = prog->bpf_func +
253 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
254 }
255 
256 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
257 				  gfp_t gfp_extra_flags)
258 {
259 	gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
260 	struct bpf_prog *fp;
261 	u32 pages;
262 
263 	size = round_up(size, PAGE_SIZE);
264 	pages = size / PAGE_SIZE;
265 	if (pages <= fp_old->pages)
266 		return fp_old;
267 
268 	fp = __vmalloc(size, gfp_flags);
269 	if (fp) {
270 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
271 		fp->pages = pages;
272 		fp->aux->prog = fp;
273 
274 		/* We keep fp->aux from fp_old around in the new
275 		 * reallocated structure.
276 		 */
277 		fp_old->aux = NULL;
278 		fp_old->stats = NULL;
279 		fp_old->active = NULL;
280 		__bpf_prog_free(fp_old);
281 	}
282 
283 	return fp;
284 }
285 
286 void __bpf_prog_free(struct bpf_prog *fp)
287 {
288 	if (fp->aux) {
289 		mutex_destroy(&fp->aux->used_maps_mutex);
290 		mutex_destroy(&fp->aux->dst_mutex);
291 		mutex_destroy(&fp->aux->st_ops_assoc_mutex);
292 		kfree(fp->aux->poke_tab);
293 		kfree(fp->aux);
294 	}
295 	free_percpu(fp->stats);
296 	free_percpu(fp->active);
297 	vfree(fp);
298 }
299 
300 int bpf_prog_calc_tag(struct bpf_prog *fp)
301 {
302 	size_t size = bpf_prog_insn_size(fp);
303 	struct bpf_insn *dst;
304 	bool was_ld_map;
305 	u32 i;
306 
307 	dst = vmalloc(size);
308 	if (!dst)
309 		return -ENOMEM;
310 
311 	/* We need to take out the map fd for the digest calculation
312 	 * since they are unstable from user space side.
313 	 */
314 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
315 		dst[i] = fp->insnsi[i];
316 		if (!was_ld_map &&
317 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
318 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
319 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
320 			was_ld_map = true;
321 			dst[i].imm = 0;
322 		} else if (was_ld_map &&
323 			   dst[i].code == 0 &&
324 			   dst[i].dst_reg == 0 &&
325 			   dst[i].src_reg == 0 &&
326 			   dst[i].off == 0) {
327 			was_ld_map = false;
328 			dst[i].imm = 0;
329 		} else {
330 			was_ld_map = false;
331 		}
332 	}
333 	sha256((u8 *)dst, size, fp->digest);
334 	vfree(dst);
335 	return 0;
336 }
337 
338 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
339 				s32 end_new, s32 curr, const bool probe_pass)
340 {
341 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
342 	s32 delta = end_new - end_old;
343 	s64 imm = insn->imm;
344 
345 	if (curr < pos && curr + imm + 1 >= end_old)
346 		imm += delta;
347 	else if (curr >= end_new && curr + imm + 1 < end_new)
348 		imm -= delta;
349 	if (imm < imm_min || imm > imm_max)
350 		return -ERANGE;
351 	if (!probe_pass)
352 		insn->imm = imm;
353 	return 0;
354 }
355 
356 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
357 				s32 end_new, s32 curr, const bool probe_pass)
358 {
359 	s64 off_min, off_max, off;
360 	s32 delta = end_new - end_old;
361 
362 	if (insn->code == (BPF_JMP32 | BPF_JA)) {
363 		off = insn->imm;
364 		off_min = S32_MIN;
365 		off_max = S32_MAX;
366 	} else {
367 		off = insn->off;
368 		off_min = S16_MIN;
369 		off_max = S16_MAX;
370 	}
371 
372 	if (curr < pos && curr + off + 1 >= end_old)
373 		off += delta;
374 	else if (curr >= end_new && curr + off + 1 < end_new)
375 		off -= delta;
376 	if (off < off_min || off > off_max)
377 		return -ERANGE;
378 	if (!probe_pass) {
379 		if (insn->code == (BPF_JMP32 | BPF_JA))
380 			insn->imm = off;
381 		else
382 			insn->off = off;
383 	}
384 	return 0;
385 }
386 
387 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
388 			    s32 end_new, const bool probe_pass)
389 {
390 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
391 	struct bpf_insn *insn = prog->insnsi;
392 	int ret = 0;
393 
394 	for (i = 0; i < insn_cnt; i++, insn++) {
395 		u8 code;
396 
397 		/* In the probing pass we still operate on the original,
398 		 * unpatched image in order to check overflows before we
399 		 * do any other adjustments. Therefore skip the patchlet.
400 		 */
401 		if (probe_pass && i == pos) {
402 			i = end_new;
403 			insn = prog->insnsi + end_old;
404 		}
405 		if (bpf_pseudo_func(insn)) {
406 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
407 						   end_new, i, probe_pass);
408 			if (ret)
409 				return ret;
410 			continue;
411 		}
412 		code = insn->code;
413 		if ((BPF_CLASS(code) != BPF_JMP &&
414 		     BPF_CLASS(code) != BPF_JMP32) ||
415 		    BPF_OP(code) == BPF_EXIT)
416 			continue;
417 		/* Adjust offset of jmps if we cross patch boundaries. */
418 		if (BPF_OP(code) == BPF_CALL) {
419 			if (insn->src_reg != BPF_PSEUDO_CALL)
420 				continue;
421 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
422 						   end_new, i, probe_pass);
423 		} else {
424 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
425 						   end_new, i, probe_pass);
426 		}
427 		if (ret)
428 			break;
429 	}
430 
431 	return ret;
432 }
433 
434 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
435 {
436 	struct bpf_line_info *linfo;
437 	u32 i, nr_linfo;
438 
439 	nr_linfo = prog->aux->nr_linfo;
440 	if (!nr_linfo || !delta)
441 		return;
442 
443 	linfo = prog->aux->linfo;
444 
445 	for (i = 0; i < nr_linfo; i++)
446 		if (off < linfo[i].insn_off)
447 			break;
448 
449 	/* Push all off < linfo[i].insn_off by delta */
450 	for (; i < nr_linfo; i++)
451 		linfo[i].insn_off += delta;
452 }
453 
454 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
455 				       const struct bpf_insn *patch, u32 len)
456 {
457 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
458 	const u32 cnt_max = S16_MAX;
459 	struct bpf_prog *prog_adj;
460 	int err;
461 
462 	/* Since our patchlet doesn't expand the image, we're done. */
463 	if (insn_delta == 0) {
464 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
465 		return prog;
466 	}
467 
468 	insn_adj_cnt = prog->len + insn_delta;
469 
470 	/* Reject anything that would potentially let the insn->off
471 	 * target overflow when we have excessive program expansions.
472 	 * We need to probe here before we do any reallocation where
473 	 * we afterwards may not fail anymore.
474 	 */
475 	if (insn_adj_cnt > cnt_max &&
476 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
477 		return ERR_PTR(err);
478 
479 	/* Several new instructions need to be inserted. Make room
480 	 * for them. Likely, there's no need for a new allocation as
481 	 * last page could have large enough tailroom.
482 	 */
483 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
484 				    GFP_USER);
485 	if (!prog_adj)
486 		return ERR_PTR(-ENOMEM);
487 
488 	prog_adj->len = insn_adj_cnt;
489 
490 	/* Patching happens in 3 steps:
491 	 *
492 	 * 1) Move over tail of insnsi from next instruction onwards,
493 	 *    so we can patch the single target insn with one or more
494 	 *    new ones (patching is always from 1 to n insns, n > 0).
495 	 * 2) Inject new instructions at the target location.
496 	 * 3) Adjust branch offsets if necessary.
497 	 */
498 	insn_rest = insn_adj_cnt - off - len;
499 
500 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
501 		sizeof(*patch) * insn_rest);
502 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
503 
504 	/* We are guaranteed to not fail at this point, otherwise
505 	 * the ship has sailed to reverse to the original state. An
506 	 * overflow cannot happen at this point.
507 	 */
508 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
509 
510 	bpf_adj_linfo(prog_adj, off, insn_delta);
511 
512 	return prog_adj;
513 }
514 
515 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
516 {
517 	int err;
518 
519 	/* Branch offsets can't overflow when program is shrinking, no need
520 	 * to call bpf_adj_branches(..., true) here
521 	 */
522 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
523 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
524 	prog->len -= cnt;
525 
526 	err = bpf_adj_branches(prog, off, off + cnt, off, false);
527 	WARN_ON_ONCE(err);
528 	return err;
529 }
530 
531 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
532 {
533 	int i;
534 
535 	for (i = 0; i < fp->aux->real_func_cnt; i++)
536 		bpf_prog_kallsyms_del(fp->aux->func[i]);
537 }
538 
539 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
540 {
541 	bpf_prog_kallsyms_del_subprogs(fp);
542 	bpf_prog_kallsyms_del(fp);
543 }
544 
545 #ifdef CONFIG_BPF_JIT
546 /* All BPF JIT sysctl knobs here. */
547 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
548 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
549 int bpf_jit_harden   __read_mostly;
550 long bpf_jit_limit   __read_mostly;
551 long bpf_jit_limit_max __read_mostly;
552 
553 static void
554 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
555 {
556 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
557 
558 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
559 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
560 }
561 
562 static void
563 bpf_prog_ksym_set_name(struct bpf_prog *prog)
564 {
565 	char *sym = prog->aux->ksym.name;
566 	const char *end = sym + KSYM_NAME_LEN;
567 	const struct btf_type *type;
568 	const char *func_name;
569 
570 	BUILD_BUG_ON(sizeof("bpf_prog_") +
571 		     sizeof(prog->tag) * 2 +
572 		     /* name has been null terminated.
573 		      * We should need +1 for the '_' preceding
574 		      * the name.  However, the null character
575 		      * is double counted between the name and the
576 		      * sizeof("bpf_prog_") above, so we omit
577 		      * the +1 here.
578 		      */
579 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
580 
581 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
582 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
583 
584 	/* prog->aux->name will be ignored if full btf name is available */
585 	if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
586 		type = btf_type_by_id(prog->aux->btf,
587 				      prog->aux->func_info[prog->aux->func_idx].type_id);
588 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
589 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
590 		return;
591 	}
592 
593 	if (prog->aux->name[0])
594 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
595 	else
596 		*sym = 0;
597 }
598 
599 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
600 {
601 	return container_of(n, struct bpf_ksym, tnode)->start;
602 }
603 
604 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
605 					  struct latch_tree_node *b)
606 {
607 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
608 }
609 
610 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
611 {
612 	unsigned long val = (unsigned long)key;
613 	const struct bpf_ksym *ksym;
614 
615 	ksym = container_of(n, struct bpf_ksym, tnode);
616 
617 	if (val < ksym->start)
618 		return -1;
619 	/* Ensure that we detect return addresses as part of the program, when
620 	 * the final instruction is a call for a program part of the stack
621 	 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
622 	 */
623 	if (val > ksym->end)
624 		return  1;
625 
626 	return 0;
627 }
628 
629 static const struct latch_tree_ops bpf_tree_ops = {
630 	.less	= bpf_tree_less,
631 	.comp	= bpf_tree_comp,
632 };
633 
634 static DEFINE_SPINLOCK(bpf_lock);
635 static LIST_HEAD(bpf_kallsyms);
636 static struct latch_tree_root bpf_tree __cacheline_aligned;
637 
638 void bpf_ksym_add(struct bpf_ksym *ksym)
639 {
640 	spin_lock_bh(&bpf_lock);
641 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
642 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
643 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
644 	spin_unlock_bh(&bpf_lock);
645 }
646 
647 static void __bpf_ksym_del(struct bpf_ksym *ksym)
648 {
649 	if (list_empty(&ksym->lnode))
650 		return;
651 
652 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
653 	list_del_rcu(&ksym->lnode);
654 }
655 
656 void bpf_ksym_del(struct bpf_ksym *ksym)
657 {
658 	spin_lock_bh(&bpf_lock);
659 	__bpf_ksym_del(ksym);
660 	spin_unlock_bh(&bpf_lock);
661 }
662 
663 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
664 {
665 	return fp->jited && !bpf_prog_was_classic(fp);
666 }
667 
668 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
669 {
670 	if (!bpf_prog_kallsyms_candidate(fp) ||
671 	    !bpf_token_capable(fp->aux->token, CAP_BPF))
672 		return;
673 
674 	bpf_prog_ksym_set_addr(fp);
675 	bpf_prog_ksym_set_name(fp);
676 	fp->aux->ksym.prog = true;
677 
678 	bpf_ksym_add(&fp->aux->ksym);
679 
680 #ifdef CONFIG_FINEIBT
681 	/*
682 	 * When FineIBT, code in the __cfi_foo() symbols can get executed
683 	 * and hence unwinder needs help.
