xref: /linux/kernel/bpf/core.c (revision 2c63221cd9e5c0dad0424029aeb1c40faada8330)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/frame.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <asm/unaligned.h>
35 
36 /* Registers */
37 #define BPF_R0	regs[BPF_REG_0]
38 #define BPF_R1	regs[BPF_REG_1]
39 #define BPF_R2	regs[BPF_REG_2]
40 #define BPF_R3	regs[BPF_REG_3]
41 #define BPF_R4	regs[BPF_REG_4]
42 #define BPF_R5	regs[BPF_REG_5]
43 #define BPF_R6	regs[BPF_REG_6]
44 #define BPF_R7	regs[BPF_REG_7]
45 #define BPF_R8	regs[BPF_REG_8]
46 #define BPF_R9	regs[BPF_REG_9]
47 #define BPF_R10	regs[BPF_REG_10]
48 
49 /* Named registers */
50 #define DST	regs[insn->dst_reg]
51 #define SRC	regs[insn->src_reg]
52 #define FP	regs[BPF_REG_FP]
53 #define AX	regs[BPF_REG_AX]
54 #define ARG1	regs[BPF_REG_ARG1]
55 #define CTX	regs[BPF_REG_CTX]
56 #define IMM	insn->imm
57 
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64 	u8 *ptr = NULL;
65 
66 	if (k >= SKF_NET_OFF)
67 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 	else if (k >= SKF_LL_OFF)
69 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70 
71 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 		return ptr;
73 
74 	return NULL;
75 }
76 
77 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
78 {
79 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
80 	struct bpf_prog_aux *aux;
81 	struct bpf_prog *fp;
82 
83 	size = round_up(size, PAGE_SIZE);
84 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
85 	if (fp == NULL)
86 		return NULL;
87 
88 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 	if (aux == NULL) {
90 		vfree(fp);
91 		return NULL;
92 	}
93 
94 	fp->pages = size / PAGE_SIZE;
95 	fp->aux = aux;
96 	fp->aux->prog = fp;
97 	fp->jit_requested = ebpf_jit_enabled();
98 
99 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
100 
101 	return fp;
102 }
103 
104 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
105 {
106 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
107 	struct bpf_prog *prog;
108 	int cpu;
109 
110 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
111 	if (!prog)
112 		return NULL;
113 
114 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
115 	if (!prog->aux->stats) {
116 		kfree(prog->aux);
117 		vfree(prog);
118 		return NULL;
119 	}
120 
121 	for_each_possible_cpu(cpu) {
122 		struct bpf_prog_stats *pstats;
123 
124 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
125 		u64_stats_init(&pstats->syncp);
126 	}
127 	return prog;
128 }
129 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
130 
131 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
132 {
133 	if (!prog->aux->nr_linfo || !prog->jit_requested)
134 		return 0;
135 
136 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
137 					 sizeof(*prog->aux->jited_linfo),
138 					 GFP_KERNEL | __GFP_NOWARN);
139 	if (!prog->aux->jited_linfo)
140 		return -ENOMEM;
141 
142 	return 0;
143 }
144 
145 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
146 {
147 	kfree(prog->aux->jited_linfo);
148 	prog->aux->jited_linfo = NULL;
149 }
150 
151 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
152 {
153 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
154 		bpf_prog_free_jited_linfo(prog);
155 }
156 
157 /* The jit engine is responsible to provide an array
158  * for insn_off to the jited_off mapping (insn_to_jit_off).
159  *
160  * The idx to this array is the insn_off.  Hence, the insn_off
161  * here is relative to the prog itself instead of the main prog.
162  * This array has one entry for each xlated bpf insn.
163  *
164  * jited_off is the byte off to the last byte of the jited insn.
165  *
166  * Hence, with
167  * insn_start:
168  *      The first bpf insn off of the prog.  The insn off
169  *      here is relative to the main prog.
