xref: /linux/kernel/bpf/core.c (revision 30da46b5dc3a9a14db11706d841440e28b12bb53)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <uapi/linux/btf.h>
25 #include <linux/filter.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/random.h>
29 #include <linux/moduleloader.h>
30 #include <linux/bpf.h>
31 #include <linux/btf.h>
32 #include <linux/frame.h>
33 #include <linux/rbtree_latch.h>
34 #include <linux/kallsyms.h>
35 #include <linux/rcupdate.h>
36 #include <linux/perf_event.h>
37 
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define ARG1	regs[BPF_REG_ARG1]
58 #define CTX	regs[BPF_REG_CTX]
59 #define IMM	insn->imm
60 
61 /* No hurry in this branch
62  *
63  * Exported for the bpf jit load helper.
64  */
65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66 {
67 	u8 *ptr = NULL;
68 
69 	if (k >= SKF_NET_OFF)
70 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 	else if (k >= SKF_LL_OFF)
72 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
73 
74 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 		return ptr;
76 
77 	return NULL;
78 }
79 
80 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
81 {
82 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
83 	struct bpf_prog_aux *aux;
84 	struct bpf_prog *fp;
85 
86 	size = round_up(size, PAGE_SIZE);
87 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
88 	if (fp == NULL)
89 		return NULL;
90 
91 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 	if (aux == NULL) {
93 		vfree(fp);
94 		return NULL;
95 	}
96 
97 	fp->pages = size / PAGE_SIZE;
98 	fp->aux = aux;
99 	fp->aux->prog = fp;
100 	fp->jit_requested = ebpf_jit_enabled();
101 
102 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
103 
104 	return fp;
105 }
106 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
107 
108 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
109 				  gfp_t gfp_extra_flags)
110 {
111 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
112 	struct bpf_prog *fp;
113 	u32 pages, delta;
114 	int ret;
115 
116 	BUG_ON(fp_old == NULL);
117 
118 	size = round_up(size, PAGE_SIZE);
119 	pages = size / PAGE_SIZE;
120 	if (pages <= fp_old->pages)
121 		return fp_old;
122 
123 	delta = pages - fp_old->pages;
124 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
125 	if (ret)
126 		return NULL;
127 
128 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
129 	if (fp == NULL) {
130 		__bpf_prog_uncharge(fp_old->aux->user, delta);
131 	} else {
132 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
133 		fp->pages = pages;
134 		fp->aux->prog = fp;
135 
136 		/* We keep fp->aux from fp_old around in the new
137 		 * reallocated structure.
138 		 */
139 		fp_old->aux = NULL;
140 		__bpf_prog_free(fp_old);
141 	}
142 
143 	return fp;
144 }
145 
146 void __bpf_prog_free(struct bpf_prog *fp)
147 {
148 	kfree(fp->aux);
149 	vfree(fp);
150 }
151 
152 int bpf_prog_calc_tag(struct bpf_prog *fp)
153 {
154 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
155 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
156 	u32 digest[SHA_DIGEST_WORDS];
157 	u32 ws[SHA_WORKSPACE_WORDS];
158 	u32 i, bsize, psize, blocks;
159 	struct bpf_insn *dst;
160 	bool was_ld_map;
161 	u8 *raw, *todo;
162 	__be32 *result;
163 	__be64 *bits;
164 
165 	raw = vmalloc(raw_size);
166 	if (!raw)
167 		return -ENOMEM;
168 
169 	sha_init(digest);
170 	memset(ws, 0, sizeof(ws));
171 
172 	/* We need to take out the map fd for the digest calculation
173 	 * since they are unstable from user space side.
174 	 */
175 	dst = (void *)raw;
176 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
177 		dst[i] = fp->insnsi[i];
178 		if (!was_ld_map &&
179 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
180 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
181 			was_ld_map = true;
182 			dst[i].imm = 0;
183 		} else if (was_ld_map &&
184 			   dst[i].code == 0 &&
185 			   dst[i].dst_reg == 0 &&
186 			   dst[i].src_reg == 0 &&
187 			   dst[i].off == 0) {
188 			was_ld_map = false;
189 			dst[i].imm = 0;
190 		} else {
191 			was_ld_map = false;
192 		}
193 	}
194 
195 	psize = bpf_prog_insn_size(fp);
196 	memset(&raw[psize], 0, raw_size - psize);
197 	raw[psize++] = 0x80;
198 
199 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
200 	blocks = bsize / SHA_MESSAGE_BYTES;
201 	todo   = raw;
202 	if (bsize - psize >= sizeof(__be64)) {
203 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
204 	} else {
205 		bits = (__be64 *)(todo + bsize + bits_offset);
206 		blocks++;
207 	}
208 	*bits = cpu_to_be64((psize - 1) << 3);
209 
210 	while (blocks--) {
211 		sha_transform(digest, todo, ws);
212 		todo += SHA_MESSAGE_BYTES;
213 	}
214 
215 	result = (__force __be32 *)digest;
216 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
217 		result[i] = cpu_to_be32(digest[i]);
218 	memcpy(fp->tag, result, sizeof(fp->tag));
219 
220 	vfree(raw);
221 	return 0;
222 }
223 
224 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
225 				u32 curr, const bool probe_pass)
226 {
227 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
228 	s64 imm = insn->imm;
229 
230 	if (curr < pos && curr + imm + 1 > pos)
231 		imm += delta;
232 	else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
233 		imm -= delta;
234 	if (imm < imm_min || imm > imm_max)
235 		return -ERANGE;
236 	if (!probe_pass)
237 		insn->imm = imm;
238 	return 0;
239 }
240 
241 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
242 				u32 curr, const bool probe_pass)
243 {
244 	const s32 off_min = S16_MIN, off_max = S16_MAX;
245 	s32 off = insn->off;
246 
247 	if (curr < pos && curr + off + 1 > pos)
248 		off += delta;
249 	else if (curr > pos + delta && curr + off + 1 <= pos + delta)
250 		off -= delta;
251 	if (off < off_min || off > off_max)
252 		return -ERANGE;
253 	if (!probe_pass)
254 		insn->off = off;
255 	return 0;
256 }
257 
258 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
259 			    const bool probe_pass)
260 {
261 	u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
262 	struct bpf_insn *insn = prog->insnsi;
263 	int ret = 0;
264 
265 	for (i = 0; i < insn_cnt; i++, insn++) {
266 		u8 code;
267 
268 		/* In the probing pass we still operate on the original,
269 		 * unpatched image in order to check overflows before we
270 		 * do any other adjustments. Therefore skip the patchlet.
271 		 */
272 		if (probe_pass && i == pos) {
273 			i += delta + 1;
274 			insn++;
275 		}
276 		code = insn->code;
277 		if (BPF_CLASS(code) != BPF_JMP ||
278 		    BPF_OP(code) == BPF_EXIT)
279 			continue;
280 		/* Adjust offset of jmps if we cross patch boundaries. */
281 		if (BPF_OP(code) == BPF_CALL) {
282 			if (insn->src_reg != BPF_PSEUDO_CALL)
283 				continue;
284 			ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
285 						   probe_pass);
286 		} else {
287 			ret = bpf_adj_delta_to_off(insn, pos, delta, i,
288 						   probe_pass);
289 		}
290 		if (ret)
291 			break;
292 	}
293 
294 	return ret;
295 }
296 
297 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
298 				       const struct bpf_insn *patch, u32 len)
299 {
300 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
301 	const u32 cnt_max = S16_MAX;
302 	struct bpf_prog *prog_adj;
303 
304 	/* Since our patchlet doesn't expand the image, we're done. */
305 	if (insn_delta == 0) {
306 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
307 		return prog;
308 	}
309 
310 	insn_adj_cnt = prog->len + insn_delta;
311 
312 	/* Reject anything that would potentially let the insn->off
313 	 * target overflow when we have excessive program expansions.