684 	 */
685 	if (cfi_mode != CFI_FINEIBT)
686 		return;
687 
688 	snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
689 		 "__cfi_%s", fp->aux->ksym.name);
690 
691 	fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
692 	fp->aux->ksym_prefix.end   = (unsigned long) fp->bpf_func;
693 
694 	bpf_ksym_add(&fp->aux->ksym_prefix);
695 #endif
696 }
697 
698 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
699 {
700 	if (!bpf_prog_kallsyms_candidate(fp))
701 		return;
702 
703 	bpf_ksym_del(&fp->aux->ksym);
704 #ifdef CONFIG_FINEIBT
705 	if (cfi_mode != CFI_FINEIBT)
706 		return;
707 	bpf_ksym_del(&fp->aux->ksym_prefix);
708 #endif
709 }
710 
711 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
712 {
713 	struct latch_tree_node *n;
714 
715 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
716 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
717 }
718 
719 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
720 				 unsigned long *off, char *sym)
721 {
722 	struct bpf_ksym *ksym;
723 	int ret = 0;
724 
725 	rcu_read_lock();
726 	ksym = bpf_ksym_find(addr);
727 	if (ksym) {
728 		unsigned long symbol_start = ksym->start;
729 		unsigned long symbol_end = ksym->end;
730 
731 		ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
732 
733 		if (size)
734 			*size = symbol_end - symbol_start;
735 		if (off)
736 			*off  = addr - symbol_start;
737 	}
738 	rcu_read_unlock();
739 
740 	return ret;
741 }
742 
743 bool is_bpf_text_address(unsigned long addr)
744 {
745 	bool ret;
746 
747 	rcu_read_lock();
748 	ret = bpf_ksym_find(addr) != NULL;
749 	rcu_read_unlock();
750 
751 	return ret;
752 }
753 
754 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
755 {
756 	struct bpf_ksym *ksym;
757 
758 	WARN_ON_ONCE(!rcu_read_lock_held());
759 	ksym = bpf_ksym_find(addr);
760 
761 	return ksym && ksym->prog ?
762 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
763 	       NULL;
764 }
765 
766 bool bpf_has_frame_pointer(unsigned long ip)
767 {
768 	struct bpf_ksym *ksym;
769 	unsigned long offset;
770 
771 	guard(rcu)();
772 
773 	ksym = bpf_ksym_find(ip);
774 	if (!ksym || !ksym->fp_start || !ksym->fp_end)
775 		return false;
776 
777 	offset = ip - ksym->start;
778 
779 	return offset >= ksym->fp_start && offset < ksym->fp_end;
780 }
781 
782 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
783 {
784 	const struct exception_table_entry *e = NULL;
785 	struct bpf_prog *prog;
786 
787 	rcu_read_lock();
788 	prog = bpf_prog_ksym_find(addr);
789 	if (!prog)
790 		goto out;
791 	if (!prog->aux->num_exentries)
792 		goto out;
793 
794 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
795 out:
796 	rcu_read_unlock();
797 	return e;
798 }
799 
800 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
801 		    char *sym)
802 {
803 	struct bpf_ksym *ksym;
804 	unsigned int it = 0;
805 	int ret = -ERANGE;
806 
807 	if (!bpf_jit_kallsyms_enabled())
808 		return ret;
809 
810 	rcu_read_lock();
811 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
812 		if (it++ != symnum)
813 			continue;
814 
815 		strscpy(sym, ksym->name, KSYM_NAME_LEN);
816 
817 		*value = ksym->start;
818 		*type  = BPF_SYM_ELF_TYPE;
819 
820 		ret = 0;
821 		break;
822 	}
823 	rcu_read_unlock();
824 
825 	return ret;
826 }
827 
828 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
829 				struct bpf_jit_poke_descriptor *poke)
830 {
831 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
832 	static const u32 poke_tab_max = 1024;
833 	u32 slot = prog->aux->size_poke_tab;
834 	u32 size = slot + 1;
835 
836 	if (size > poke_tab_max)
837 		return -ENOSPC;
838 	if (poke->tailcall_target || poke->tailcall_target_stable ||
839 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
840 		return -EINVAL;
841 
842 	switch (poke->reason) {
843 	case BPF_POKE_REASON_TAIL_CALL:
844 		if (!poke->tail_call.map)
845 			return -EINVAL;
846 		break;
847 	default:
848 		return -EINVAL;
849 	}
850 
851 	tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
852 	if (!tab)
853 		return -ENOMEM;
854 
855 	memcpy(&tab[slot], poke, sizeof(*poke));
856 	prog->aux->size_poke_tab = size;
857 	prog->aux->poke_tab = tab;
858 
859 	return slot;
860 }
861 
862 /*
863  * BPF program pack allocator.
864  *
865  * Most BPF programs are pretty small. Allocating a hole page for each
866  * program is sometime a waste. Many small bpf program also adds pressure
867  * to instruction TLB. To solve this issue, we introduce a BPF program pack
868  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
869  * to host BPF programs.
870  */
871 #define BPF_PROG_CHUNK_SHIFT	6
872 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
873 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
874 
875 struct bpf_prog_pack {
876 	struct list_head list;
877 	void *ptr;
878 	unsigned long bitmap[];
879 };
880 
881 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
882 {
883 	memset(area, 0, size);
884 }
885 
886 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
887 
888 static DEFINE_MUTEX(pack_mutex);
889 static LIST_HEAD(pack_list);
890 
891 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
892  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
893  */
894 #ifdef PMD_SIZE
895 /* PMD_SIZE is really big for some archs. It doesn't make sense to
896  * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
897  * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
898  * greater than or equal to 2MB.
899  */
900 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
901 #else
902 #define BPF_PROG_PACK_SIZE PAGE_SIZE
903 #endif
904 
905 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
906 
907 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
908 {
909 	struct bpf_prog_pack *pack;
910 	int err;
911 
912 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
913 		       GFP_KERNEL);
914 	if (!pack)
915 		return NULL;
916 	pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
917 	if (!pack->ptr)
918 		goto out;
919 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
920 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
921 
922 	set_vm_flush_reset_perms(pack->ptr);
923 	err = set_memory_rox((unsigned long)pack->ptr,
924 			     BPF_PROG_PACK_SIZE / PAGE_SIZE);
925 	if (err)
926 		goto out;
927 	list_add_tail(&pack->list, &pack_list);
928 	return pack;
929 
930 out:
931 	bpf_jit_free_exec(pack->ptr);
932 	kfree(pack);
933 	return NULL;
934 }
935 
936 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
937 {
938 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
939 	struct bpf_prog_pack *pack;
940 	unsigned long pos;
941 	void *ptr = NULL;
942 
943 	mutex_lock(&pack_mutex);
944 	if (size > BPF_PROG_PACK_SIZE) {
945 		size = round_up(size, PAGE_SIZE);
946 		ptr = bpf_jit_alloc_exec(size);
947 		if (ptr) {
948 			int err;
949 
950 			bpf_fill_ill_insns(ptr, size);
951 			set_vm_flush_reset_perms(ptr);
952 			err = set_memory_rox((unsigned long)ptr,
953 					     size / PAGE_SIZE);
954 			if (err) {
955 				bpf_jit_free_exec(ptr);
956 				ptr = NULL;
957 			}
958 		}
959 		goto out;
960 	}
961 	list_for_each_entry(pack, &pack_list, list) {
962 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
963 						 nbits, 0);
964 		if (pos < BPF_PROG_CHUNK_COUNT)
965 			goto found_free_area;
966 	}
967 
968 	pack = alloc_new_pack(bpf_fill_ill_insns);
969 	if (!pack)
970 		goto out;
971 
972 	pos = 0;
973 
974 found_free_area:
975 	bitmap_set(pack->bitmap, pos, nbits);
976 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
977 
978 out:
979 	mutex_unlock(&pack_mutex);
980 	return ptr;
981 }
982 
983 void bpf_prog_pack_free(void *ptr, u32 size)
984 {
985 	struct bpf_prog_pack *pack = NULL, *tmp;
986 	unsigned int nbits;
987 	unsigned long pos;
988 
989 	mutex_lock(&pack_mutex);
990 	if (size > BPF_PROG_PACK_SIZE) {
991 		bpf_jit_free_exec(ptr);
992 		goto out;
993 	}
994 
995 	list_for_each_entry(tmp, &pack_list, list) {
996 		if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
997 			pack = tmp;
998 			break;
999 		}
1000 	}
1001 
1002 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1003 		goto out;
1004 
1005 	nbits = BPF_PROG_SIZE_TO_NBITS(size);
1006 	pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1007 
1008 	WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1009 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1010 
1011 	bitmap_clear(pack->bitmap, pos, nbits);
1012 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1013 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
1014 		list_del(&pack->list);
1015 		bpf_jit_free_exec(pack->ptr);
1016 		kfree(pack);
1017 	}
1018 out:
1019 	mutex_unlock(&pack_mutex);
1020 }
1021 
1022 static atomic_long_t bpf_jit_current;
1023 
1024 /* Can be overridden by an arch's JIT compiler if it has a custom,
1025  * dedicated BPF backend memory area, or if neither of the two
1026  * below apply.
1027  */
1028 u64 __weak bpf_jit_alloc_exec_limit(void)
1029 {
1030 #if defined(MODULES_VADDR)
1031 	return MODULES_END - MODULES_VADDR;
1032 #else
1033 	return VMALLOC_END - VMALLOC_START;
1034 #endif
1035 }
1036 
1037 static int __init bpf_jit_charge_init(void)
1038 {
1039 	/* Only used as heuristic here to derive limit. */
1040 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1041 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1042 					    PAGE_SIZE), LONG_MAX);
1043 	return 0;
1044 }
1045 pure_initcall(bpf_jit_charge_init);
1046 
1047 int bpf_jit_charge_modmem(u32 size)
1048 {
1049 	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1050 		if (!bpf_capable()) {
1051 			atomic_long_sub(size, &bpf_jit_current);
1052 			return -EPERM;
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 void bpf_jit_uncharge_modmem(u32 size)
1060 {
1061 	atomic_long_sub(size, &bpf_jit_current);
1062 }
1063 
1064 void *__weak bpf_jit_alloc_exec(unsigned long size)
1065 {
1066 	return execmem_alloc(EXECMEM_BPF, size);
1067 }
1068 
1069 void __weak bpf_jit_free_exec(void *addr)
1070 {
1071 	execmem_free(addr);
1072 }
1073 
1074 struct bpf_binary_header *
1075 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1076 		     unsigned int alignment,
1077 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1078 {
1079 	struct bpf_binary_header *hdr;
1080 	u32 size, hole, start;
1081 
1082 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1083 		     alignment > BPF_IMAGE_ALIGNMENT);
1084 
1085 	/* Most of BPF filters are really small, but if some of them
1086 	 * fill a page, allow at least 128 extra bytes to insert a
1087 	 * random section of illegal instructions.
1088 	 */
1089 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1090 
1091 	if (bpf_jit_charge_modmem(size))
1092 		return NULL;
1093 	hdr = bpf_jit_alloc_exec(size);
1094 	if (!hdr) {
1095 		bpf_jit_uncharge_modmem(size);
1096 		return NULL;
1097 	}
1098 
1099 	/* Fill space with illegal/arch-dep instructions. */
1100 	bpf_fill_ill_insns(hdr, size);
1101 
1102 	hdr->size = size;
1103 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1104 		     PAGE_SIZE - sizeof(*hdr));
1105 	start = get_random_u32_below(hole) & ~(alignment - 1);
1106 
1107 	/* Leave a random number of instructions before BPF code. */
1108 	*image_ptr = &hdr->image[start];
1109 
1110 	return hdr;
1111 }
1112 
1113 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1114 {
1115 	u32 size = hdr->size;
1116 
1117 	bpf_jit_free_exec(hdr);
1118 	bpf_jit_uncharge_modmem(size);
1119 }
1120 
1121 /* Allocate jit binary from bpf_prog_pack allocator.
1122  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1123  * to the memory. To solve this problem, a RW buffer is also allocated at
1124  * as the same time. The JIT engine should calculate offsets based on the
1125  * RO memory address, but write JITed program to the RW buffer. Once the
1126  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1127  * the JITed program to the RO memory.