170  *      e.g. if prog is a subprog, insn_start > 0
171  * linfo_idx:
172  *      The prog's idx to prog->aux->linfo and jited_linfo
173  *
174  * jited_linfo[linfo_idx] = prog->bpf_func
175  *
176  * For i > linfo_idx,
177  *
178  * jited_linfo[i] = prog->bpf_func +
179  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
180  */
181 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
182 			       const u32 *insn_to_jit_off)
183 {
184 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
185 	const struct bpf_line_info *linfo;
186 	void **jited_linfo;
187 
188 	if (!prog->aux->jited_linfo)
189 		/* Userspace did not provide linfo */
190 		return;
191 
192 	linfo_idx = prog->aux->linfo_idx;
193 	linfo = &prog->aux->linfo[linfo_idx];
194 	insn_start = linfo[0].insn_off;
195 	insn_end = insn_start + prog->len;
196 
197 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
198 	jited_linfo[0] = prog->bpf_func;
199 
200 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
201 
202 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
203 		/* The verifier ensures that linfo[i].insn_off is
204 		 * strictly increasing
205 		 */
206 		jited_linfo[i] = prog->bpf_func +
207 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
208 }
209 
210 void bpf_prog_free_linfo(struct bpf_prog *prog)
211 {
212 	bpf_prog_free_jited_linfo(prog);
213 	kvfree(prog->aux->linfo);
214 }
215 
216 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
217 				  gfp_t gfp_extra_flags)
218 {
219 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
220 	struct bpf_prog *fp;
221 	u32 pages, delta;
222 	int ret;
223 
224 	BUG_ON(fp_old == NULL);
225 
226 	size = round_up(size, PAGE_SIZE);
227 	pages = size / PAGE_SIZE;
228 	if (pages <= fp_old->pages)
229 		return fp_old;
230 
231 	delta = pages - fp_old->pages;
232 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
233 	if (ret)
234 		return NULL;
235 
236 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
237 	if (fp == NULL) {
238 		__bpf_prog_uncharge(fp_old->aux->user, delta);
239 	} else {
240 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
241 		fp->pages = pages;
242 		fp->aux->prog = fp;
243 
244 		/* We keep fp->aux from fp_old around in the new
245 		 * reallocated structure.
246 		 */
247 		fp_old->aux = NULL;
248 		__bpf_prog_free(fp_old);
249 	}
250 
251 	return fp;
252 }
253 
254 void __bpf_prog_free(struct bpf_prog *fp)
255 {
256 	if (fp->aux) {
257 		free_percpu(fp->aux->stats);
258 		kfree(fp->aux);
259 	}
260 	vfree(fp);
261 }
262 
263 int bpf_prog_calc_tag(struct bpf_prog *fp)
264 {
265 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
266 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
267 	u32 digest[SHA_DIGEST_WORDS];
268 	u32 ws[SHA_WORKSPACE_WORDS];
269 	u32 i, bsize, psize, blocks;
270 	struct bpf_insn *dst;
271 	bool was_ld_map;
272 	u8 *raw, *todo;
273 	__be32 *result;
274 	__be64 *bits;
275 
276 	raw = vmalloc(raw_size);
277 	if (!raw)
278 		return -ENOMEM;
279 
280 	sha_init(digest);
281 	memset(ws, 0, sizeof(ws));
282 
283 	/* We need to take out the map fd for the digest calculation
284 	 * since they are unstable from user space side.