314 	 * We need to probe here before we do any reallocation where
315 	 * we afterwards may not fail anymore.
316 	 */
317 	if (insn_adj_cnt > cnt_max &&
318 	    bpf_adj_branches(prog, off, insn_delta, true))
319 		return NULL;
320 
321 	/* Several new instructions need to be inserted. Make room
322 	 * for them. Likely, there's no need for a new allocation as
323 	 * last page could have large enough tailroom.
324 	 */
325 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
326 				    GFP_USER);
327 	if (!prog_adj)
328 		return NULL;
329 
330 	prog_adj->len = insn_adj_cnt;
331 
332 	/* Patching happens in 3 steps:
333 	 *
334 	 * 1) Move over tail of insnsi from next instruction onwards,
335 	 *    so we can patch the single target insn with one or more
336 	 *    new ones (patching is always from 1 to n insns, n > 0).
337 	 * 2) Inject new instructions at the target location.
338 	 * 3) Adjust branch offsets if necessary.
339 	 */
340 	insn_rest = insn_adj_cnt - off - len;
341 
342 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
343 		sizeof(*patch) * insn_rest);
344 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
345 
346 	/* We are guaranteed to not fail at this point, otherwise
347 	 * the ship has sailed to reverse to the original state. An
348 	 * overflow cannot happen at this point.
349 	 */
350 	BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
351 
352 	return prog_adj;
353 }
354 
355 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
356 {
357 	int i;
358 
359 	for (i = 0; i < fp->aux->func_cnt; i++)
360 		bpf_prog_kallsyms_del(fp->aux->func[i]);
361 }
362 
363 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
364 {
365 	bpf_prog_kallsyms_del_subprogs(fp);
366 	bpf_prog_kallsyms_del(fp);
367 }
368 
369 #ifdef CONFIG_BPF_JIT
370 # define BPF_JIT_LIMIT_DEFAULT	(PAGE_SIZE * 40000)
371 
372 /* All BPF JIT sysctl knobs here. */
373 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
374 int bpf_jit_harden   __read_mostly;
375 int bpf_jit_kallsyms __read_mostly;
376 int bpf_jit_limit    __read_mostly = BPF_JIT_LIMIT_DEFAULT;
377 
378 static __always_inline void
379 bpf_get_prog_addr_region(const struct bpf_prog *prog,
380 			 unsigned long *symbol_start,
381 			 unsigned long *symbol_end)
382 {
383 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
384 	unsigned long addr = (unsigned long)hdr;
385 
386 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
387 
388 	*symbol_start = addr;
389 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
390 }
391 
392 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
393 {
394 	const char *end = sym + KSYM_NAME_LEN;
395 	const struct btf_type *type;
396 	const char *func_name;
397 
398 	BUILD_BUG_ON(sizeof("bpf_prog_") +
399 		     sizeof(prog->tag) * 2 +
400 		     /* name has been null terminated.
401 		      * We should need +1 for the '_' preceding
402 		      * the name.  However, the null character
403 		      * is double counted between the name and the
404 		      * sizeof("bpf_prog_") above, so we omit
405 		      * the +1 here.
406 		      */
407 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
408 
409 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
410 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
411 
412 	/* prog->aux->name will be ignored if full btf name is available */
413 	if (prog->aux->btf) {
414 		type = btf_type_by_id(prog->aux->btf,
415 				      prog->aux->func_info[prog->aux->func_idx].type_id);
416 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
417 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
418 		return;
419 	}
420 
421 	if (prog->aux->name[0])
422 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
423 	else
424 		*sym = 0;
425 }
426 
427 static __always_inline unsigned long
428 bpf_get_prog_addr_start(struct latch_tree_node *n)
429 {
430 	unsigned long symbol_start, symbol_end;
431 	const struct bpf_prog_aux *aux;
432 
433 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
434 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
435 
436 	return symbol_start;
437 }
438 
439 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
440 					  struct latch_tree_node *b)
441 {
442 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
443 }
444 
445 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
446 {
447 	unsigned long val = (unsigned long)key;
448 	unsigned long symbol_start, symbol_end;
449 	const struct bpf_prog_aux *aux;
450 
451 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
452 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
453 
454 	if (val < symbol_start)
455 		return -1;
456 	if (val >= symbol_end)
457 		return  1;
458 
459 	return 0;
460 }
461 
462 static const struct latch_tree_ops bpf_tree_ops = {
463 	.less	= bpf_tree_less,
464 	.comp	= bpf_tree_comp,
465 };
466 
467 static DEFINE_SPINLOCK(bpf_lock);
468 static LIST_HEAD(bpf_kallsyms);
469 static struct latch_tree_root bpf_tree __cacheline_aligned;
470 
471 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
472 {
473 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
474 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
475 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
476 }
477 
478 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
479 {
480 	if (list_empty(&aux->ksym_lnode))
481 		return;
482 
483 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
484 	list_del_rcu(&aux->ksym_lnode);
485 }
486 
487 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
488 {
489 	return fp->jited && !bpf_prog_was_classic(fp);
490 }
491 
492 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
493 {
494 	return list_empty(&fp->aux->ksym_lnode) ||
495 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
496 }
497 
498 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
499 {
500 	if (!bpf_prog_kallsyms_candidate(fp) ||
501 	    !capable(CAP_SYS_ADMIN))
502 		return;
503 
504 	spin_lock_bh(&bpf_lock);
505 	bpf_prog_ksym_node_add(fp->aux);
506 	spin_unlock_bh(&bpf_lock);
507 }
508 
509 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
510 {
511 	if (!bpf_prog_kallsyms_candidate(fp))
512 		return;
513 
514 	spin_lock_bh(&bpf_lock);
515 	bpf_prog_ksym_node_del(fp->aux);
516 	spin_unlock_bh(&bpf_lock);
517 }
518 
519 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
520 {
521 	struct latch_tree_node *n;
522 
523 	if (!bpf_jit_kallsyms_enabled())
524 		return NULL;
525 
526 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
527 	return n ?