1128  */
1129 struct bpf_binary_header *
1130 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1131 			  unsigned int alignment,
1132 			  struct bpf_binary_header **rw_header,
1133 			  u8 **rw_image,
1134 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1135 {
1136 	struct bpf_binary_header *ro_header;
1137 	u32 size, hole, start;
1138 
1139 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1140 		     alignment > BPF_IMAGE_ALIGNMENT);
1141 
1142 	/* add 16 bytes for a random section of illegal instructions */
1143 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1144 
1145 	if (bpf_jit_charge_modmem(size))
1146 		return NULL;
1147 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1148 	if (!ro_header) {
1149 		bpf_jit_uncharge_modmem(size);
1150 		return NULL;
1151 	}
1152 
1153 	*rw_header = kvmalloc(size, GFP_KERNEL);
1154 	if (!*rw_header) {
1155 		bpf_prog_pack_free(ro_header, size);
1156 		bpf_jit_uncharge_modmem(size);
1157 		return NULL;
1158 	}
1159 
1160 	/* Fill space with illegal/arch-dep instructions. */
1161 	bpf_fill_ill_insns(*rw_header, size);
1162 	(*rw_header)->size = size;
1163 
1164 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1165 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1166 	start = get_random_u32_below(hole) & ~(alignment - 1);
1167 
1168 	*image_ptr = &ro_header->image[start];
1169 	*rw_image = &(*rw_header)->image[start];
1170 
1171 	return ro_header;
1172 }
1173 
1174 /* Copy JITed text from rw_header to its final location, the ro_header. */
1175 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1176 				 struct bpf_binary_header *rw_header)
1177 {
1178 	void *ptr;
1179 
1180 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1181 
1182 	kvfree(rw_header);
1183 
1184 	if (IS_ERR(ptr)) {
1185 		bpf_prog_pack_free(ro_header, ro_header->size);
1186 		return PTR_ERR(ptr);
1187 	}
1188 	return 0;
1189 }
1190 
1191 /* bpf_jit_binary_pack_free is called in two different scenarios:
1192  *   1) when the program is freed after;
1193  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1194  * For case 2), we need to free both the RO memory and the RW buffer.
1195  *
1196  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1197  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1198  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1199  * bpf_arch_text_copy (when jit fails).
1200  */
1201 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1202 			      struct bpf_binary_header *rw_header)
1203 {
1204 	u32 size = ro_header->size;
1205 
1206 	bpf_prog_pack_free(ro_header, size);
1207 	kvfree(rw_header);
1208 	bpf_jit_uncharge_modmem(size);
1209 }
1210 
1211 struct bpf_binary_header *
1212 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1213 {
1214 	unsigned long real_start = (unsigned long)fp->bpf_func;
1215 	unsigned long addr;
1216 
1217 	addr = real_start & BPF_PROG_CHUNK_MASK;
1218 	return (void *)addr;
1219 }
1220 
1221 static inline struct bpf_binary_header *
1222 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1223 {
1224 	unsigned long real_start = (unsigned long)fp->bpf_func;
1225 	unsigned long addr;
1226 
1227 	addr = real_start & PAGE_MASK;
1228 	return (void *)addr;
1229 }
1230 
1231 /* This symbol is only overridden by archs that have different
1232  * requirements than the usual eBPF JITs, f.e. when they only
1233  * implement cBPF JIT, do not set images read-only, etc.
1234  */
1235 void __weak bpf_jit_free(struct bpf_prog *fp)
1236 {
1237 	if (fp->jited) {
1238 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1239 
1240 		bpf_jit_binary_free(hdr);
1241 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1242 	}
1243 
1244 	bpf_prog_unlock_free(fp);
1245 }
1246 
1247 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1248 			  const struct bpf_insn *insn, bool extra_pass,
1249 			  u64 *func_addr, bool *func_addr_fixed)
1250 {
1251 	s16 off = insn->off;
1252 	s32 imm = insn->imm;
1253 	u8 *addr;
1254 	int err;
1255 
1256 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1257 	if (!*func_addr_fixed) {
1258 		/* Place-holder address till the last pass has collected
1259 		 * all addresses for JITed subprograms in which case we
1260 		 * can pick them up from prog->aux.
1261 		 */
1262 		if (!extra_pass)
1263 			addr = NULL;
1264 		else if (prog->aux->func &&
1265 			 off >= 0 && off < prog->aux->real_func_cnt)
1266 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1267 		else
1268 			return -EINVAL;
1269 	} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1270 		   bpf_jit_supports_far_kfunc_call()) {
1271 		err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1272 		if (err)
1273 			return err;
1274 	} else {
1275 		/* Address of a BPF helper call. Since part of the core
1276 		 * kernel, it's always at a fixed location. __bpf_call_base
1277 		 * and the helper with imm relative to it are both in core
1278 		 * kernel.
1279 		 */
1280 		addr = (u8 *)__bpf_call_base + imm;
1281 	}
1282 
1283 	*func_addr = (unsigned long)addr;
1284 	return 0;
1285 }
1286 
1287 const char *bpf_jit_get_prog_name(struct bpf_prog *prog)
1288 {
1289 	if (prog->aux->ksym.prog)
1290 		return prog->aux->ksym.name;
1291 	return prog->aux->name;
1292 }
1293 
1294 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1295 			      const struct bpf_insn *aux,
1296 			      struct bpf_insn *to_buff,
1297 			      bool emit_zext)
1298 {
1299 	struct bpf_insn *to = to_buff;
1300 	u32 imm_rnd = get_random_u32();
1301 	s16 off;
1302 
1303 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1304 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1305 
1306 	/* Constraints on AX register:
1307 	 *
1308 	 * AX register is inaccessible from user space. It is mapped in
1309 	 * all JITs, and used here for constant blinding rewrites. It is
1310 	 * typically "stateless" meaning its contents are only valid within
1311 	 * the executed instruction, but not across several instructions.
1312 	 * There are a few exceptions however which are further detailed
1313 	 * below.
1314 	 *
1315 	 * Constant blinding is only used by JITs, not in the interpreter.
1316 	 * The interpreter uses AX in some occasions as a local temporary
1317 	 * register e.g. in DIV or MOD instructions.
1318 	 *
1319 	 * In restricted circumstances, the verifier can also use the AX
1320 	 * register for rewrites as long as they do not interfere with
1321 	 * the above cases!
1322 	 */
1323 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1324 		goto out;
1325 
1326 	if (from->imm == 0 &&
1327 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1328 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1329 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1330 		goto out;
1331 	}
1332 
1333 	switch (from->code) {
1334 	case BPF_ALU | BPF_ADD | BPF_K:
1335 	case BPF_ALU | BPF_SUB | BPF_K:
1336 	case BPF_ALU | BPF_AND | BPF_K:
1337 	case BPF_ALU | BPF_OR  | BPF_K:
1338 	case BPF_ALU | BPF_XOR | BPF_K:
1339 	case BPF_ALU | BPF_MUL | BPF_K:
1340 	case BPF_ALU | BPF_MOV | BPF_K:
1341 	case BPF_ALU | BPF_DIV | BPF_K:
1342 	case BPF_ALU | BPF_MOD | BPF_K:
1343 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1344 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1345 		*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1346 		break;
1347 
1348 	case BPF_ALU64 | BPF_ADD | BPF_K:
1349 	case BPF_ALU64 | BPF_SUB | BPF_K:
1350 	case BPF_ALU64 | BPF_AND | BPF_K:
1351 	case BPF_ALU64 | BPF_OR  | BPF_K:
1352 	case BPF_ALU64 | BPF_XOR | BPF_K:
1353 	case BPF_ALU64 | BPF_MUL | BPF_K:
1354 	case BPF_ALU64 | BPF_MOV | BPF_K:
1355 	case BPF_ALU64 | BPF_DIV | BPF_K:
1356 	case BPF_ALU64 | BPF_MOD | BPF_K:
1357 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1358 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1359 		*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1360 		break;
1361 
1362 	case BPF_JMP | BPF_JEQ  | BPF_K:
1363 	case BPF_JMP | BPF_JNE  | BPF_K:
1364 	case BPF_JMP | BPF_JGT  | BPF_K:
1365 	case BPF_JMP | BPF_JLT  | BPF_K:
1366 	case BPF_JMP | BPF_JGE  | BPF_K:
1367 	case BPF_JMP | BPF_JLE  | BPF_K:
1368 	case BPF_JMP | BPF_JSGT | BPF_K:
1369 	case BPF_JMP | BPF_JSLT | BPF_K:
1370 	case BPF_JMP | BPF_JSGE | BPF_K:
1371 	case BPF_JMP | BPF_JSLE | BPF_K:
1372 	case BPF_JMP | BPF_JSET | BPF_K:
1373 		/* Accommodate for extra offset in case of a backjump. */
1374 		off = from->off;
1375 		if (off < 0)
1376 			off -= 2;
1377 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1378 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1379 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1380 		break;
1381 
1382 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1383 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1384 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1385 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1386 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1387 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1388 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1389 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1390 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1391 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1392 	case BPF_JMP32 | BPF_JSET | BPF_K:
1393 		/* Accommodate for extra offset in case of a backjump. */
1394 		off = from->off;
1395 		if (off < 0)
1396 			off -= 2;
1397 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1398 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1399 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1400 				      off);
1401 		break;
1402 
1403 	case BPF_LD | BPF_IMM | BPF_DW:
1404 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1405 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1406 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1407 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1408 		break;
1409 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1410 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1411 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1412 		if (emit_zext)
1413 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1414 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1415 		break;
1416 
1417 	case BPF_ST | BPF_MEM | BPF_DW:
1418 	case BPF_ST | BPF_MEM | BPF_W:
1419 	case BPF_ST | BPF_MEM | BPF_H:
1420 	case BPF_ST | BPF_MEM | BPF_B:
1421 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1422 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1423 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1424 		break;
1425 	}
1426 out:
1427 	return to - to_buff;
1428 }
1429 
1430 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1431 					      gfp_t gfp_extra_flags)
1432 {
1433 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1434 	struct bpf_prog *fp;
1435 
1436 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1437 	if (fp != NULL) {
1438 		/* aux->prog still points to the fp_other one, so
1439 		 * when promoting the clone to the real program,
1440 		 * this still needs to be adapted.
1441 		 */
1442 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1443 	}
1444 
1445 	return fp;
1446 }
1447 
1448 static void bpf_prog_clone_free(struct bpf_prog *fp)
1449 {
1450 	/* aux was stolen by the other clone, so we cannot free
1451 	 * it from this path! It will be freed eventually by the
1452 	 * other program on release.
1453 	 *
1454 	 * At this point, we don't need a deferred release since
1455 	 * clone is guaranteed to not be locked.
1456 	 */
1457 	fp->aux = NULL;
1458 	fp->stats = NULL;
1459 	fp->active = NULL;
1460 	__bpf_prog_free(fp);
1461 }
1462 
1463 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1464 {
1465 	/* We have to repoint aux->prog to self, as we don't
1466 	 * know whether fp here is the clone or the original.
1467 	 */
1468 	fp->aux->prog = fp;
1469 	bpf_prog_clone_free(fp_other);
1470 }
1471 
1472 static void adjust_insn_arrays(struct bpf_prog *prog, u32 off, u32 len)
1473 {
1474 #ifdef CONFIG_BPF_SYSCALL
1475 	struct bpf_map *map;
1476 	int i;
1477 
1478 	if (len <= 1)
1479 		return;
1480 
1481 	for (i = 0; i < prog->aux->used_map_cnt; i++) {
1482 		map = prog->aux->used_maps[i];
1483 		if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
1484 			bpf_insn_array_adjust(map, off, len);
1485 	}
1486 #endif
1487 }
1488 
1489 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1490 {
1491 	struct bpf_insn insn_buff[16], aux[2];
1492 	struct bpf_prog *clone, *tmp;
1493 	int insn_delta, insn_cnt;
1494 	struct bpf_insn *insn;
1495 	int i, rewritten;
1496 
1497 	if (!prog->blinding_requested || prog->blinded)
1498 		return prog;
1499 
1500 	clone = bpf_prog_clone_create(prog, GFP_USER);
1501 	if (!clone)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	insn_cnt = clone->len;
1505 	insn = clone->insnsi;
1506 
1507 	for (i = 0; i < insn_cnt; i++, insn++) {
1508 		if (bpf_pseudo_func(insn)) {
1509 			/* ld_imm64 with an address of bpf subprog is not
1510 			 * a user controlled constant. Don't randomize it,
1511 			 * since it will conflict with jit_subprogs() logic.