285 	 */
286 	dst = (void *)raw;
287 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
288 		dst[i] = fp->insnsi[i];
289 		if (!was_ld_map &&
290 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
291 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
292 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
293 			was_ld_map = true;
294 			dst[i].imm = 0;
295 		} else if (was_ld_map &&
296 			   dst[i].code == 0 &&
297 			   dst[i].dst_reg == 0 &&
298 			   dst[i].src_reg == 0 &&
299 			   dst[i].off == 0) {
300 			was_ld_map = false;
301 			dst[i].imm = 0;
302 		} else {
303 			was_ld_map = false;
304 		}
305 	}
306 
307 	psize = bpf_prog_insn_size(fp);
308 	memset(&raw[psize], 0, raw_size - psize);
309 	raw[psize++] = 0x80;
310 
311 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
312 	blocks = bsize / SHA_MESSAGE_BYTES;
313 	todo   = raw;
314 	if (bsize - psize >= sizeof(__be64)) {
315 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
316 	} else {
317 		bits = (__be64 *)(todo + bsize + bits_offset);
318 		blocks++;
319 	}
320 	*bits = cpu_to_be64((psize - 1) << 3);
321 
322 	while (blocks--) {
323 		sha_transform(digest, todo, ws);
324 		todo += SHA_MESSAGE_BYTES;
325 	}
326 
327 	result = (__force __be32 *)digest;
328 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
329 		result[i] = cpu_to_be32(digest[i]);
330 	memcpy(fp->tag, result, sizeof(fp->tag));
331 
332 	vfree(raw);
333 	return 0;
334 }
335 
336 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
337 				s32 end_new, s32 curr, const bool probe_pass)
338 {
339 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
340 	s32 delta = end_new - end_old;
341 	s64 imm = insn->imm;
342 
343 	if (curr < pos && curr + imm + 1 >= end_old)
344 		imm += delta;
345 	else if (curr >= end_new && curr + imm + 1 < end_new)
346 		imm -= delta;
347 	if (imm < imm_min || imm > imm_max)
348 		return -ERANGE;
349 	if (!probe_pass)
350 		insn->imm = imm;
351 	return 0;
352 }
353 
354 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
355 				s32 end_new, s32 curr, const bool probe_pass)
356 {
357 	const s32 off_min = S16_MIN, off_max = S16_MAX;
358 	s32 delta = end_new - end_old;
359 	s32 off = insn->off;
360 
361 	if (curr < pos && curr + off + 1 >= end_old)
362 		off += delta;
363 	else if (curr >= end_new && curr + off + 1 < end_new)
364 		off -= delta;
365 	if (off < off_min || off > off_max)
366 		return -ERANGE;
367 	if (!probe_pass)
368 		insn->off = off;
369 	return 0;
370 }
371 
372 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
373 			    s32 end_new, const bool probe_pass)
374 {
375 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
376 	struct bpf_insn *insn = prog->insnsi;
377 	int ret = 0;
378 
379 	for (i = 0; i < insn_cnt; i++, insn++) {
380 		u8 code;
381 
382 		/* In the probing pass we still operate on the original,
383 		 * unpatched image in order to check overflows before we
384 		 * do any other adjustments. Therefore skip the patchlet.
385 		 */
386 		if (probe_pass && i == pos) {
387 			i = end_new;
388 			insn = prog->insnsi + end_old;
389 		}
390 		code = insn->code;
391 		if ((BPF_CLASS(code) != BPF_JMP &&
392 		     BPF_CLASS(code) != BPF_JMP32) ||
393 		    BPF_OP(code) == BPF_EXIT)
394 			continue;
395 		/* Adjust offset of jmps if we cross patch boundaries. */
396 		if (BPF_OP(code) == BPF_CALL) {
397 			if (insn->src_reg != BPF_PSEUDO_CALL)
398 				continue;
399 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
400 						   end_new, i, probe_pass);
401 		} else {
402 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
403 						   end_new, i, probe_pass);
404 		}
405 		if (ret)
406 			break;
407 	}
408 
409 	return ret;
410 }
411 
412 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
413 {
414 	struct bpf_line_info *linfo;
415 	u32 i, nr_linfo;
416 
417 	nr_linfo = prog->aux->nr_linfo;
418 	if (!nr_linfo || !delta)
419 		return;
420 
421 	linfo = prog->aux->linfo;
422 
423 	for (i = 0; i < nr_linfo; i++)
424 		if (off < linfo[i].insn_off)
425 			break;
426 
427 	/* Push all off < linfo[i].insn_off by delta */
428 	for (; i < nr_linfo; i++)
429 		linfo[i].insn_off += delta;
430 }
431 
432 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
433 				       const struct bpf_insn *patch, u32 len)
434 {
435 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
436 	const u32 cnt_max = S16_MAX;
437 	struct bpf_prog *prog_adj;
438 	int err;
439 
440 	/* Since our patchlet doesn't expand the image, we're done. */
441 	if (insn_delta == 0) {
442 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
443 		return prog;
444 	}
445 
446 	insn_adj_cnt = prog->len + insn_delta;
447 
448 	/* Reject anything that would potentially let the insn->off
449 	 * target overflow when we have excessive program expansions.