528 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
529 	       NULL;
530 }
531 
532 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
533 				 unsigned long *off, char *sym)
534 {
535 	unsigned long symbol_start, symbol_end;
536 	struct bpf_prog *prog;
537 	char *ret = NULL;
538 
539 	rcu_read_lock();
540 	prog = bpf_prog_kallsyms_find(addr);
541 	if (prog) {
542 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
543 		bpf_get_prog_name(prog, sym);
544 
545 		ret = sym;
546 		if (size)
547 			*size = symbol_end - symbol_start;
548 		if (off)
549 			*off  = addr - symbol_start;
550 	}
551 	rcu_read_unlock();
552 
553 	return ret;
554 }
555 
556 bool is_bpf_text_address(unsigned long addr)
557 {
558 	bool ret;
559 
560 	rcu_read_lock();
561 	ret = bpf_prog_kallsyms_find(addr) != NULL;
562 	rcu_read_unlock();
563 
564 	return ret;
565 }
566 
567 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
568 		    char *sym)
569 {
570 	struct bpf_prog_aux *aux;
571 	unsigned int it = 0;
572 	int ret = -ERANGE;
573 
574 	if (!bpf_jit_kallsyms_enabled())
575 		return ret;
576 
577 	rcu_read_lock();
578 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
579 		if (it++ != symnum)
580 			continue;
581 
582 		bpf_get_prog_name(aux->prog, sym);
583 
584 		*value = (unsigned long)aux->prog->bpf_func;
585 		*type  = BPF_SYM_ELF_TYPE;
586 
587 		ret = 0;
588 		break;
589 	}
590 	rcu_read_unlock();
591 
592 	return ret;
593 }
594 
595 static atomic_long_t bpf_jit_current;
596 
597 #if defined(MODULES_VADDR)
598 static int __init bpf_jit_charge_init(void)
599 {
600 	/* Only used as heuristic here to derive limit. */
601 	bpf_jit_limit = min_t(u64, round_up((MODULES_END - MODULES_VADDR) >> 2,
602 					    PAGE_SIZE), INT_MAX);
603 	return 0;
604 }
605 pure_initcall(bpf_jit_charge_init);
606 #endif
607 
608 static int bpf_jit_charge_modmem(u32 pages)
609 {
610 	if (atomic_long_add_return(pages, &bpf_jit_current) >
611 	    (bpf_jit_limit >> PAGE_SHIFT)) {
612 		if (!capable(CAP_SYS_ADMIN)) {
613 			atomic_long_sub(pages, &bpf_jit_current);
614 			return -EPERM;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 static void bpf_jit_uncharge_modmem(u32 pages)
622 {
623 	atomic_long_sub(pages, &bpf_jit_current);
624 }
625 
626 void *__weak bpf_jit_alloc_exec(unsigned long size)
627 {
628 	return module_alloc(size);
629 }
630 
631 void __weak bpf_jit_free_exec(void *addr)
632 {
633 	module_memfree(addr);
634 }
635 
636 struct bpf_binary_header *
637 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
638 		     unsigned int alignment,
639 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
640 {
641 	struct bpf_binary_header *hdr;
642 	u32 size, hole, start, pages;
643 
644 	/* Most of BPF filters are really small, but if some of them
645 	 * fill a page, allow at least 128 extra bytes to insert a
646 	 * random section of illegal instructions.
647 	 */
648 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
649 	pages = size / PAGE_SIZE;
650 
651 	if (bpf_jit_charge_modmem(pages))
652 		return NULL;
653 	hdr = bpf_jit_alloc_exec(size);
654 	if (!hdr) {
655 		bpf_jit_uncharge_modmem(pages);
656 		return NULL;
657 	}
658 
659 	/* Fill space with illegal/arch-dep instructions. */
660 	bpf_fill_ill_insns(hdr, size);
661 
662 	hdr->pages = pages;
663 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
664 		     PAGE_SIZE - sizeof(*hdr));
665 	start = (get_random_int() % hole) & ~(alignment - 1);
666 
667 	/* Leave a random number of instructions before BPF code. */
668 	*image_ptr = &hdr->image[start];
669 
670 	return hdr;
671 }
672 
673 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
674 {
675 	u32 pages = hdr->pages;
676 
677 	bpf_jit_free_exec(hdr);
678 	bpf_jit_uncharge_modmem(pages);
679 }
680 
681 /* This symbol is only overridden by archs that have different
682  * requirements than the usual eBPF JITs, f.e. when they only
683  * implement cBPF JIT, do not set images read-only, etc.
684  */
685 void __weak bpf_jit_free(struct bpf_prog *fp)
686 {
687 	if (fp->jited) {
688 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
689 
690 		bpf_jit_binary_unlock_ro(hdr);
691 		bpf_jit_binary_free(hdr);
692 
693 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
694 	}
695 
696 	bpf_prog_unlock_free(fp);
697 }
698 
699 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
700 			  const struct bpf_insn *insn, bool extra_pass,
701 			  u64 *func_addr, bool *func_addr_fixed)
702 {
703 	s16 off = insn->off;
704 	s32 imm = insn->imm;
705 	u8 *addr;
706 
707 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
708 	if (!*func_addr_fixed) {
709 		/* Place-holder address till the last pass has collected
710 		 * all addresses for JITed subprograms in which case we
711 		 * can pick them up from prog->aux.
712 		 */
713 		if (!extra_pass)
714 			addr = NULL;
715 		else if (prog->aux->func &&
716 			 off >= 0 && off < prog->aux->func_cnt)
717 			addr = (u8 *)prog->aux->func[off]->bpf_func;
718 		else
719 			return -EINVAL;
720 	} else {
721 		/* Address of a BPF helper call. Since part of the core
722 		 * kernel, it's always at a fixed location. __bpf_call_base
723 		 * and the helper with imm relative to it are both in core
724 		 * kernel.
725 		 */
726 		addr = (u8 *)__bpf_call_base + imm;
727 	}
728 
729 	*func_addr = (unsigned long)addr;
730 	return 0;
731 }
732 
733 static int bpf_jit_blind_insn(const struct bpf_insn *from,
734 			      const struct bpf_insn *aux,
735 			      struct bpf_insn *to_buff)
736 {
737 	struct bpf_insn *to = to_buff;
738 	u32 imm_rnd = get_random_int();
739 	s16 off;
740 
741 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
742 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
743 
744 	if (from->imm == 0 &&
745 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
746 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
747 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
748 		goto out;
749 	}
750 
751 	switch (from->code) {
752 	case BPF_ALU | BPF_ADD | BPF_K:
753 	case BPF_ALU | BPF_SUB | BPF_K:
754 	case BPF_ALU | BPF_AND | BPF_K:
755 	case BPF_ALU | BPF_OR  | BPF_K:
756 	case BPF_ALU | BPF_XOR | BPF_K:
757 	case BPF_ALU | BPF_MUL | BPF_K:
758 	case BPF_ALU | BPF_MOV | BPF_K:
759 	case BPF_ALU | BPF_DIV | BPF_K:
760 	case BPF_ALU | BPF_MOD | BPF_K:
761 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
762 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
763 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
764 		break;
765 
766 	case BPF_ALU64 | BPF_ADD | BPF_K:
767 	case BPF_ALU64 | BPF_SUB | BPF_K:
768 	case BPF_ALU64 | BPF_AND | BPF_K:
769 	case BPF_ALU64 | BPF_OR  | BPF_K:
770 	case BPF_ALU64 | BPF_XOR | BPF_K:
771 	case BPF_ALU64 | BPF_MUL | BPF_K:
772 	case BPF_ALU64 | BPF_MOV | BPF_K:
773 	case BPF_ALU64 | BPF_DIV | BPF_K:
774 	case BPF_ALU64 | BPF_MOD | BPF_K:
775 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
776 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
777 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
778 		break;
779 
780 	case BPF_JMP | BPF_JEQ  | BPF_K:
781 	case BPF_JMP | BPF_JNE  | BPF_K:
782 	case BPF_JMP | BPF_JGT  | BPF_K:
783 	case BPF_JMP | BPF_JLT  | BPF_K:
784 	case BPF_JMP | BPF_JGE  | BPF_K:
785 	case BPF_JMP | BPF_JLE  | BPF_K:
786 	case BPF_JMP | BPF_JSGT | BPF_K:
787 	case BPF_JMP | BPF_JSLT | BPF_K:
788 	case BPF_JMP | BPF_JSGE | BPF_K:
789 	case BPF_JMP | BPF_JSLE | BPF_K:
790 	case BPF_JMP | BPF_JSET | BPF_K:
791 		/* Accommodate for extra offset in case of a backjump. */
792 		off = from->off;
793 		if (off < 0)
794 			off -= 2;
795 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
796 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
797 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
798 		break;
799 
800 	case BPF_LD | BPF_IMM | BPF_DW:
801 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
802 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
803 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
804 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
805 		break;
806 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
807 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
808 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
809 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
810 		break;
811 
812 	case BPF_ST | BPF_MEM | BPF_DW:
813 	case BPF_ST | BPF_MEM | BPF_W:
814 	case BPF_ST | BPF_MEM | BPF_H:
815 	case BPF_ST | BPF_MEM | BPF_B:
816 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
817 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
818 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
819 		break;
820 	}
821 out:
822 	return to - to_buff;
823 }
824 
825 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
826 					      gfp_t gfp_extra_flags)
827 {
828 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
829 	struct bpf_prog *fp;
830 
831 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
832 	if (fp != NULL) {
833 		/* aux->prog still points to the fp_other one, so
834 		 * when promoting the clone to the real program,
835 		 * this still needs to be adapted.