1512 			 */
1513 			insn++;
1514 			i++;
1515 			continue;
1516 		}
1517 
1518 		/* We temporarily need to hold the original ld64 insn
1519 		 * so that we can still access the first part in the
1520 		 * second blinding run.
1521 		 */
1522 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1523 		    insn[1].code == 0)
1524 			memcpy(aux, insn, sizeof(aux));
1525 
1526 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1527 						clone->aux->verifier_zext);
1528 		if (!rewritten)
1529 			continue;
1530 
1531 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1532 		if (IS_ERR(tmp)) {
1533 			/* Patching may have repointed aux->prog during
1534 			 * realloc from the original one, so we need to
1535 			 * fix it up here on error.
1536 			 */
1537 			bpf_jit_prog_release_other(prog, clone);
1538 			return tmp;
1539 		}
1540 
1541 		clone = tmp;
1542 		insn_delta = rewritten - 1;
1543 
1544 		/* Instructions arrays must be updated using absolute xlated offsets */
1545 		adjust_insn_arrays(clone, prog->aux->subprog_start + i, rewritten);
1546 
1547 		/* Walk new program and skip insns we just inserted. */
1548 		insn = clone->insnsi + i + insn_delta;
1549 		insn_cnt += insn_delta;
1550 		i        += insn_delta;
1551 	}
1552 
1553 	clone->blinded = 1;
1554 	return clone;
1555 }
1556 #endif /* CONFIG_BPF_JIT */
1557 
1558 /* Base function for offset calculation. Needs to go into .text section,
1559  * therefore keeping it non-static as well; will also be used by JITs
1560  * anyway later on, so do not let the compiler omit it. This also needs
1561  * to go into kallsyms for correlation from e.g. bpftool, so naming
1562  * must not change.
1563  */
1564 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1565 {
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(__bpf_call_base);
1569 
1570 /* All UAPI available opcodes. */
1571 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1572 	/* 32 bit ALU operations. */		\
1573 	/*   Register based. */			\
1574 	INSN_3(ALU, ADD,  X),			\
1575 	INSN_3(ALU, SUB,  X),			\
1576 	INSN_3(ALU, AND,  X),			\
1577 	INSN_3(ALU, OR,   X),			\
1578 	INSN_3(ALU, LSH,  X),			\
1579 	INSN_3(ALU, RSH,  X),			\
1580 	INSN_3(ALU, XOR,  X),			\
1581 	INSN_3(ALU, MUL,  X),			\
1582 	INSN_3(ALU, MOV,  X),			\
1583 	INSN_3(ALU, ARSH, X),			\
1584 	INSN_3(ALU, DIV,  X),			\
1585 	INSN_3(ALU, MOD,  X),			\
1586 	INSN_2(ALU, NEG),			\
1587 	INSN_3(ALU, END, TO_BE),		\
1588 	INSN_3(ALU, END, TO_LE),		\
1589 	/*   Immediate based. */		\
1590 	INSN_3(ALU, ADD,  K),			\
1591 	INSN_3(ALU, SUB,  K),			\
1592 	INSN_3(ALU, AND,  K),			\
1593 	INSN_3(ALU, OR,   K),			\
1594 	INSN_3(ALU, LSH,  K),			\
1595 	INSN_3(ALU, RSH,  K),			\
1596 	INSN_3(ALU, XOR,  K),			\
1597 	INSN_3(ALU, MUL,  K),			\
1598 	INSN_3(ALU, MOV,  K),			\
1599 	INSN_3(ALU, ARSH, K),			\
1600 	INSN_3(ALU, DIV,  K),			\
1601 	INSN_3(ALU, MOD,  K),			\
1602 	/* 64 bit ALU operations. */		\
1603 	/*   Register based. */			\
1604 	INSN_3(ALU64, ADD,  X),			\
1605 	INSN_3(ALU64, SUB,  X),			\
1606 	INSN_3(ALU64, AND,  X),			\
1607 	INSN_3(ALU64, OR,   X),			\
1608 	INSN_3(ALU64, LSH,  X),			\
1609 	INSN_3(ALU64, RSH,  X),			\
1610 	INSN_3(ALU64, XOR,  X),			\
1611 	INSN_3(ALU64, MUL,  X),			\
1612 	INSN_3(ALU64, MOV,  X),			\
1613 	INSN_3(ALU64, ARSH, X),			\
1614 	INSN_3(ALU64, DIV,  X),			\
1615 	INSN_3(ALU64, MOD,  X),			\
1616 	INSN_2(ALU64, NEG),			\
1617 	INSN_3(ALU64, END, TO_LE),		\
1618 	/*   Immediate based. */		\
1619 	INSN_3(ALU64, ADD,  K),			\
1620 	INSN_3(ALU64, SUB,  K),			\
1621 	INSN_3(ALU64, AND,  K),			\
1622 	INSN_3(ALU64, OR,   K),			\
1623 	INSN_3(ALU64, LSH,  K),			\
1624 	INSN_3(ALU64, RSH,  K),			\
1625 	INSN_3(ALU64, XOR,  K),			\
1626 	INSN_3(ALU64, MUL,  K),			\
1627 	INSN_3(ALU64, MOV,  K),			\
1628 	INSN_3(ALU64, ARSH, K),			\
1629 	INSN_3(ALU64, DIV,  K),			\
1630 	INSN_3(ALU64, MOD,  K),			\
1631 	/* Call instruction. */			\
1632 	INSN_2(JMP, CALL),			\
1633 	/* Exit instruction. */			\
1634 	INSN_2(JMP, EXIT),			\
1635 	/* 32-bit Jump instructions. */		\
1636 	/*   Register based. */			\
1637 	INSN_3(JMP32, JEQ,  X),			\
1638 	INSN_3(JMP32, JNE,  X),			\
1639 	INSN_3(JMP32, JGT,  X),			\
1640 	INSN_3(JMP32, JLT,  X),			\
1641 	INSN_3(JMP32, JGE,  X),			\
1642 	INSN_3(JMP32, JLE,  X),			\
1643 	INSN_3(JMP32, JSGT, X),			\
1644 	INSN_3(JMP32, JSLT, X),			\
1645 	INSN_3(JMP32, JSGE, X),			\
1646 	INSN_3(JMP32, JSLE, X),			\
1647 	INSN_3(JMP32, JSET, X),			\
1648 	/*   Immediate based. */		\
1649 	INSN_3(JMP32, JEQ,  K),			\
1650 	INSN_3(JMP32, JNE,  K),			\
1651 	INSN_3(JMP32, JGT,  K),			\
1652 	INSN_3(JMP32, JLT,  K),			\
1653 	INSN_3(JMP32, JGE,  K),			\
1654 	INSN_3(JMP32, JLE,  K),			\
1655 	INSN_3(JMP32, JSGT, K),			\
1656 	INSN_3(JMP32, JSLT, K),			\
1657 	INSN_3(JMP32, JSGE, K),			\
1658 	INSN_3(JMP32, JSLE, K),			\
1659 	INSN_3(JMP32, JSET, K),			\
1660 	/* Jump instructions. */		\
1661 	/*   Register based. */			\
1662 	INSN_3(JMP, JEQ,  X),			\
1663 	INSN_3(JMP, JNE,  X),			\
1664 	INSN_3(JMP, JGT,  X),			\
1665 	INSN_3(JMP, JLT,  X),			\
1666 	INSN_3(JMP, JGE,  X),			\
1667 	INSN_3(JMP, JLE,  X),			\
1668 	INSN_3(JMP, JSGT, X),			\
1669 	INSN_3(JMP, JSLT, X),			\
1670 	INSN_3(JMP, JSGE, X),			\
1671 	INSN_3(JMP, JSLE, X),			\
1672 	INSN_3(JMP, JSET, X),			\
1673 	/*   Immediate based. */		\
1674 	INSN_3(JMP, JEQ,  K),			\
1675 	INSN_3(JMP, JNE,  K),			\
1676 	INSN_3(JMP, JGT,  K),			\
1677 	INSN_3(JMP, JLT,  K),			\
1678 	INSN_3(JMP, JGE,  K),			\
1679 	INSN_3(JMP, JLE,  K),			\
1680 	INSN_3(JMP, JSGT, K),			\
1681 	INSN_3(JMP, JSLT, K),			\
1682 	INSN_3(JMP, JSGE, K),			\
1683 	INSN_3(JMP, JSLE, K),			\
1684 	INSN_3(JMP, JSET, K),			\
1685 	INSN_2(JMP, JA),			\
1686 	INSN_2(JMP32, JA),			\
1687 	/* Atomic operations. */		\
1688 	INSN_3(STX, ATOMIC, B),			\
1689 	INSN_3(STX, ATOMIC, H),			\
1690 	INSN_3(STX, ATOMIC, W),			\
1691 	INSN_3(STX, ATOMIC, DW),		\
1692 	/* Store instructions. */		\
1693 	/*   Register based. */			\
1694 	INSN_3(STX, MEM,  B),			\
1695 	INSN_3(STX, MEM,  H),			\
1696 	INSN_3(STX, MEM,  W),			\
1697 	INSN_3(STX, MEM,  DW),			\
1698 	/*   Immediate based. */		\
1699 	INSN_3(ST, MEM, B),			\
1700 	INSN_3(ST, MEM, H),			\
1701 	INSN_3(ST, MEM, W),			\
1702 	INSN_3(ST, MEM, DW),			\
1703 	/* Load instructions. */		\
1704 	/*   Register based. */			\
1705 	INSN_3(LDX, MEM, B),			\
1706 	INSN_3(LDX, MEM, H),			\
1707 	INSN_3(LDX, MEM, W),			\
1708 	INSN_3(LDX, MEM, DW),			\
1709 	INSN_3(LDX, MEMSX, B),			\
1710 	INSN_3(LDX, MEMSX, H),			\
1711 	INSN_3(LDX, MEMSX, W),			\
1712 	/*   Immediate based. */		\
1713 	INSN_3(LD, IMM, DW)
1714 
1715 bool bpf_opcode_in_insntable(u8 code)
1716 {
1717 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1718 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1719 	static const bool public_insntable[256] = {
1720 		[0 ... 255] = false,
1721 		/* Now overwrite non-defaults ... */
1722 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1723 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1724 		[BPF_LD | BPF_ABS | BPF_B] = true,
1725 		[BPF_LD | BPF_ABS | BPF_H] = true,
1726 		[BPF_LD | BPF_ABS | BPF_W] = true,
1727 		[BPF_LD | BPF_IND | BPF_B] = true,
1728 		[BPF_LD | BPF_IND | BPF_H] = true,
1729 		[BPF_LD | BPF_IND | BPF_W] = true,
1730 		[BPF_JMP | BPF_JA | BPF_X] = true,
1731 		[BPF_JMP | BPF_JCOND] = true,
1732 	};
1733 #undef BPF_INSN_3_TBL
1734 #undef BPF_INSN_2_TBL
1735 	return public_insntable[code];
1736 }
1737 
1738 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1739 /**
1740  *	___bpf_prog_run - run eBPF program on a given context
1741  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1742  *	@insn: is the array of eBPF instructions
1743  *
1744  * Decode and execute eBPF instructions.