450 	 * We need to probe here before we do any reallocation where
451 	 * we afterwards may not fail anymore.
452 	 */
453 	if (insn_adj_cnt > cnt_max &&
454 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
455 		return ERR_PTR(err);
456 
457 	/* Several new instructions need to be inserted. Make room
458 	 * for them. Likely, there's no need for a new allocation as
459 	 * last page could have large enough tailroom.
460 	 */
461 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
462 				    GFP_USER);
463 	if (!prog_adj)
464 		return ERR_PTR(-ENOMEM);
465 
466 	prog_adj->len = insn_adj_cnt;
467 
468 	/* Patching happens in 3 steps:
469 	 *
470 	 * 1) Move over tail of insnsi from next instruction onwards,
471 	 *    so we can patch the single target insn with one or more
472 	 *    new ones (patching is always from 1 to n insns, n > 0).
473 	 * 2) Inject new instructions at the target location.
474 	 * 3) Adjust branch offsets if necessary.
475 	 */
476 	insn_rest = insn_adj_cnt - off - len;
477 
478 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
479 		sizeof(*patch) * insn_rest);
480 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
481 
482 	/* We are guaranteed to not fail at this point, otherwise
483 	 * the ship has sailed to reverse to the original state. An
484 	 * overflow cannot happen at this point.
485 	 */
486 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
487 
488 	bpf_adj_linfo(prog_adj, off, insn_delta);
489 
490 	return prog_adj;
491 }
492 
493 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
494 {
495 	/* Branch offsets can't overflow when program is shrinking, no need
496 	 * to call bpf_adj_branches(..., true) here
497 	 */
498 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
499 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
500 	prog->len -= cnt;
501 
502 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
503 }
504 
505 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
506 {
507 	int i;
508 
509 	for (i = 0; i < fp->aux->func_cnt; i++)
510 		bpf_prog_kallsyms_del(fp->aux->func[i]);
511 }
512 
513 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
514 {
515 	bpf_prog_kallsyms_del_subprogs(fp);
516 	bpf_prog_kallsyms_del(fp);
517 }
518 
519 #ifdef CONFIG_BPF_JIT
520 /* All BPF JIT sysctl knobs here. */
521 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
522 int bpf_jit_harden   __read_mostly;
523 int bpf_jit_kallsyms __read_mostly;
524 long bpf_jit_limit   __read_mostly;
525 
526 static __always_inline void
527 bpf_get_prog_addr_region(const struct bpf_prog *prog,
528 			 unsigned long *symbol_start,
529 			 unsigned long *symbol_end)
530 {
531 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
532 	unsigned long addr = (unsigned long)hdr;
533 
534 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
535 
536 	*symbol_start = addr;
537 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
538 }
539 
540 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
541 {
542 	const char *end = sym + KSYM_NAME_LEN;
543 	const struct btf_type *type;
544 	const char *func_name;
545 
546 	BUILD_BUG_ON(sizeof("bpf_prog_") +
547 		     sizeof(prog->tag) * 2 +
548 		     /* name has been null terminated.