836 		 */
837 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
838 	}
839 
840 	return fp;
841 }
842 
843 static void bpf_prog_clone_free(struct bpf_prog *fp)
844 {
845 	/* aux was stolen by the other clone, so we cannot free
846 	 * it from this path! It will be freed eventually by the
847 	 * other program on release.
848 	 *
849 	 * At this point, we don't need a deferred release since
850 	 * clone is guaranteed to not be locked.
851 	 */
852 	fp->aux = NULL;
853 	__bpf_prog_free(fp);
854 }
855 
856 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
857 {
858 	/* We have to repoint aux->prog to self, as we don't
859 	 * know whether fp here is the clone or the original.
860 	 */
861 	fp->aux->prog = fp;
862 	bpf_prog_clone_free(fp_other);
863 }
864 
865 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
866 {
867 	struct bpf_insn insn_buff[16], aux[2];
868 	struct bpf_prog *clone, *tmp;
869 	int insn_delta, insn_cnt;
870 	struct bpf_insn *insn;
871 	int i, rewritten;
872 
873 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
874 		return prog;
875 
876 	clone = bpf_prog_clone_create(prog, GFP_USER);
877 	if (!clone)
878 		return ERR_PTR(-ENOMEM);
879 
880 	insn_cnt = clone->len;
881 	insn = clone->insnsi;
882 
883 	for (i = 0; i < insn_cnt; i++, insn++) {
884 		/* We temporarily need to hold the original ld64 insn
885 		 * so that we can still access the first part in the
886 		 * second blinding run.
887 		 */
888 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
889 		    insn[1].code == 0)
890 			memcpy(aux, insn, sizeof(aux));
891 
892 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
893 		if (!rewritten)
894 			continue;
895 
896 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
897 		if (!tmp) {
898 			/* Patching may have repointed aux->prog during
899 			 * realloc from the original one, so we need to
900 			 * fix it up here on error.
901 			 */
902 			bpf_jit_prog_release_other(prog, clone);
903 			return ERR_PTR(-ENOMEM);
904 		}
905 
906 		clone = tmp;
907 		insn_delta = rewritten - 1;
908 
909 		/* Walk new program and skip insns we just inserted. */
910 		insn = clone->insnsi + i + insn_delta;
911 		insn_cnt += insn_delta;
912 		i        += insn_delta;
913 	}
914 
915 	clone->blinded = 1;
916 	return clone;
917 }
918 #endif /* CONFIG_BPF_JIT */
919 
920 /* Base function for offset calculation. Needs to go into .text section,
921  * therefore keeping it non-static as well; will also be used by JITs
922  * anyway later on, so do not let the compiler omit it. This also needs
923  * to go into kallsyms for correlation from e.g. bpftool, so naming
924  * must not change.
925  */
926 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
927 {
928 	return 0;
929 }
930 EXPORT_SYMBOL_GPL(__bpf_call_base);
931 
932 /* All UAPI available opcodes. */
933 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
934 	/* 32 bit ALU operations. */		\
935 	/*   Register based. */			\
936 	INSN_3(ALU, ADD, X),			\
937 	INSN_3(ALU, SUB, X),			\
938 	INSN_3(ALU, AND, X),			\
939 	INSN_3(ALU, OR,  X),			\
940 	INSN_3(ALU, LSH, X),			\
941 	INSN_3(ALU, RSH, X),			\
942 	INSN_3(ALU, XOR, X),			\
943 	INSN_3(ALU, MUL, X),			\
944 	INSN_3(ALU, MOV, X),			\
945 	INSN_3(ALU, DIV, X),			\
946 	INSN_3(ALU, MOD, X),			\
947 	INSN_2(ALU, NEG),			\
948 	INSN_3(ALU, END, TO_BE),		\
949 	INSN_3(ALU, END, TO_LE),		\
950 	/*   Immediate based. */		\
951 	INSN_3(ALU, ADD, K),			\
952 	INSN_3(ALU, SUB, K),			\
953 	INSN_3(ALU, AND, K),			\
954 	INSN_3(ALU, OR,  K),			\
955 	INSN_3(ALU, LSH, K),			\
956 	INSN_3(ALU, RSH, K),			\
957 	INSN_3(ALU, XOR, K),			\
958 	INSN_3(ALU, MUL, K),			\
959 	INSN_3(ALU, MOV, K),			\
960 	INSN_3(ALU, DIV, K),			\
961 	INSN_3(ALU, MOD, K),			\
962 	/* 64 bit ALU operations. */		\
963 	/*   Register based. */			\
964 	INSN_3(ALU64, ADD,  X),			\
965 	INSN_3(ALU64, SUB,  X),			\
966 	INSN_3(ALU64, AND,  X),			\
967 	INSN_3(ALU64, OR,   X),			\
968 	INSN_3(ALU64, LSH,  X),			\
969 	INSN_3(ALU64, RSH,  X),			\
970 	INSN_3(ALU64, XOR,  X),			\
971 	INSN_3(ALU64, MUL,  X),			\
972 	INSN_3(ALU64, MOV,  X),			\
973 	INSN_3(ALU64, ARSH, X),			\
974 	INSN_3(ALU64, DIV,  X),			\
975 	INSN_3(ALU64, MOD,  X),			\
976 	INSN_2(ALU64, NEG),			\
977 	/*   Immediate based. */		\
978 	INSN_3(ALU64, ADD,  K),			\
979 	INSN_3(ALU64, SUB,  K),			\
980 	INSN_3(ALU64, AND,  K),			\
981 	INSN_3(ALU64, OR,   K),			\
982 	INSN_3(ALU64, LSH,  K),			\
983 	INSN_3(ALU64, RSH,  K),			\
984 	INSN_3(ALU64, XOR,  K),			\
985 	INSN_3(ALU64, MUL,  K),			\
986 	INSN_3(ALU64, MOV,  K),			\
987 	INSN_3(ALU64, ARSH, K),			\
988 	INSN_3(ALU64, DIV,  K),			\
989 	INSN_3(ALU64, MOD,  K),			\
990 	/* Call instruction. */			\
991 	INSN_2(JMP, CALL),			\
992 	/* Exit instruction. */			\
993 	INSN_2(JMP, EXIT),			\
994 	/* Jump instructions. */		\
995 	/*   Register based. */			\
996 	INSN_3(JMP, JEQ,  X),			\
997 	INSN_3(JMP, JNE,  X),			\
998 	INSN_3(JMP, JGT,  X),			\
999 	INSN_3(JMP, JLT,  X),			\
1000 	INSN_3(JMP, JGE,  X),			\
1001 	INSN_3(JMP, JLE,  X),			\
1002 	INSN_3(JMP, JSGT, X),			\
1003 	INSN_3(JMP, JSLT, X),			\
1004 	INSN_3(JMP, JSGE, X),			\
1005 	INSN_3(JMP, JSLE, X),			\
1006 	INSN_3(JMP, JSET, X),			\
1007 	/*   Immediate based. */		\
1008 	INSN_3(JMP, JEQ,  K),			\
1009 	INSN_3(JMP, JNE,  K),			\
1010 	INSN_3(JMP, JGT,  K),			\
1011 	INSN_3(JMP, JLT,  K),			\