1745  *
1746  * Return: whatever value is in %BPF_R0 at program exit
1747  */
1748 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1749 {
1750 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1751 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1752 	static const void * const jumptable[256] __annotate_jump_table = {
1753 		[0 ... 255] = &&default_label,
1754 		/* Now overwrite non-defaults ... */
1755 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1756 		/* Non-UAPI available opcodes. */
1757 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1758 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1759 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1760 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1761 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1762 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1763 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1764 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1765 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1766 		[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1767 	};
1768 #undef BPF_INSN_3_LBL
1769 #undef BPF_INSN_2_LBL
1770 	u32 tail_call_cnt = 0;
1771 
1772 #define CONT	 ({ insn++; goto select_insn; })
1773 #define CONT_JMP ({ insn++; goto select_insn; })
1774 
1775 select_insn:
1776 	goto *jumptable[insn->code];
1777 
1778 	/* Explicitly mask the register-based shift amounts with 63 or 31
1779 	 * to avoid undefined behavior. Normally this won't affect the
1780 	 * generated code, for example, in case of native 64 bit archs such
1781 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1782 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1783 	 * the BPF shift operations to machine instructions which produce
1784 	 * implementation-defined results in such a case; the resulting
1785 	 * contents of the register may be arbitrary, but program behaviour
1786 	 * as a whole remains defined. In other words, in case of JIT backends,
1787 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1788 	 */
1789 	/* ALU (shifts) */
1790 #define SHT(OPCODE, OP)					\
1791 	ALU64_##OPCODE##_X:				\
1792 		DST = DST OP (SRC & 63);		\
1793 		CONT;					\
1794 	ALU_##OPCODE##_X:				\
1795 		DST = (u32) DST OP ((u32) SRC & 31);	\
1796 		CONT;					\
1797 	ALU64_##OPCODE##_K:				\
1798 		DST = DST OP IMM;			\
1799 		CONT;					\
1800 	ALU_##OPCODE##_K:				\
1801 		DST = (u32) DST OP (u32) IMM;		\
1802 		CONT;
1803 	/* ALU (rest) */
1804 #define ALU(OPCODE, OP)					\
1805 	ALU64_##OPCODE##_X:				\
1806 		DST = DST OP SRC;			\
1807 		CONT;					\
1808 	ALU_##OPCODE##_X:				\
1809 		DST = (u32) DST OP (u32) SRC;		\
1810 		CONT;					\
1811 	ALU64_##OPCODE##_K:				\
1812 		DST = DST OP IMM;			\
1813 		CONT;					\
1814 	ALU_##OPCODE##_K:				\
1815 		DST = (u32) DST OP (u32) IMM;		\
1816 		CONT;
1817 	ALU(ADD,  +)
1818 	ALU(SUB,  -)
1819 	ALU(AND,  &)
1820 	ALU(OR,   |)
1821 	ALU(XOR,  ^)
1822 	ALU(MUL,  *)
1823 	SHT(LSH, <<)
1824 	SHT(RSH, >>)
1825 #undef SHT
1826 #undef ALU
1827 	ALU_NEG:
1828 		DST = (u32) -DST;
1829 		CONT;
1830 	ALU64_NEG:
1831 		DST = -DST;
1832 		CONT;
1833 	ALU_MOV_X:
1834 		switch (OFF) {
1835 		case 0:
1836 			DST = (u32) SRC;
1837 			break;
1838 		case 8:
1839 			DST = (u32)(s8) SRC;
1840 			break;
1841 		case 16:
1842 			DST = (u32)(s16) SRC;
1843 			break;
1844 		}
1845 		CONT;
1846 	ALU_MOV_K:
1847 		DST = (u32) IMM;
1848 		CONT;
1849 	ALU64_MOV_X:
1850 		switch (OFF) {
1851 		case 0:
1852 			DST = SRC;
1853 			break;
1854 		case 8:
1855 			DST = (s8) SRC;
1856 			break;
1857 		case 16:
1858 			DST = (s16) SRC;
1859 			break;
1860 		case 32:
1861 			DST = (s32) SRC;
1862 			break;
1863 		}
1864 		CONT;
1865 	ALU64_MOV_K:
1866 		DST = IMM;
1867 		CONT;
1868 	LD_IMM_DW:
1869 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1870 		insn++;
1871 		CONT;
1872 	ALU_ARSH_X:
1873 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1874 		CONT;
1875 	ALU_ARSH_K:
1876 		DST = (u64) (u32) (((s32) DST) >> IMM);
1877 		CONT;
1878 	ALU64_ARSH_X:
1879 		(*(s64 *) &DST) >>= (SRC & 63);
1880 		CONT;
1881 	ALU64_ARSH_K:
1882 		(*(s64 *) &DST) >>= IMM;
1883 		CONT;
1884 	ALU64_MOD_X:
1885 		switch (OFF) {
1886 		case 0:
1887 			div64_u64_rem(DST, SRC, &AX);
1888 			DST = AX;
1889 			break;
1890 		case 1:
1891 			AX = div64_s64(DST, SRC);
1892 			DST = DST - AX * SRC;
1893 			break;
1894 		}
1895 		CONT;
1896 	ALU_MOD_X:
1897 		switch (OFF) {
1898 		case 0:
1899 			AX = (u32) DST;
1900 			DST = do_div(AX, (u32) SRC);
1901 			break;
1902 		case 1:
1903 			AX = abs((s32)DST);
1904 			AX = do_div(AX, abs((s32)SRC));
1905 			if ((s32)DST < 0)
1906 				DST = (u32)-AX;
1907 			else
1908 				DST = (u32)AX;
1909 			break;
1910 		}
1911 		CONT;
1912 	ALU64_MOD_K:
1913 		switch (OFF) {
1914 		case 0:
1915 			div64_u64_rem(DST, IMM, &AX);
1916 			DST = AX;
1917 			break;
1918 		case 1:
1919 			AX = div64_s64(DST, IMM);
1920 			DST = DST - AX * IMM;
1921 			break;
1922 		}
1923 		CONT;
1924 	ALU_MOD_K:
1925 		switch (OFF) {
1926 		case 0:
1927 			AX = (u32) DST;
1928 			DST = do_div(AX, (u32) IMM);
1929 			break;
1930 		case 1:
1931 			AX = abs((s32)DST);
1932 			AX = do_div(AX, abs((s32)IMM));
1933 			if ((s32)DST < 0)
1934 				DST = (u32)-AX;
1935 			else
1936 				DST = (u32)AX;
1937 			break;
1938 		}
1939 		CONT;
1940 	ALU64_DIV_X:
1941 		switch (OFF) {
1942 		case 0:
1943 			DST = div64_u64(DST, SRC);
1944 			break;
1945 		case 1:
1946 			DST = div64_s64(DST, SRC);
1947 			break;
1948 		}
1949 		CONT;
1950 	ALU_DIV_X:
1951 		switch (OFF) {
1952 		case 0:
1953 			AX = (u32) DST;
1954 			do_div(AX, (u32) SRC);
1955 			DST = (u32) AX;
1956 			break;
1957 		case 1:
1958 			AX = abs((s32)DST);
1959 			do_div(AX, abs((s32)SRC));
1960 			if (((s32)DST < 0) == ((s32)SRC < 0))
1961 				DST = (u32)AX;
1962 			else
1963 				DST = (u32)-AX;
1964 			break;
1965 		}
1966 		CONT;
1967 	ALU64_DIV_K:
1968 		switch (OFF) {
1969 		case 0:
1970 			DST = div64_u64(DST, IMM);
1971 			break;
1972 		case 1:
1973 			DST = div64_s64(DST, IMM);
1974 			break;
1975 		}
1976 		CONT;
1977 	ALU_DIV_K:
1978 		switch (OFF) {
1979 		case 0:
1980 			AX = (u32) DST;
1981 			do_div(AX, (u32) IMM);
1982 			DST = (u32) AX;
1983 			break;
1984 		case 1:
1985 			AX = abs((s32)DST);
1986 			do_div(AX, abs((s32)IMM));
1987 			if (((s32)DST < 0) == ((s32)IMM < 0))
1988 				DST = (u32)AX;
1989 			else
1990 				DST = (u32)-AX;
1991 			break;
1992 		}
1993 		CONT;
1994 	ALU_END_TO_BE:
1995 		switch (IMM) {
1996 		case 16:
1997 			DST = (__force u16) cpu_to_be16(DST);
1998 			break;
1999 		case 32:
2000 			DST = (__force u32) cpu_to_be32(DST);
2001 			break;
2002 		case 64:
2003 			DST = (__force u64) cpu_to_be64(DST);
2004 			break;
2005 		}
2006 		CONT;
2007 	ALU_END_TO_LE:
2008 		switch (IMM) {
2009 		case 16:
2010 			DST = (__force u16) cpu_to_le16(DST);
2011 			break;
2012 		case 32:
2013 			DST = (__force u32) cpu_to_le32(DST);
2014 			break;
2015 		case 64:
2016 			DST = (__force u64) cpu_to_le64(DST);
2017 			break;
2018 		}
2019 		CONT;
2020 	ALU64_END_TO_LE:
2021 		switch (IMM) {
2022 		case 16:
2023 			DST = (__force u16) __swab16(DST);
2024 			break;
2025 		case 32:
2026 			DST = (__force u32) __swab32(DST);
2027 			break;
2028 		case 64:
2029 			DST = (__force u64) __swab64(DST);
2030 			break;
2031 		}
2032 		CONT;
2033 
2034 	/* CALL */
2035 	JMP_CALL:
2036 		/* Function call scratches BPF_R1-BPF_R5 registers,
2037 		 * preserves BPF_R6-BPF_R9, and stores return value
2038 		 * into BPF_R0.
2039 		 */
2040 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2041 						       BPF_R4, BPF_R5);
2042 		CONT;
2043 
2044 	JMP_CALL_ARGS:
2045 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2046 							    BPF_R3, BPF_R4,
2047 							    BPF_R5,
2048 							    insn + insn->off + 1);
2049 		CONT;
2050 
2051 	JMP_TAIL_CALL: {
2052 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2053 		struct bpf_array *array = container_of(map, struct bpf_array, map);
2054 		struct bpf_prog *prog;
2055 		u32 index = BPF_R3;
2056 
2057 		if (unlikely(index >= array->map.max_entries))
2058 			goto out;
2059 
2060 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2061 			goto out;
2062 
2063 		tail_call_cnt++;
2064 
2065 		prog = READ_ONCE(array->ptrs[index]);
2066 		if (!prog)
2067 			goto out;
2068 
2069 		/* ARG1 at this point is guaranteed to point to CTX from
2070 		 * the verifier side due to the fact that the tail call is
2071 		 * handled like a helper, that is, bpf_tail_call_proto,
2072 		 * where arg1_type is ARG_PTR_TO_CTX.
2073 		 */
2074 		insn = prog->insnsi;
2075 		goto select_insn;
2076 out:
2077 		CONT;
2078 	}
2079 	JMP_JA:
2080 		insn += insn->off;
2081 		CONT;
2082 	JMP32_JA:
2083 		insn += insn->imm;
2084 		CONT;
2085 	JMP_EXIT:
2086 		return BPF_R0;
2087 	/* JMP */
2088 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
2089 	JMP_##OPCODE##_X:					\
2090 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
2091 			insn += insn->off;			\
2092 			CONT_JMP;				\
2093 		}						\
2094 		CONT;						\
2095 	JMP32_##OPCODE##_X:					\
2096 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
2097 			insn += insn->off;			\
2098 			CONT_JMP;				\
2099 		}						\
2100 		CONT;						\
2101 	JMP_##OPCODE##_K:					\
2102 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
2103 			insn += insn->off;			\
2104 			CONT_JMP;				\
2105 		}						\
2106 		CONT;						\
2107 	JMP32_##OPCODE##_K:					\
2108 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
2109 			insn += insn->off;			\
2110 			CONT_JMP;				\
2111 		}						\
2112 		CONT;
2113 	COND_JMP(u, JEQ, ==)
2114 	COND_JMP(u, JNE, !=)
2115 	COND_JMP(u, JGT, >)
2116 	COND_JMP(u, JLT, <)
2117 	COND_JMP(u, JGE, >=)
2118 	COND_JMP(u, JLE, <=)
2119 	COND_JMP(u, JSET, &)
2120 	COND_JMP(s, JSGT, >)
2121 	COND_JMP(s, JSLT, <)
2122 	COND_JMP(s, JSGE, >=)
2123 	COND_JMP(s, JSLE, <=)
2124 #undef COND_JMP
2125 	/* ST, STX and LDX*/
2126 	ST_NOSPEC:
2127 		/* Speculation barrier for mitigating Speculative Store Bypass,
2128 		 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2129 		 * rely on the firmware mitigation as controlled via the ssbd
2130 		 * kernel parameter. Whenever the mitigation is enabled, it
2131 		 * works for all of the kernel code with no need to provide any
2132 		 * additional instructions here. In case of x86, we use 'lfence'
2133 		 * insn for mitigation. We reuse preexisting logic from Spectre
2134 		 * v1 mitigation that happens to produce the required code on
2135 		 * x86 for v4 as well.