549 		      * We should need +1 for the '_' preceding
550 		      * the name.  However, the null character
551 		      * is double counted between the name and the
552 		      * sizeof("bpf_prog_") above, so we omit
553 		      * the +1 here.
554 		      */
555 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
556 
557 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
558 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
559 
560 	/* prog->aux->name will be ignored if full btf name is available */
561 	if (prog->aux->func_info_cnt) {
562 		type = btf_type_by_id(prog->aux->btf,
563 				      prog->aux->func_info[prog->aux->func_idx].type_id);
564 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
565 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
566 		return;
567 	}
568 
569 	if (prog->aux->name[0])
570 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
571 	else
572 		*sym = 0;
573 }
574 
575 static __always_inline unsigned long
576 bpf_get_prog_addr_start(struct latch_tree_node *n)
577 {
578 	unsigned long symbol_start, symbol_end;
579 	const struct bpf_prog_aux *aux;
580 
581 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
582 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
583 
584 	return symbol_start;
585 }
586 
587 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
588 					  struct latch_tree_node *b)
589 {
590 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
591 }
592 
593 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
594 {
595 	unsigned long val = (unsigned long)key;
596 	unsigned long symbol_start, symbol_end;
597 	const struct bpf_prog_aux *aux;
598 
599 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
600 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
601 
602 	if (val < symbol_start)
603 		return -1;
604 	if (val >= symbol_end)
605 		return  1;
606 
607 	return 0;
608 }
609 
610 static const struct latch_tree_ops bpf_tree_ops = {
611 	.less	= bpf_tree_less,
612 	.comp	= bpf_tree_comp,
613 };
614 
615 static DEFINE_SPINLOCK(bpf_lock);
616 static LIST_HEAD(bpf_kallsyms);
617 static struct latch_tree_root bpf_tree __cacheline_aligned;
618 
619 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
620 {
621 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
622 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
623 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
624 }
625 
626 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
627 {
628 	if (list_empty(&aux->ksym_lnode))
629 		return;
630 
631 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
632 	list_del_rcu(&aux->ksym_lnode);
633 }
634 
635 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
636 {
637 	return fp->jited && !bpf_prog_was_classic(fp);
638 }
639 
640 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
641 {
642 	return list_empty(&fp->aux->ksym_lnode) ||
643 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
644 }
645 
646 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
647 {
648 	if (!bpf_prog_kallsyms_candidate(fp) ||
649 	    !capable(CAP_SYS_ADMIN))
650 		return;
651 
652 	spin_lock_bh(&bpf_lock);
653 	bpf_prog_ksym_node_add(fp->aux);
654 	spin_unlock_bh(&bpf_lock);
655 }
656 
657 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
658 {
659 	if (!bpf_prog_kallsyms_candidate(fp))
660 		return;
661 
662 	spin_lock_bh(&bpf_lock);
663 	bpf_prog_ksym_node_del(fp->aux);
664 	spin_unlock_bh(&bpf_lock);
665 }
666 
667 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
668 {
669 	struct latch_tree_node *n;
670 
671 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
672 	return n ?