1012 	INSN_3(JMP, JGE,  K),			\
1013 	INSN_3(JMP, JLE,  K),			\
1014 	INSN_3(JMP, JSGT, K),			\
1015 	INSN_3(JMP, JSLT, K),			\
1016 	INSN_3(JMP, JSGE, K),			\
1017 	INSN_3(JMP, JSLE, K),			\
1018 	INSN_3(JMP, JSET, K),			\
1019 	INSN_2(JMP, JA),			\
1020 	/* Store instructions. */		\
1021 	/*   Register based. */			\
1022 	INSN_3(STX, MEM,  B),			\
1023 	INSN_3(STX, MEM,  H),			\
1024 	INSN_3(STX, MEM,  W),			\
1025 	INSN_3(STX, MEM,  DW),			\
1026 	INSN_3(STX, XADD, W),			\
1027 	INSN_3(STX, XADD, DW),			\
1028 	/*   Immediate based. */		\
1029 	INSN_3(ST, MEM, B),			\
1030 	INSN_3(ST, MEM, H),			\
1031 	INSN_3(ST, MEM, W),			\
1032 	INSN_3(ST, MEM, DW),			\
1033 	/* Load instructions. */		\
1034 	/*   Register based. */			\
1035 	INSN_3(LDX, MEM, B),			\
1036 	INSN_3(LDX, MEM, H),			\
1037 	INSN_3(LDX, MEM, W),			\
1038 	INSN_3(LDX, MEM, DW),			\
1039 	/*   Immediate based. */		\
1040 	INSN_3(LD, IMM, DW)
1041 
1042 bool bpf_opcode_in_insntable(u8 code)
1043 {
1044 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1045 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1046 	static const bool public_insntable[256] = {
1047 		[0 ... 255] = false,
1048 		/* Now overwrite non-defaults ... */
1049 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1050 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1051 		[BPF_LD | BPF_ABS | BPF_B] = true,
1052 		[BPF_LD | BPF_ABS | BPF_H] = true,
1053 		[BPF_LD | BPF_ABS | BPF_W] = true,
1054 		[BPF_LD | BPF_IND | BPF_B] = true,
1055 		[BPF_LD | BPF_IND | BPF_H] = true,
1056 		[BPF_LD | BPF_IND | BPF_W] = true,
1057 	};
1058 #undef BPF_INSN_3_TBL
1059 #undef BPF_INSN_2_TBL
1060 	return public_insntable[code];
1061 }
1062 
1063 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1064 /**
1065  *	__bpf_prog_run - run eBPF program on a given context
1066  *	@ctx: is the data we are operating on
1067  *	@insn: is the array of eBPF instructions
1068  *
1069  * Decode and execute eBPF instructions.
1070  */
1071 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1072 {
1073 	u64 tmp;
1074 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1075 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1076 	static const void *jumptable[256] = {
1077 		[0 ... 255] = &&default_label,
1078 		/* Now overwrite non-defaults ... */
1079 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1080 		/* Non-UAPI available opcodes. */
1081 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1082 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1083 	};
1084 #undef BPF_INSN_3_LBL
1085 #undef BPF_INSN_2_LBL
1086 	u32 tail_call_cnt = 0;
1087 
1088 #define CONT	 ({ insn++; goto select_insn; })
1089 #define CONT_JMP ({ insn++; goto select_insn; })
1090 
1091 select_insn:
1092 	goto *jumptable[insn->code];
1093 
1094 	/* ALU */
1095 #define ALU(OPCODE, OP)			\
1096 	ALU64_##OPCODE##_X:		\
1097 		DST = DST OP SRC;	\
1098 		CONT;			\
1099 	ALU_##OPCODE##_X:		\
1100 		DST = (u32) DST OP (u32) SRC;	\
1101 		CONT;			\
1102 	ALU64_##OPCODE##_K:		\
1103 		DST = DST OP IMM;		\
1104 		CONT;			\
1105 	ALU_##OPCODE##_K:		\
1106 		DST = (u32) DST OP (u32) IMM;	\
1107 		CONT;
1108 
1109 	ALU(ADD,  +)
1110 	ALU(SUB,  -)
1111 	ALU(AND,  &)
1112 	ALU(OR,   |)
1113 	ALU(LSH, <<)
1114 	ALU(RSH, >>)
1115 	ALU(XOR,  ^)
1116 	ALU(MUL,  *)
1117 #undef ALU
1118 	ALU_NEG:
1119 		DST = (u32) -DST;
1120 		CONT;
1121 	ALU64_NEG:
1122 		DST = -DST;
1123 		CONT;
1124 	ALU_MOV_X:
1125 		DST = (u32) SRC;
1126 		CONT;
1127 	ALU_MOV_K:
1128 		DST = (u32) IMM;
1129 		CONT;
1130 	ALU64_MOV_X:
1131 		DST = SRC;
1132 		CONT;
1133 	ALU64_MOV_K:
1134 		DST = IMM;
1135 		CONT;
1136 	LD_IMM_DW:
1137 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1138 		insn++;
1139 		CONT;
1140 	ALU64_ARSH_X:
1141 		(*(s64 *) &DST) >>= SRC;
1142 		CONT;
1143 	ALU64_ARSH_K:
1144 		(*(s64 *) &DST) >>= IMM;
1145 		CONT;
1146 	ALU64_MOD_X:
1147 		div64_u64_rem(DST, SRC, &tmp);
1148 		DST = tmp;
1149 		CONT;
1150 	ALU_MOD_X:
1151 		tmp = (u32) DST;
1152 		DST = do_div(tmp, (u32) SRC);
1153 		CONT;
1154 	ALU64_MOD_K:
1155 		div64_u64_rem(DST, IMM, &tmp);
1156 		DST = tmp;
1157 		CONT;
1158 	ALU_MOD_K:
1159 		tmp = (u32) DST;
1160 		DST = do_div(tmp, (u32) IMM);
1161 		CONT;
1162 	ALU64_DIV_X:
1163 		DST = div64_u64(DST, SRC);
1164 		CONT;
1165 	ALU_DIV_X:
1166 		tmp = (u32) DST;
1167 		do_div(tmp, (u32) SRC);
1168 		DST = (u32) tmp;
1169 		CONT;
1170 	ALU64_DIV_K:
1171 		DST = div64_u64(DST, IMM);
1172 		CONT;
1173 	ALU_DIV_K:
1174 		tmp = (u32) DST;
1175 		do_div(tmp, (u32) IMM);
1176 		DST = (u32) tmp;
1177 		CONT;
1178 	ALU_END_TO_BE:
1179 		switch (IMM) {
1180 		case 16:
1181 			DST = (__force u16) cpu_to_be16(DST);
1182 			break;
1183 		case 32:
1184 			DST = (__force u32) cpu_to_be32(DST);
1185 			break;
1186 		case 64:
1187 			DST = (__force u64) cpu_to_be64(DST);
1188 			break;
1189 		}
1190 		CONT;
1191 	ALU_END_TO_LE:
1192 		switch (IMM) {
1193 		case 16:
1194 			DST = (__force u16) cpu_to_le16(DST);
1195 			break;
1196 		case 32:
1197 			DST = (__force u32) cpu_to_le32(DST);
1198 			break;
1199 		case 64:
1200 			DST = (__force u64) cpu_to_le64(DST);
1201 			break;
1202 		}
1203 		CONT;
1204 
1205 	/* CALL */
1206 	JMP_CALL:
1207 		/* Function call scratches BPF_R1-BPF_R5 registers,
1208 		 * preserves BPF_R6-BPF_R9, and stores return value
1209 		 * into BPF_R0.