2136 		 */
2137 		barrier_nospec();
2138 		CONT;
2139 #define LDST(SIZEOP, SIZE)						\
2140 	STX_MEM_##SIZEOP:						\
2141 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
2142 		CONT;							\
2143 	ST_MEM_##SIZEOP:						\
2144 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
2145 		CONT;							\
2146 	LDX_MEM_##SIZEOP:						\
2147 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2148 		CONT;							\
2149 	LDX_PROBE_MEM_##SIZEOP:						\
2150 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),	\
2151 			      (const void *)(long) (SRC + insn->off));	\
2152 		DST = *((SIZE *)&DST);					\
2153 		CONT;
2154 
2155 	LDST(B,   u8)
2156 	LDST(H,  u16)
2157 	LDST(W,  u32)
2158 	LDST(DW, u64)
2159 #undef LDST
2160 
2161 #define LDSX(SIZEOP, SIZE)						\
2162 	LDX_MEMSX_##SIZEOP:						\
2163 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
2164 		CONT;							\
2165 	LDX_PROBE_MEMSX_##SIZEOP:					\
2166 		bpf_probe_read_kernel_common(&DST, sizeof(SIZE),		\
2167 				      (const void *)(long) (SRC + insn->off));	\
2168 		DST = *((SIZE *)&DST);					\
2169 		CONT;
2170 
2171 	LDSX(B,   s8)
2172 	LDSX(H,  s16)
2173 	LDSX(W,  s32)
2174 #undef LDSX
2175 
2176 #define ATOMIC_ALU_OP(BOP, KOP)						\
2177 		case BOP:						\
2178 			if (BPF_SIZE(insn->code) == BPF_W)		\
2179 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2180 					     (DST + insn->off));	\
2181 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2182 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2183 					       (DST + insn->off));	\
2184 			else						\
2185 				goto default_label;			\
2186 			break;						\
2187 		case BOP | BPF_FETCH:					\
2188 			if (BPF_SIZE(insn->code) == BPF_W)		\
2189 				SRC = (u32) atomic_fetch_##KOP(		\
2190 					(u32) SRC,			\
2191 					(atomic_t *)(unsigned long) (DST + insn->off)); \
2192 			else if (BPF_SIZE(insn->code) == BPF_DW)	\
2193 				SRC = (u64) atomic64_fetch_##KOP(	\
2194 					(u64) SRC,			\
2195 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
2196 			else						\
2197 				goto default_label;			\
2198 			break;
2199 
2200 	STX_ATOMIC_DW:
2201 	STX_ATOMIC_W:
2202 	STX_ATOMIC_H:
2203 	STX_ATOMIC_B:
2204 		switch (IMM) {
2205 		/* Atomic read-modify-write instructions support only W and DW
2206 		 * size modifiers.
2207 		 */
2208 		ATOMIC_ALU_OP(BPF_ADD, add)
2209 		ATOMIC_ALU_OP(BPF_AND, and)
2210 		ATOMIC_ALU_OP(BPF_OR, or)
2211 		ATOMIC_ALU_OP(BPF_XOR, xor)
2212 #undef ATOMIC_ALU_OP
2213 
2214 		case BPF_XCHG:
2215 			if (BPF_SIZE(insn->code) == BPF_W)
2216 				SRC = (u32) atomic_xchg(
2217 					(atomic_t *)(unsigned long) (DST + insn->off),
2218 					(u32) SRC);
2219 			else if (BPF_SIZE(insn->code) == BPF_DW)
2220 				SRC = (u64) atomic64_xchg(
2221 					(atomic64_t *)(unsigned long) (DST + insn->off),
2222 					(u64) SRC);
2223 			else
2224 				goto default_label;
2225 			break;
2226 		case BPF_CMPXCHG:
2227 			if (BPF_SIZE(insn->code) == BPF_W)
2228 				BPF_R0 = (u32) atomic_cmpxchg(
2229 					(atomic_t *)(unsigned long) (DST + insn->off),
2230 					(u32) BPF_R0, (u32) SRC);
2231 			else if (BPF_SIZE(insn->code) == BPF_DW)
2232 				BPF_R0 = (u64) atomic64_cmpxchg(
2233 					(atomic64_t *)(unsigned long) (DST + insn->off),
2234 					(u64) BPF_R0, (u64) SRC);
2235 			else
2236 				goto default_label;
2237 			break;
2238 		/* Atomic load and store instructions support all size
2239 		 * modifiers.
2240 		 */
2241 		case BPF_LOAD_ACQ:
2242 			switch (BPF_SIZE(insn->code)) {
2243 #define LOAD_ACQUIRE(SIZEOP, SIZE)				\
2244 			case BPF_##SIZEOP:			\
2245 				DST = (SIZE)smp_load_acquire(	\
2246 					(SIZE *)(unsigned long)(SRC + insn->off));	\
2247 				break;
2248 			LOAD_ACQUIRE(B,   u8)
2249 			LOAD_ACQUIRE(H,  u16)
2250 			LOAD_ACQUIRE(W,  u32)
2251 #ifdef CONFIG_64BIT
2252 			LOAD_ACQUIRE(DW, u64)
2253 #endif
2254 #undef LOAD_ACQUIRE
2255 			default:
2256 				goto default_label;
2257 			}
2258 			break;
2259 		case BPF_STORE_REL:
2260 			switch (BPF_SIZE(insn->code)) {
2261 #define STORE_RELEASE(SIZEOP, SIZE)			\
2262 			case BPF_##SIZEOP:		\
2263 				smp_store_release(	\
2264 					(SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC);	\
2265 				break;
2266 			STORE_RELEASE(B,   u8)
2267 			STORE_RELEASE(H,  u16)
2268 			STORE_RELEASE(W,  u32)
2269 #ifdef CONFIG_64BIT
2270 			STORE_RELEASE(DW, u64)
2271 #endif
2272 #undef STORE_RELEASE
2273 			default:
2274 				goto default_label;
2275 			}
2276 			break;
2277 
2278 		default:
2279 			goto default_label;
2280 		}
2281 		CONT;
2282 
2283 	default_label:
2284 		/* If we ever reach this, we have a bug somewhere. Die hard here
2285 		 * instead of just returning 0; we could be somewhere in a subprog,
2286 		 * so execution could continue otherwise which we do /not/ want.
2287 		 *
2288 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2289 		 */
2290 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2291 			insn->code, insn->imm);
2292 		BUG_ON(1);
2293 		return 0;
2294 }
2295 
2296 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2297 #define DEFINE_BPF_PROG_RUN(stack_size) \
2298 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2299 { \
2300 	u64 stack[stack_size / sizeof(u64)]; \
2301 	u64 regs[MAX_BPF_EXT_REG] = {}; \
2302 \
2303 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2304 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2305 	ARG1 = (u64) (unsigned long) ctx; \
2306 	return ___bpf_prog_run(regs, insn); \
2307 }
2308 
2309 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2310 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2311 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2312 				      const struct bpf_insn *insn) \
2313 { \
2314 	u64 stack[stack_size / sizeof(u64)]; \
2315 	u64 regs[MAX_BPF_EXT_REG]; \
2316 \
2317 	kmsan_unpoison_memory(stack, sizeof(stack)); \
2318 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2319 	BPF_R1 = r1; \
2320 	BPF_R2 = r2; \
2321 	BPF_R3 = r3; \
2322 	BPF_R4 = r4; \
2323 	BPF_R5 = r5; \
2324 	return ___bpf_prog_run(regs, insn); \
2325 }
2326 
2327 #define EVAL1(FN, X) FN(X)
2328 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2329 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2330 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2331 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2332 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2333 
2334 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2335 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2336 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2337 
2338 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2339 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2340 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2341 
2342 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2343 
2344 static unsigned int (*interpreters[])(const void *ctx,
2345 				      const struct bpf_insn *insn) = {
2346 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2347 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2348 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2349 };
2350 #undef PROG_NAME_LIST
2351 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2352 static __maybe_unused
2353 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2354 			   const struct bpf_insn *insn) = {
2355 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2356 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2357 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2358 };
2359 #undef PROG_NAME_LIST
2360 
2361 #ifdef CONFIG_BPF_SYSCALL
2362 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2363 {
2364 	stack_depth = max_t(u32, stack_depth, 1);
2365 	insn->off = (s16) insn->imm;
2366 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2367 		__bpf_call_base_args;
2368 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2369 }
2370 #endif
2371 #endif
2372 
2373 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2374 					 const struct bpf_insn *insn)
2375 {
2376 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2377 	 * is not working properly, so warn about it!
2378 	 */
2379 	WARN_ON_ONCE(1);
2380 	return 0;
2381 }
2382 
2383 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2384 				      const struct bpf_prog *fp)
2385 {
2386 	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2387 	struct bpf_prog_aux *aux = fp->aux;
2388 	enum bpf_cgroup_storage_type i;
2389 	bool ret = false;
2390 	u64 cookie;
2391 
2392 	if (fp->kprobe_override)
2393 		return ret;
2394 
2395 	spin_lock(&map->owner_lock);
2396 	/* There's no owner yet where we could check for compatibility. */
2397 	if (!map->owner) {
2398 		map->owner = bpf_map_owner_alloc(map);
2399 		if (!map->owner)
2400 			goto err;
2401 		map->owner->type  = prog_type;
2402 		map->owner->jited = fp->jited;
2403 		map->owner->xdp_has_frags = aux->xdp_has_frags;
2404 		map->owner->sleepable = fp->sleepable;
2405 		map->owner->expected_attach_type = fp->expected_attach_type;
2406 		map->owner->attach_func_proto = aux->attach_func_proto;
2407 		for_each_cgroup_storage_type(i) {
2408 			map->owner->storage_cookie[i] =
2409 				aux->cgroup_storage[i] ?
2410 				aux->cgroup_storage[i]->cookie : 0;
2411 		}
2412 		ret = true;
2413 	} else {
2414 		ret = map->owner->type  == prog_type &&
2415 		      map->owner->jited == fp->jited &&
2416 		      map->owner->xdp_has_frags == aux->xdp_has_frags &&
2417 		      map->owner->sleepable == fp->sleepable;
2418 		if (ret &&
2419 		    map->map_type == BPF_MAP_TYPE_PROG_ARRAY &&
2420 		    map->owner->expected_attach_type != fp->expected_attach_type)
2421 			ret = false;
2422 		for_each_cgroup_storage_type(i) {
2423 			if (!ret)
2424 				break;
2425 			cookie = aux->cgroup_storage[i] ?
2426 				 aux->cgroup_storage[i]->cookie : 0;
2427 			ret = map->owner->storage_cookie[i] == cookie ||
2428 			      !cookie;
2429 		}
2430 		if (ret &&
2431 		    map->owner->attach_func_proto != aux->attach_func_proto) {
2432 			switch (prog_type) {
2433 			case BPF_PROG_TYPE_TRACING:
2434 			case BPF_PROG_TYPE_LSM:
2435 			case BPF_PROG_TYPE_EXT:
2436 			case BPF_PROG_TYPE_STRUCT_OPS:
2437 				ret = false;
2438 				break;
2439 			default:
2440 				break;
2441 			}
2442 		}
2443 	}
2444 err:
2445 	spin_unlock(&map->owner_lock);
2446 	return ret;
2447 }
2448 
2449 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2450 {
2451 	/* XDP programs inserted into maps are not guaranteed to run on
2452 	 * a particular netdev (and can run outside driver context entirely
2453 	 * in the case of devmap and cpumap). Until device checks
2454 	 * are implemented, prohibit adding dev-bound programs to program maps.
2455 	 */
2456 	if (bpf_prog_is_dev_bound(fp->aux))
2457 		return false;
2458 
2459 	return __bpf_prog_map_compatible(map, fp);
2460 }
2461 
2462 static int bpf_check_tail_call(const struct bpf_prog *fp)
2463 {
2464 	struct bpf_prog_aux *aux = fp->aux;
2465 	int i, ret = 0;
2466 
2467 	mutex_lock(&aux->used_maps_mutex);
2468 	for (i = 0; i < aux->used_map_cnt; i++) {
2469 		struct bpf_map *map = aux->used_maps[i];
2470 
2471 		if (!map_type_contains_progs(map))
2472 			continue;
2473 
2474 		if (!__bpf_prog_map_compatible(map, fp)) {
2475 			ret = -EINVAL;
2476 			goto out;
2477 		}
2478 	}
2479 
2480 out:
2481 	mutex_unlock(&aux->used_maps_mutex);
2482 	return ret;
2483 }
2484 
2485 static bool bpf_prog_select_interpreter(struct bpf_prog *fp)
2486 {
2487 	bool select_interpreter = false;
2488 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2489 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2490 	u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2491 
2492 	/* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2493 	 * But for non-JITed programs, we don't need bpf_func, so no bounds
2494 	 * check needed.