1210 		 */
1211 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1212 						       BPF_R4, BPF_R5);
1213 		CONT;
1214 
1215 	JMP_CALL_ARGS:
1216 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1217 							    BPF_R3, BPF_R4,
1218 							    BPF_R5,
1219 							    insn + insn->off + 1);
1220 		CONT;
1221 
1222 	JMP_TAIL_CALL: {
1223 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1224 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1225 		struct bpf_prog *prog;
1226 		u32 index = BPF_R3;
1227 
1228 		if (unlikely(index >= array->map.max_entries))
1229 			goto out;
1230 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1231 			goto out;
1232 
1233 		tail_call_cnt++;
1234 
1235 		prog = READ_ONCE(array->ptrs[index]);
1236 		if (!prog)
1237 			goto out;
1238 
1239 		/* ARG1 at this point is guaranteed to point to CTX from
1240 		 * the verifier side due to the fact that the tail call is
1241 		 * handeled like a helper, that is, bpf_tail_call_proto,
1242 		 * where arg1_type is ARG_PTR_TO_CTX.
1243 		 */
1244 		insn = prog->insnsi;
1245 		goto select_insn;
1246 out:
1247 		CONT;
1248 	}
1249 	/* JMP */
1250 	JMP_JA:
1251 		insn += insn->off;
1252 		CONT;
1253 	JMP_JEQ_X:
1254 		if (DST == SRC) {
1255 			insn += insn->off;
1256 			CONT_JMP;
1257 		}
1258 		CONT;
1259 	JMP_JEQ_K:
1260 		if (DST == IMM) {
1261 			insn += insn->off;
1262 			CONT_JMP;
1263 		}
1264 		CONT;
1265 	JMP_JNE_X:
1266 		if (DST != SRC) {
1267 			insn += insn->off;
1268 			CONT_JMP;
1269 		}
1270 		CONT;
1271 	JMP_JNE_K:
1272 		if (DST != IMM) {
1273 			insn += insn->off;
1274 			CONT_JMP;
1275 		}
1276 		CONT;
1277 	JMP_JGT_X:
1278 		if (DST > SRC) {
1279 			insn += insn->off;
1280 			CONT_JMP;
1281 		}
1282 		CONT;
1283 	JMP_JGT_K:
1284 		if (DST > IMM) {
1285 			insn += insn->off;
1286 			CONT_JMP;
1287 		}
1288 		CONT;
1289 	JMP_JLT_X:
1290 		if (DST < SRC) {
1291 			insn += insn->off;
1292 			CONT_JMP;
1293 		}
1294 		CONT;
1295 	JMP_JLT_K:
1296 		if (DST < IMM) {
1297 			insn += insn->off;
1298 			CONT_JMP;
1299 		}
1300 		CONT;
1301 	JMP_JGE_X:
1302 		if (DST >= SRC) {
1303 			insn += insn->off;
1304 			CONT_JMP;
1305 		}
1306 		CONT;
1307 	JMP_JGE_K:
1308 		if (DST >= IMM) {
1309 			insn += insn->off;
1310 			CONT_JMP;
1311 		}
1312 		CONT;
1313 	JMP_JLE_X:
1314 		if (DST <= SRC) {
1315 			insn += insn->off;
1316 			CONT_JMP;
1317 		}
1318 		CONT;
1319 	JMP_JLE_K:
1320 		if (DST <= IMM) {
1321 			insn += insn->off;
1322 			CONT_JMP;
1323 		}
1324 		CONT;
1325 	JMP_JSGT_X:
1326 		if (((s64) DST) > ((s64) SRC)) {
1327 			insn += insn->off;
1328 			CONT_JMP;
1329 		}
1330 		CONT;
1331 	JMP_JSGT_K:
1332 		if (((s64) DST) > ((s64) IMM)) {
1333 			insn += insn->off;
1334 			CONT_JMP;
1335 		}
1336 		CONT;
1337 	JMP_JSLT_X:
1338 		if (((s64) DST) < ((s64) SRC)) {
1339 			insn += insn->off;
1340 			CONT_JMP;
1341 		}
1342 		CONT;
1343 	JMP_JSLT_K:
1344 		if (((s64) DST) < ((s64) IMM)) {
1345 			insn += insn->off;
1346 			CONT_JMP;
1347 		}
1348 		CONT;
1349 	JMP_JSGE_X:
1350 		if (((s64) DST) >= ((s64) SRC)) {
1351 			insn += insn->off;
1352 			CONT_JMP;
1353 		}
1354 		CONT;
1355 	JMP_JSGE_K:
1356 		if (((s64) DST) >= ((s64) IMM)) {
1357 			insn += insn->off;
1358 			CONT_JMP;
1359 		}
1360 		CONT;
1361 	JMP_JSLE_X:
1362 		if (((s64) DST) <= ((s64) SRC)) {
1363 			insn += insn->off;
1364 			CONT_JMP;
1365 		}
1366 		CONT;
1367 	JMP_JSLE_K:
1368 		if (((s64) DST) <= ((s64) IMM)) {
1369 			insn += insn->off;
1370 			CONT_JMP;
1371 		}
1372 		CONT;
1373 	JMP_JSET_X:
1374 		if (DST & SRC) {
1375 			insn += insn->off;
1376 			CONT_JMP;
1377 		}
1378 		CONT;
1379 	JMP_JSET_K:
1380 		if (DST & IMM) {
1381 			insn += insn->off;
1382 			CONT_JMP;
1383 		}
1384 		CONT;
1385 	JMP_EXIT:
1386 		return BPF_R0;
1387 
1388 	/* STX and ST and LDX*/
1389 #define LDST(SIZEOP, SIZE)						\
1390 	STX_MEM_##SIZEOP:						\
1391 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1392 		CONT;							\
1393 	ST_MEM_##SIZEOP:						\
1394 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1395 		CONT;							\
1396 	LDX_MEM_##SIZEOP:						\
1397 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1398 		CONT;
1399 
1400 	LDST(B,   u8)
1401 	LDST(H,  u16)
1402 	LDST(W,  u32)
1403 	LDST(DW, u64)
1404 #undef LDST
1405 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1406 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1407 			   (DST + insn->off));
1408 		CONT;
1409 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1410 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1411 			     (DST + insn->off));
1412 		CONT;
1413 
1414 	default_label:
1415 		/* If we ever reach this, we have a bug somewhere. Die hard here
1416 		 * instead of just returning 0; we could be somewhere in a subprog,
1417 		 * so execution could continue otherwise which we do /not/ want.
1418 		 *
1419 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1420 		 */
1421 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1422 		BUG_ON(1);
1423 		return 0;
1424 }
1425 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1426 
1427 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1428 #define DEFINE_BPF_PROG_RUN(stack_size) \
1429 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1430 { \
1431 	u64 stack[stack_size / sizeof(u64)]; \
1432 	u64 regs[MAX_BPF_REG]; \
1433 \
1434 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1435 	ARG1 = (u64) (unsigned long) ctx; \
1436 	return ___bpf_prog_run(regs, insn, stack); \
1437 }
1438 
1439 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1440 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1441 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1442 				      const struct bpf_insn *insn) \
1443 { \
1444 	u64 stack[stack_size / sizeof(u64)]; \
1445 	u64 regs[MAX_BPF_REG]; \
1446 \
1447 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1448 	BPF_R1 = r1; \
1449 	BPF_R2 = r2; \
1450 	BPF_R3 = r3; \
1451 	BPF_R4 = r4; \
1452 	BPF_R5 = r5; \
1453 	return ___bpf_prog_run(regs, insn, stack); \
1454 }
1455 
1456 #define EVAL1(FN, X) FN(X)
1457 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1458 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1459 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1460 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1461 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1462 
1463 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1464 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1465 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1466 
1467 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1468 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1469 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1470 
1471 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1472 
1473 static unsigned int (*interpreters[])(const void *ctx,
1474 				      const struct bpf_insn *insn) = {
1475 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1476 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1477 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1478 };
1479 #undef PROG_NAME_LIST
1480 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1481 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1482 				  const struct bpf_insn *insn) = {
1483 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1484 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1485 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1486 };
1487 #undef PROG_NAME_LIST
1488 
1489 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1490 {
1491 	stack_depth = max_t(u32, stack_depth, 1);
1492 	insn->off = (s16) insn->imm;
1493 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1494 		__bpf_call_base_args;
1495 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1496 }
1497 
1498 #else
1499 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1500 					 const struct bpf_insn *insn)
1501 {
1502 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1503 	 * is not working properly, so warn about it!
1504 	 */
1505 	WARN_ON_ONCE(1);
1506 	return 0;
1507 }
1508 #endif
1509 
1510 bool bpf_prog_array_compatible(struct bpf_array *array,
1511 			       const struct bpf_prog *fp)
1512 {
1513 	if (fp->kprobe_override)
1514 		return false;
1515 
1516 	if (!array->owner_prog_type) {
1517 		/* There's no owner yet where we could check for
1518 		 * compatibility.
1519 		 */
1520 		array->owner_prog_type = fp->type;
1521 		array->owner_jited = fp->jited;
1522 
1523 		return true;
1524 	}
1525 
1526 	return array->owner_prog_type == fp->type &&
1527 	       array->owner_jited == fp->jited;
1528 }
1529 
1530 static int bpf_check_tail_call(const struct bpf_prog *fp)
1531 {
1532 	struct bpf_prog_aux *aux = fp->aux;
1533 	int i;
1534 
1535 	for (i = 0; i < aux->used_map_cnt; i++) {
1536 		struct bpf_map *map = aux->used_maps[i];
1537 		struct bpf_array *array;
1538 
1539 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1540 			continue;
1541 
1542 		array = container_of(map, struct bpf_array, map);
1543 		if (!bpf_prog_array_compatible(array, fp))
1544 			return -EINVAL;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static void bpf_prog_select_func(struct bpf_prog *fp)
1551 {
1552 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1553 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1554 
1555 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1556 #else
1557 	fp->bpf_func = __bpf_prog_ret0_warn;
1558 #endif
1559 }
1560 
1561 /**
1562  *	bpf_prog_select_runtime - select exec runtime for BPF program
1563  *	@fp: bpf_prog populated with internal BPF program
1564  *	@err: pointer to error variable
1565  *
1566  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1567  * The BPF program will be executed via BPF_PROG_RUN() macro.
1568  */
1569 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1570 {
1571 	/* In case of BPF to BPF calls, verifier did all the prep
1572 	 * work with regards to JITing, etc.
1573 	 */
1574 	if (fp->bpf_func)
1575 		goto finalize;
1576 
1577 	bpf_prog_select_func(fp);
1578 
1579 	/* eBPF JITs can rewrite the program in case constant
1580 	 * blinding is active. However, in case of error during
1581 	 * blinding, bpf_int_jit_compile() must always return a
1582 	 * valid program, which in this case would simply not
1583 	 * be JITed, but falls back to the interpreter.
1584 	 */
1585 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1586 		fp = bpf_int_jit_compile(fp);
1587 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1588 		if (!fp->jited) {
1589 			*err = -ENOTSUPP;
1590 			return fp;
1591 		}
1592 #endif
1593 	} else {
1594 		*err = bpf_prog_offload_compile(fp);
1595 		if (*err)
1596 			return fp;
1597 	}
1598 
1599 finalize:
1600 	bpf_prog_lock_ro(fp);
1601 
1602 	/* The tail call compatibility check can only be done at
1603 	 * this late stage as we need to determine, if we deal
1604 	 * with JITed or non JITed program concatenations and not
1605 	 * all eBPF JITs might immediately support all features.
1606 	 */
1607 	*err = bpf_check_tail_call(fp);
1608 
1609 	return fp;
1610 }
1611 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1612 
1613 static unsigned int __bpf_prog_ret1(const void *ctx,
1614 				    const struct bpf_insn *insn)
1615 {
1616 	return 1;
1617 }
1618 
1619 static struct bpf_prog_dummy {
1620 	struct bpf_prog prog;
1621 } dummy_bpf_prog = {
1622 	.prog = {
1623 		.bpf_func = __bpf_prog_ret1,
1624 	},
1625 };
1626 
1627 /* to avoid allocating empty bpf_prog_array for cgroups that
1628  * don't have bpf program attached use one global 'empty_prog_array'
1629  * It will not be modified the caller of bpf_prog_array_alloc()
1630  * (since caller requested prog_cnt == 0)
1631  * that pointer should be 'freed' by bpf_prog_array_free()
1632  */
1633 static struct {
1634 	struct bpf_prog_array hdr;
1635 	struct bpf_prog *null_prog;
1636 } empty_prog_array = {
1637 	.null_prog = NULL,
1638 };
1639 
1640 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1641 {
1642 	if (prog_cnt)
1643 		return kzalloc(sizeof(struct bpf_prog_array) +
1644 			       sizeof(struct bpf_prog_array_item) *
1645 			       (prog_cnt + 1),
1646 			       flags);
1647 
1648 	return &empty_prog_array.hdr;
1649 }
1650 
1651 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1652 {
1653 	if (!progs ||
1654 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1655 		return;
1656 	kfree_rcu(progs, rcu);
1657 }
1658 
1659 int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
1660 {
1661 	struct bpf_prog_array_item *item;
1662 	u32 cnt = 0;
1663 
1664 	rcu_read_lock();
1665 	item = rcu_dereference(array)->items;
1666 	for (; item->prog; item++)
1667 		if (item->prog != &dummy_bpf_prog.prog)
1668 			cnt++;
1669 	rcu_read_unlock();
1670 	return cnt;
1671 }
1672 
1673 
1674 static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
1675 				     u32 *prog_ids,
1676 				     u32 request_cnt)
1677 {
1678 	struct bpf_prog_array_item *item;
1679 	int i = 0;
1680 
1681 	item = rcu_dereference_check(array, 1)->items;
1682 	for (; item->prog; item++) {
1683 		if (item->prog == &dummy_bpf_prog.prog)
1684 			continue;
1685 		prog_ids[i] = item->prog->aux->id;
1686 		if (++i == request_cnt) {
1687 			item++;
1688 			break;
1689 		}
1690 	}
1691 
1692 	return !!(item->prog);
1693 }
1694 
1695 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
1696 				__u32 __user *prog_ids, u32 cnt)
1697 {
1698 	unsigned long err = 0;
1699 	bool nospc;
1700 	u32 *ids;
1701 
1702 	/* users of this function are doing:
1703 	 * cnt = bpf_prog_array_length();
1704 	 * if (cnt > 0)
1705 	 *     bpf_prog_array_copy_to_user(..., cnt);
1706 	 * so below kcalloc doesn't need extra cnt > 0 check, but
1707 	 * bpf_prog_array_length() releases rcu lock and
1708 	 * prog array could have been swapped with empty or larger array,
1709 	 * so always copy 'cnt' prog_ids to the user.