2495 	 */
2496 	if (idx < ARRAY_SIZE(interpreters)) {
2497 		fp->bpf_func = interpreters[idx];
2498 		select_interpreter = true;
2499 	} else {
2500 		fp->bpf_func = __bpf_prog_ret0_warn;
2501 	}
2502 #else
2503 	fp->bpf_func = __bpf_prog_ret0_warn;
2504 #endif
2505 	return select_interpreter;
2506 }
2507 
2508 /**
2509  *	bpf_prog_select_runtime - select exec runtime for BPF program
2510  *	@fp: bpf_prog populated with BPF program
2511  *	@err: pointer to error variable
2512  *
2513  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2514  * The BPF program will be executed via bpf_prog_run() function.
2515  *
2516  * Return: the &fp argument along with &err set to 0 for success or
2517  * a negative errno code on failure
2518  */
2519 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2520 {
2521 	/* In case of BPF to BPF calls, verifier did all the prep
2522 	 * work with regards to JITing, etc.
2523 	 */
2524 	bool jit_needed = false;
2525 
2526 	if (fp->bpf_func)
2527 		goto finalize;
2528 
2529 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2530 	    bpf_prog_has_kfunc_call(fp))
2531 		jit_needed = true;
2532 
2533 	if (!bpf_prog_select_interpreter(fp))
2534 		jit_needed = true;
2535 
2536 	/* eBPF JITs can rewrite the program in case constant
2537 	 * blinding is active. However, in case of error during
2538 	 * blinding, bpf_int_jit_compile() must always return a
2539 	 * valid program, which in this case would simply not
2540 	 * be JITed, but falls back to the interpreter.
2541 	 */
2542 	if (!bpf_prog_is_offloaded(fp->aux)) {
2543 		*err = bpf_prog_alloc_jited_linfo(fp);
2544 		if (*err)
2545 			return fp;
2546 
2547 		fp = bpf_int_jit_compile(fp);
2548 		bpf_prog_jit_attempt_done(fp);
2549 		if (!fp->jited && jit_needed) {
2550 			*err = -ENOTSUPP;
2551 			return fp;
2552 		}
2553 	} else {
2554 		*err = bpf_prog_offload_compile(fp);
2555 		if (*err)
2556 			return fp;
2557 	}
2558 
2559 finalize:
2560 	*err = bpf_prog_lock_ro(fp);
2561 	if (*err)
2562 		return fp;
2563 
2564 	/* The tail call compatibility check can only be done at
2565 	 * this late stage as we need to determine, if we deal
2566 	 * with JITed or non JITed program concatenations and not
2567 	 * all eBPF JITs might immediately support all features.
2568 	 */
2569 	*err = bpf_check_tail_call(fp);
2570 
2571 	return fp;
2572 }
2573 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2574 
2575 static unsigned int __bpf_prog_ret1(const void *ctx,
2576 				    const struct bpf_insn *insn)
2577 {
2578 	return 1;
2579 }
2580 
2581 static struct bpf_prog_dummy {
2582 	struct bpf_prog prog;
2583 } dummy_bpf_prog = {
2584 	.prog = {
2585 		.bpf_func = __bpf_prog_ret1,
2586 	},
2587 };
2588 
2589 struct bpf_empty_prog_array bpf_empty_prog_array = {
2590 	.null_prog = NULL,
2591 };
2592 EXPORT_SYMBOL(bpf_empty_prog_array);
2593 
2594 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2595 {
2596 	struct bpf_prog_array *p;
2597 
2598 	if (prog_cnt)
2599 		p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2600 	else
2601 		p = &bpf_empty_prog_array.hdr;
2602 
2603 	return p;
2604 }
2605 
2606 void bpf_prog_array_free(struct bpf_prog_array *progs)
2607 {
2608 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2609 		return;
2610 	kfree_rcu(progs, rcu);
2611 }
2612 
2613 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2614 {
2615 	struct bpf_prog_array *progs;
2616 
2617 	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2618 	 * no need to call kfree_rcu(), just call kfree() directly.
2619 	 */
2620 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2621 	if (rcu_trace_implies_rcu_gp())
2622 		kfree(progs);
2623 	else
2624 		kfree_rcu(progs, rcu);
2625 }
2626 
2627 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2628 {
2629 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2630 		return;
2631 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2632 }
2633 
2634 int bpf_prog_array_length(struct bpf_prog_array *array)
2635 {
2636 	struct bpf_prog_array_item *item;
2637 	u32 cnt = 0;
2638 
2639 	for (item = array->items; item->prog; item++)
2640 		if (item->prog != &dummy_bpf_prog.prog)
2641 			cnt++;
2642 	return cnt;
2643 }
2644 
2645 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2646 {
2647 	struct bpf_prog_array_item *item;
2648 
2649 	for (item = array->items; item->prog; item++)
2650 		if (item->prog != &dummy_bpf_prog.prog)
2651 			return false;
2652 	return true;
2653 }
2654 
2655 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2656 				     u32 *prog_ids,
2657 				     u32 request_cnt)
2658 {
2659 	struct bpf_prog_array_item *item;
2660 	int i = 0;
2661 
2662 	for (item = array->items; item->prog; item++) {
2663 		if (item->prog == &dummy_bpf_prog.prog)
2664 			continue;
2665 		prog_ids[i] = item->prog->aux->id;
2666 		if (++i == request_cnt) {
2667 			item++;
2668 			break;
2669 		}
2670 	}
2671 
2672 	return !!(item->prog);
2673 }
2674 
2675 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2676 				__u32 __user *prog_ids, u32 cnt)
2677 {
2678 	unsigned long err = 0;
2679 	bool nospc;
2680 	u32 *ids;
2681 
2682 	/* users of this function are doing:
2683 	 * cnt = bpf_prog_array_length();
2684 	 * if (cnt > 0)
2685 	 *     bpf_prog_array_copy_to_user(..., cnt);
2686 	 * so below kcalloc doesn't need extra cnt > 0 check.
2687 	 */
2688 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2689 	if (!ids)
2690 		return -ENOMEM;
2691 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2692 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2693 	kfree(ids);
2694 	if (err)
2695 		return -EFAULT;
2696 	if (nospc)
2697 		return -ENOSPC;
2698 	return 0;
2699 }
2700 
2701 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2702 				struct bpf_prog *old_prog)
2703 {
2704 	struct bpf_prog_array_item *item;
2705 
2706 	for (item = array->items; item->prog; item++)
2707 		if (item->prog == old_prog) {
2708 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2709 			break;
2710 		}
2711 }
2712 
2713 /**
2714  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2715  *                                   index into the program array with
2716  *                                   a dummy no-op program.
2717  * @array: a bpf_prog_array
2718  * @index: the index of the program to replace
2719  *
2720  * Skips over dummy programs, by not counting them, when calculating
2721  * the position of the program to replace.
2722  *
2723  * Return:
2724  * * 0		- Success
2725  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2726  * * -ENOENT	- Index out of range
2727  */
2728 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2729 {
2730 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2731 }
2732 
2733 /**
2734  * bpf_prog_array_update_at() - Updates the program at the given index
2735  *                              into the program array.
2736  * @array: a bpf_prog_array
2737  * @index: the index of the program to update
2738  * @prog: the program to insert into the array
2739  *
2740  * Skips over dummy programs, by not counting them, when calculating
2741  * the position of the program to update.
2742  *
2743  * Return:
2744  * * 0		- Success
2745  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2746  * * -ENOENT	- Index out of range
2747  */
2748 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2749 			     struct bpf_prog *prog)
2750 {
2751 	struct bpf_prog_array_item *item;
2752 
2753 	if (unlikely(index < 0))
2754 		return -EINVAL;
2755 
2756 	for (item = array->items; item->prog; item++) {
2757 		if (item->prog == &dummy_bpf_prog.prog)
2758 			continue;
2759 		if (!index) {
2760 			WRITE_ONCE(item->prog, prog);
2761 			return 0;
2762 		}
2763 		index--;
2764 	}
2765 	return -ENOENT;
2766 }
2767 
2768 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2769 			struct bpf_prog *exclude_prog,
2770 			struct bpf_prog *include_prog,
2771 			u64 bpf_cookie,
2772 			struct bpf_prog_array **new_array)
2773 {
2774 	int new_prog_cnt, carry_prog_cnt = 0;
2775 	struct bpf_prog_array_item *existing, *new;
2776 	struct bpf_prog_array *array;
2777 	bool found_exclude = false;
2778 
2779 	/* Figure out how many existing progs we need to carry over to
2780 	 * the new array.
2781 	 */
2782 	if (old_array) {
2783 		existing = old_array->items;
2784 		for (; existing->prog; existing++) {
2785 			if (existing->prog == exclude_prog) {
2786 				found_exclude = true;
2787 				continue;
2788 			}
2789 			if (existing->prog != &dummy_bpf_prog.prog)
2790 				carry_prog_cnt++;
2791 			if (existing->prog == include_prog)
2792 				return -EEXIST;
2793 		}
2794 	}
2795 
2796 	if (exclude_prog && !found_exclude)
2797 		return -ENOENT;
2798 
2799 	/* How many progs (not NULL) will be in the new array? */
2800 	new_prog_cnt = carry_prog_cnt;
2801 	if (include_prog)
2802 		new_prog_cnt += 1;
2803 
2804 	/* Do we have any prog (not NULL) in the new array? */
2805 	if (!new_prog_cnt) {
2806 		*new_array = NULL;
2807 		return 0;
2808 	}
2809 
2810 	/* +1 as the end of prog_array is marked with NULL */
2811 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2812 	if (!array)
2813 		return -ENOMEM;
2814 	new = array->items;
2815 
2816 	/* Fill in the new prog array */
2817 	if (carry_prog_cnt) {
2818 		existing = old_array->items;
2819 		for (; existing->prog; existing++) {
2820 			if (existing->prog == exclude_prog ||
2821 			    existing->prog == &dummy_bpf_prog.prog)
2822 				continue;
2823 
2824 			new->prog = existing->prog;
2825 			new->bpf_cookie = existing->bpf_cookie;
2826 			new++;
2827 		}
2828 	}
2829 	if (include_prog) {
2830 		new->prog = include_prog;
2831 		new->bpf_cookie = bpf_cookie;
2832 		new++;
2833 	}
2834 	new->prog = NULL;
2835 	*new_array = array;
2836 	return 0;
2837 }
2838 
2839 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2840 			     u32 *prog_ids, u32 request_cnt,
2841 			     u32 *prog_cnt)
2842 {
2843 	u32 cnt = 0;
2844 
2845 	if (array)
2846 		cnt = bpf_prog_array_length(array);
2847 
2848 	*prog_cnt = cnt;
2849 
2850 	/* return early if user requested only program count or nothing to copy */
2851 	if (!request_cnt || !cnt)
2852 		return 0;
2853 
2854 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2855 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2856 								     : 0;
2857 }
2858 
2859 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2860 			  struct bpf_map **used_maps, u32 len)
2861 {
2862 	struct bpf_map *map;
2863 	bool sleepable;
2864 	u32 i;
2865 
2866 	sleepable = aux->prog->sleepable;
2867 	for (i = 0; i < len; i++) {
2868 		map = used_maps[i];
2869 		if (map->ops->map_poke_untrack)
2870 			map->ops->map_poke_untrack(map, aux);
2871 		if (sleepable)
2872 			atomic64_dec(&map->sleepable_refcnt);
2873 		bpf_map_put(map);
2874 	}
2875 }
2876 
2877 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2878 {
2879 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2880 	kfree(aux->used_maps);
2881 }
2882 
2883 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2884 {
2885 #ifdef CONFIG_BPF_SYSCALL
2886 	struct btf_mod_pair *btf_mod;
2887 	u32 i;
2888 
2889 	for (i = 0; i < len; i++) {
2890 		btf_mod = &used_btfs[i];
2891 		if (btf_mod->module)
2892 			module_put(btf_mod->module);
2893 		btf_put(btf_mod->btf);
2894 	}
2895 #endif
2896 }
2897 
2898 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2899 {
2900 	__bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2901 	kfree(aux->used_btfs);
2902 }
2903 
2904 static void bpf_prog_free_deferred(struct work_struct *work)
2905 {
2906 	struct bpf_prog_aux *aux;
2907 	int i;
2908 
2909 	aux = container_of(work, struct bpf_prog_aux, work);
2910 #ifdef CONFIG_BPF_SYSCALL
2911 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2912 	bpf_prog_stream_free(aux->prog);
2913 #endif
2914 #ifdef CONFIG_CGROUP_BPF
2915 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2916 		bpf_cgroup_atype_put(aux->cgroup_atype);
2917 #endif
2918 	bpf_free_used_maps(aux);
2919 	bpf_free_used_btfs(aux);
2920 	bpf_prog_disassoc_struct_ops(aux->prog);
2921 	if (bpf_prog_is_dev_bound(aux))
2922 		bpf_prog_dev_bound_destroy(aux->prog);
2923 #ifdef CONFIG_PERF_EVENTS
2924 	if (aux->prog->has_callchain_buf)
2925 		put_callchain_buffers();
2926 #endif
2927 	if (aux->dst_trampoline)
2928 		bpf_trampoline_put(aux->dst_trampoline);
2929 	for (i = 0; i < aux->real_func_cnt; i++) {
2930 		/* We can just unlink the subprog poke descriptor table as
2931 		 * it was originally linked to the main program and is also
2932 		 * released along with it.