1710 	 * In a rare race the user will see zero prog_ids
1711 	 */
1712 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1713 	if (!ids)
1714 		return -ENOMEM;
1715 	rcu_read_lock();
1716 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1717 	rcu_read_unlock();
1718 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1719 	kfree(ids);
1720 	if (err)
1721 		return -EFAULT;
1722 	if (nospc)
1723 		return -ENOSPC;
1724 	return 0;
1725 }
1726 
1727 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
1728 				struct bpf_prog *old_prog)
1729 {
1730 	struct bpf_prog_array_item *item = array->items;
1731 
1732 	for (; item->prog; item++)
1733 		if (item->prog == old_prog) {
1734 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1735 			break;
1736 		}
1737 }
1738 
1739 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1740 			struct bpf_prog *exclude_prog,
1741 			struct bpf_prog *include_prog,
1742 			struct bpf_prog_array **new_array)
1743 {
1744 	int new_prog_cnt, carry_prog_cnt = 0;
1745 	struct bpf_prog_array_item *existing;
1746 	struct bpf_prog_array *array;
1747 	bool found_exclude = false;
1748 	int new_prog_idx = 0;
1749 
1750 	/* Figure out how many existing progs we need to carry over to
1751 	 * the new array.
1752 	 */
1753 	if (old_array) {
1754 		existing = old_array->items;
1755 		for (; existing->prog; existing++) {
1756 			if (existing->prog == exclude_prog) {
1757 				found_exclude = true;
1758 				continue;
1759 			}
1760 			if (existing->prog != &dummy_bpf_prog.prog)
1761 				carry_prog_cnt++;
1762 			if (existing->prog == include_prog)
1763 				return -EEXIST;
1764 		}
1765 	}
1766 
1767 	if (exclude_prog && !found_exclude)
1768 		return -ENOENT;
1769 
1770 	/* How many progs (not NULL) will be in the new array? */
1771 	new_prog_cnt = carry_prog_cnt;
1772 	if (include_prog)
1773 		new_prog_cnt += 1;
1774 
1775 	/* Do we have any prog (not NULL) in the new array? */
1776 	if (!new_prog_cnt) {
1777 		*new_array = NULL;
1778 		return 0;
1779 	}
1780 
1781 	/* +1 as the end of prog_array is marked with NULL */
1782 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1783 	if (!array)
1784 		return -ENOMEM;
1785 
1786 	/* Fill in the new prog array */
1787 	if (carry_prog_cnt) {
1788 		existing = old_array->items;
1789 		for (; existing->prog; existing++)
1790 			if (existing->prog != exclude_prog &&
1791 			    existing->prog != &dummy_bpf_prog.prog) {
1792 				array->items[new_prog_idx++].prog =
1793 					existing->prog;
1794 			}
1795 	}
1796 	if (include_prog)
1797 		array->items[new_prog_idx++].prog = include_prog;
1798 	array->items[new_prog_idx].prog = NULL;
1799 	*new_array = array;
1800 	return 0;
1801 }
1802 
1803 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1804 			     u32 *prog_ids, u32 request_cnt,
1805 			     u32 *prog_cnt)
1806 {
1807 	u32 cnt = 0;
1808 
1809 	if (array)
1810 		cnt = bpf_prog_array_length(array);
1811 
1812 	*prog_cnt = cnt;
1813 
1814 	/* return early if user requested only program count or nothing to copy */
1815 	if (!request_cnt || !cnt)
1816 		return 0;
1817 
1818 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1819 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1820 								     : 0;
1821 }
1822 
1823 static void bpf_prog_free_deferred(struct work_struct *work)
1824 {
1825 	struct bpf_prog_aux *aux;
1826 	int i;
1827 
1828 	aux = container_of(work, struct bpf_prog_aux, work);
1829 	if (bpf_prog_is_dev_bound(aux))
1830 		bpf_prog_offload_destroy(aux->prog);
1831 #ifdef CONFIG_PERF_EVENTS
1832 	if (aux->prog->has_callchain_buf)
1833 		put_callchain_buffers();
1834 #endif
1835 	for (i = 0; i < aux->func_cnt; i++)
1836 		bpf_jit_free(aux->func[i]);
1837 	if (aux->func_cnt) {
1838 		kfree(aux->func);
1839 		bpf_prog_unlock_free(aux->prog);
1840 	} else {
1841 		bpf_jit_free(aux->prog);
1842 	}
1843 }
1844 
1845 /* Free internal BPF program */
1846 void bpf_prog_free(struct bpf_prog *fp)
1847 {
1848 	struct bpf_prog_aux *aux = fp->aux;
1849 
1850 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1851 	schedule_work(&aux->work);
1852 }
1853 EXPORT_SYMBOL_GPL(bpf_prog_free);
1854 
1855 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1856 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1857 
1858 void bpf_user_rnd_init_once(void)
1859 {
1860 	prandom_init_once(&bpf_user_rnd_state);
1861 }
1862 
1863 BPF_CALL_0(bpf_user_rnd_u32)
1864 {
1865 	/* Should someone ever have the rather unwise idea to use some
1866 	 * of the registers passed into this function, then note that
1867 	 * this function is called from native eBPF and classic-to-eBPF
1868 	 * transformations. Register assignments from both sides are
1869 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1870 	 */
1871 	struct rnd_state *state;
1872 	u32 res;
1873 
1874 	state = &get_cpu_var(bpf_user_rnd_state);
1875 	res = prandom_u32_state(state);
1876 	put_cpu_var(bpf_user_rnd_state);
1877 
1878 	return res;
1879 }
1880 
1881 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1882 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1883 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1884 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1885 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
1886 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
1887 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
1888 
1889 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1890 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1891 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1892 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1893 
1894 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1895 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1896 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1897 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
1898 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
1899 
1900 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1901 {
1902 	return NULL;
1903 }
1904 
1905 u64 __weak
1906 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1907 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1908 {
1909 	return -ENOTSUPP;
1910 }
1911 EXPORT_SYMBOL_GPL(bpf_event_output);
1912 
1913 /* Always built-in helper functions. */
1914 const struct bpf_func_proto bpf_tail_call_proto = {
1915 	.func		= NULL,
1916 	.gpl_only	= false,
1917 	.ret_type	= RET_VOID,
1918 	.arg1_type	= ARG_PTR_TO_CTX,
1919 	.arg2_type	= ARG_CONST_MAP_PTR,
1920 	.arg3_type	= ARG_ANYTHING,
1921 };
1922 
1923 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1924  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1925  * eBPF and implicitly also cBPF can get JITed!
1926  */
1927 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1928 {
1929 	return prog;
1930 }
1931 
1932 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1933  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1934  */
1935 void __weak bpf_jit_compile(struct bpf_prog *prog)
1936 {
1937 }
1938 
1939 bool __weak bpf_helper_changes_pkt_data(void *func)
1940 {
1941 	return false;
1942 }
1943 
1944 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1945  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1946  */
1947 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1948 			 int len)
1949 {
1950 	return -EFAULT;
1951 }
1952 
1953 /* All definitions of tracepoints related to BPF. */
1954 #define CREATE_TRACE_POINTS
1955 #include <linux/bpf_trace.h>
1956 
1957 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1958