2933 		 */
2934 		aux->func[i]->aux->poke_tab = NULL;
2935 		bpf_jit_free(aux->func[i]);
2936 	}
2937 	if (aux->real_func_cnt) {
2938 		kfree(aux->func);
2939 		bpf_prog_unlock_free(aux->prog);
2940 	} else {
2941 		bpf_jit_free(aux->prog);
2942 	}
2943 }
2944 
2945 void bpf_prog_free(struct bpf_prog *fp)
2946 {
2947 	struct bpf_prog_aux *aux = fp->aux;
2948 
2949 	if (aux->dst_prog)
2950 		bpf_prog_put(aux->dst_prog);
2951 	bpf_token_put(aux->token);
2952 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2953 	schedule_work(&aux->work);
2954 }
2955 EXPORT_SYMBOL_GPL(bpf_prog_free);
2956 
2957 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2958 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2959 
2960 void bpf_user_rnd_init_once(void)
2961 {
2962 	prandom_init_once(&bpf_user_rnd_state);
2963 }
2964 
2965 BPF_CALL_0(bpf_user_rnd_u32)
2966 {
2967 	/* Should someone ever have the rather unwise idea to use some
2968 	 * of the registers passed into this function, then note that
2969 	 * this function is called from native eBPF and classic-to-eBPF
2970 	 * transformations. Register assignments from both sides are
2971 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2972 	 */
2973 	struct rnd_state *state;
2974 	u32 res;
2975 
2976 	state = &get_cpu_var(bpf_user_rnd_state);
2977 	res = prandom_u32_state(state);
2978 	put_cpu_var(bpf_user_rnd_state);
2979 
2980 	return res;
2981 }
2982 
2983 BPF_CALL_0(bpf_get_raw_cpu_id)
2984 {
2985 	return raw_smp_processor_id();
2986 }
2987 
2988 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2989 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2990 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2991 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2992 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2993 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2994 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2995 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2996 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2997 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2998 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2999 
3000 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
3001 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
3002 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
3003 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
3004 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
3005 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
3006 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
3007 
3008 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
3009 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
3010 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
3011 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
3012 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
3013 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
3014 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
3015 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
3016 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
3017 const struct bpf_func_proto bpf_set_retval_proto __weak;
3018 const struct bpf_func_proto bpf_get_retval_proto __weak;
3019 
3020 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
3021 {
3022 	return NULL;
3023 }
3024 
3025 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
3026 {
3027 	return NULL;
3028 }
3029 
3030 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
3031 {
3032 	return NULL;
3033 }
3034 
3035 u64 __weak
3036 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
3037 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
3038 {
3039 	return -ENOTSUPP;
3040 }
3041 EXPORT_SYMBOL_GPL(bpf_event_output);
3042 
3043 /* Always built-in helper functions. */
3044 const struct bpf_func_proto bpf_tail_call_proto = {
3045 	/* func is unused for tail_call, we set it to pass the
3046 	 * get_helper_proto check
3047 	 */
3048 	.func		= BPF_PTR_POISON,
3049 	.gpl_only	= false,
3050 	.ret_type	= RET_VOID,
3051 	.arg1_type	= ARG_PTR_TO_CTX,
3052 	.arg2_type	= ARG_CONST_MAP_PTR,
3053 	.arg3_type	= ARG_ANYTHING,
3054 };
3055 
3056 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3057  * It is encouraged to implement bpf_int_jit_compile() instead, so that
3058  * eBPF and implicitly also cBPF can get JITed!
3059  */
3060 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3061 {
3062 	return prog;
3063 }
3064 
3065 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3066  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3067  */
3068 void __weak bpf_jit_compile(struct bpf_prog *prog)
3069 {
3070 }
3071 
3072 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3073 {
3074 	return false;
3075 }
3076 
3077 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3078  * analysis code and wants explicit zero extension inserted by verifier.
3079  * Otherwise, return FALSE.
3080  *
3081  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3082  * you don't override this. JITs that don't want these extra insns can detect
3083  * them using insn_is_zext.
3084  */
3085 bool __weak bpf_jit_needs_zext(void)
3086 {
3087 	return false;
3088 }
3089 
3090 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3091  * all archs. The value returned must not change at runtime as there is
3092  * currently no support for reloading programs that were loaded without
3093  * mitigations.
3094  */
3095 bool __weak bpf_jit_bypass_spec_v1(void)
3096 {
3097 	return false;
3098 }
3099 
3100 bool __weak bpf_jit_bypass_spec_v4(void)
3101 {
3102 	return false;
3103 }
3104 
3105 /* Return true if the JIT inlines the call to the helper corresponding to
3106  * the imm.
3107  *
3108  * The verifier will not patch the insn->imm for the call to the helper if
3109  * this returns true.
3110  */
3111 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3112 {
3113 	return false;
3114 }
3115 
3116 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
3117 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3118 {
3119 	return false;
3120 }
3121 
3122 bool __weak bpf_jit_supports_percpu_insn(void)
3123 {
3124 	return false;
3125 }
3126 
3127 bool __weak bpf_jit_supports_kfunc_call(void)
3128 {
3129 	return false;
3130 }
3131 
3132 bool __weak bpf_jit_supports_far_kfunc_call(void)
3133 {
3134 	return false;
3135 }
3136 
3137 bool __weak bpf_jit_supports_arena(void)
3138 {
3139 	return false;
3140 }
3141 
3142 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3143 {
3144 	return false;
3145 }
3146 
3147 bool __weak bpf_jit_supports_fsession(void)
3148 {
3149 	return false;
3150 }
3151 
3152 u64 __weak bpf_arch_uaddress_limit(void)
3153 {
3154 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3155 	return TASK_SIZE;
3156 #else
3157 	return 0;
3158 #endif
3159 }
3160 
3161 /* Return TRUE if the JIT backend satisfies the following two conditions:
3162  * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3163  * 2) Under the specific arch, the implementation of xchg() is the same
3164  *    as atomic_xchg() on pointer-sized words.
3165  */
3166 bool __weak bpf_jit_supports_ptr_xchg(void)
3167 {
3168 	return false;
3169 }
3170 
3171 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3172  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3173  */
3174 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3175 			 int len)
3176 {
3177 	return -EFAULT;
3178 }
3179 
3180 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
3181 			      enum bpf_text_poke_type new_t, void *old_addr,
3182 			      void *new_addr)
3183 {
3184 	return -ENOTSUPP;
3185 }
3186 
3187 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3188 {
3189 	return ERR_PTR(-ENOTSUPP);
3190 }
3191 
3192 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3193 {
3194 	return -ENOTSUPP;
3195 }
3196 
3197 bool __weak bpf_jit_supports_exceptions(void)
3198 {
3199 	return false;
3200 }
3201 
3202 bool __weak bpf_jit_supports_private_stack(void)
3203 {
3204 	return false;
3205 }
3206 
3207 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3208 {
3209 }
3210 
3211 bool __weak bpf_jit_supports_timed_may_goto(void)
3212 {
3213 	return false;
3214 }
3215 
3216 u64 __weak arch_bpf_timed_may_goto(void)
3217 {
3218 	return 0;
3219 }
3220 
3221 static noinline void bpf_prog_report_may_goto_violation(void)
3222 {
3223 #ifdef CONFIG_BPF_SYSCALL
3224 	struct bpf_stream_stage ss;
3225 	struct bpf_prog *prog;
3226 
3227 	prog = bpf_prog_find_from_stack();
3228 	if (!prog)
3229 		return;
3230 	bpf_stream_stage(ss, prog, BPF_STDERR, ({
3231 		bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n");
3232 		bpf_stream_dump_stack(ss);
3233 	}));
3234 #endif
3235 }
3236 
3237 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3238 {
3239 	u64 time = ktime_get_mono_fast_ns();
3240 
3241 	/* Populate the timestamp for this stack frame, and refresh count. */
3242 	if (!p->timestamp) {
3243 		p->timestamp = time;
3244 		return BPF_MAX_TIMED_LOOPS;
3245 	}
3246 	/* Check if we've exhausted our time slice, and zero count. */
3247 	if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) {
3248 		bpf_prog_report_may_goto_violation();
3249 		return 0;
3250 	}
3251 	/* Refresh the count for the stack frame. */
3252 	return BPF_MAX_TIMED_LOOPS;
3253 }
3254 
3255 /* for configs without MMU or 32-bit */
3256 __weak const struct bpf_map_ops arena_map_ops;
3257 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3258 {
3259 	return 0;
3260 }
3261 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3262 {
3263 	return 0;
3264 }
3265 
3266 #ifdef CONFIG_BPF_SYSCALL
3267 static int __init bpf_global_ma_init(void)
3268 {
3269 	int ret;
3270 
3271 	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3272 	bpf_global_ma_set = !ret;
3273 	return ret;
3274 }
3275 late_initcall(bpf_global_ma_init);
3276 #endif
3277 
3278 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3279 EXPORT_SYMBOL(bpf_stats_enabled_key);
3280 
3281 /* All definitions of tracepoints related to BPF. */
3282 #define CREATE_TRACE_POINTS
3283 #include <linux/bpf_trace.h>
3284 
3285 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3286 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3287 
3288 #ifdef CONFIG_BPF_SYSCALL
3289 
3290 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3291 			   const char **linep, int *nump)
3292 {
3293 	int idx = -1, insn_start, insn_end, len;
3294 	struct bpf_line_info *linfo;
3295 	void **jited_linfo;
3296 	struct btf *btf;
3297 	int nr_linfo;
3298 
3299 	btf = prog->aux->btf;
3300 	linfo = prog->aux->linfo;
3301 	jited_linfo = prog->aux->jited_linfo;
3302 
3303 	if (!btf || !linfo || !jited_linfo)
3304 		return -EINVAL;
3305 	len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3306 
3307 	linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3308 	jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3309 
3310 	insn_start = linfo[0].insn_off;
3311 	insn_end = insn_start + len;
3312 	nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx;
3313 
3314 	for (int i = 0; i < nr_linfo &&
3315 	     linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3316 		if (jited_linfo[i] >= (void *)ip)
3317 			break;
3318 		idx = i;
3319 	}
3320 
3321 	if (idx == -1)
3322 		return -ENOENT;
3323 
3324 	/* Get base component of the file path. */
3325 	*filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3326 	*filep = kbasename(*filep);
3327 	/* Obtain the source line, and strip whitespace in prefix. */
3328 	*linep = btf_name_by_offset(btf, linfo[idx].line_off);
3329 	while (isspace(**linep))
3330 		*linep += 1;
3331 	*nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3332 	return 0;
3333 }
3334 
3335 struct walk_stack_ctx {
3336 	struct bpf_prog *prog;
3337 };
3338 
3339 static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
3340 {
3341 	struct walk_stack_ctx *ctxp = cookie;
3342 	struct bpf_prog *prog;
3343 
3344 	/*
3345 	 * The RCU read lock is held to safely traverse the latch tree, but we
3346 	 * don't need its protection when accessing the prog, since it has an
3347 	 * active stack frame on the current stack trace, and won't disappear.
3348 	 */
3349 	rcu_read_lock();
3350 	prog = bpf_prog_ksym_find(ip);
3351 	rcu_read_unlock();
3352 	if (!prog)
3353 		return true;
3354 	/* Make sure we return the main prog if we found a subprog */
3355 	ctxp->prog = prog->aux->main_prog_aux->prog;
3356 	return false;
3357 }
3358 
3359 struct bpf_prog *bpf_prog_find_from_stack(void)
3360 {
3361 	struct walk_stack_ctx ctx = {};
3362 
3363 	arch_bpf_stack_walk(find_from_stack_cb, &ctx);
3364 	return ctx.prog;
3365 }
3366 
3367 #endif
3368