673 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
674 	       NULL;
675 }
676 
677 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
678 				 unsigned long *off, char *sym)
679 {
680 	unsigned long symbol_start, symbol_end;
681 	struct bpf_prog *prog;
682 	char *ret = NULL;
683 
684 	rcu_read_lock();
685 	prog = bpf_prog_kallsyms_find(addr);
686 	if (prog) {
687 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
688 		bpf_get_prog_name(prog, sym);
689 
690 		ret = sym;
691 		if (size)
692 			*size = symbol_end - symbol_start;
693 		if (off)
694 			*off  = addr - symbol_start;
695 	}
696 	rcu_read_unlock();
697 
698 	return ret;
699 }
700 
701 bool is_bpf_text_address(unsigned long addr)
702 {
703 	bool ret;
704 
705 	rcu_read_lock();
706 	ret = bpf_prog_kallsyms_find(addr) != NULL;
707 	rcu_read_unlock();
708 
709 	return ret;
710 }
711 
712 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
713 {
714 	const struct exception_table_entry *e = NULL;
715 	struct bpf_prog *prog;
716 
717 	rcu_read_lock();
718 	prog = bpf_prog_kallsyms_find(addr);
719 	if (!prog)
720 		goto out;
721 	if (!prog->aux->num_exentries)
722 		goto out;
723 
724 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
725 out:
726 	rcu_read_unlock();
727 	return e;
728 }
729 
730 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
731 		    char *sym)
732 {
733 	struct bpf_prog_aux *aux;
734 	unsigned int it = 0;
735 	int ret = -ERANGE;
736 
737 	if (!bpf_jit_kallsyms_enabled())
738 		return ret;
739 
740 	rcu_read_lock();
741 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
742 		if (it++ != symnum)
743 			continue;
744 
745 		bpf_get_prog_name(aux->prog, sym);
746 
747 		*value = (unsigned long)aux->prog->bpf_func;
748 		*type  = BPF_SYM_ELF_TYPE;
749 
750 		ret = 0;
751 		break;
752 	}
753 	rcu_read_unlock();
754 
755 	return ret;
756 }
757 
758 static atomic_long_t bpf_jit_current;
759 
760 /* Can be overridden by an arch's JIT compiler if it has a custom,
761  * dedicated BPF backend memory area, or if neither of the two
762  * below apply.
763  */
764 u64 __weak bpf_jit_alloc_exec_limit(void)
765 {
766 #if defined(MODULES_VADDR)
767 	return MODULES_END - MODULES_VADDR;
768 #else
769 	return VMALLOC_END - VMALLOC_START;
770 #endif
771 }
772 
773 static int __init bpf_jit_charge_init(void)
774 {
775 	/* Only used as heuristic here to derive limit. */
776 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
777 					    PAGE_SIZE), LONG_MAX);
778 	return 0;
779 }
780 pure_initcall(bpf_jit_charge_init);
781 
782 static int bpf_jit_charge_modmem(u32 pages)
783 {
784 	if (atomic_long_add_return(pages, &bpf_jit_current) >
785 	    (bpf_jit_limit >> PAGE_SHIFT)) {
786 		if (!capable(CAP_SYS_ADMIN)) {
787 			atomic_long_sub(pages, &bpf_jit_current);
788 			return -EPERM;
789 		}
790 	}
791 
792 	return 0;
793 }
794 
795 static void bpf_jit_uncharge_modmem(u32 pages)
796 {
797 	atomic_long_sub(pages, &bpf_jit_current);
798 }
799 
800 void *__weak bpf_jit_alloc_exec(unsigned long size)
801 {
802 	return module_alloc(size);
803 }
804 
805 void __weak bpf_jit_free_exec(void *addr)
806 {
807 	module_memfree(addr);
808 }
809 
810 struct bpf_binary_header *
811 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
812 		     unsigned int alignment,
813 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
814 {
815 	struct bpf_binary_header *hdr;
816 	u32 size, hole, start, pages;
817 
818 	/* Most of BPF filters are really small, but if some of them
819 	 * fill a page, allow at least 128 extra bytes to insert a
820 	 * random section of illegal instructions.
821 	 */
822 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
823 	pages = size / PAGE_SIZE;
824 
825 	if (bpf_jit_charge_modmem(pages))
826 		return NULL;
827 	hdr = bpf_jit_alloc_exec(size);
828 	if (!hdr) {
829 		bpf_jit_uncharge_modmem(pages);
830 		return NULL;
831 	}
832 
833 	/* Fill space with illegal/arch-dep instructions. */
834 	bpf_fill_ill_insns(hdr, size);
835 
836 	hdr->pages = pages;
837 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
838 		     PAGE_SIZE - sizeof(*hdr));
839 	start = (get_random_int() % hole) & ~(alignment - 1);
840 
841 	/* Leave a random number of instructions before BPF code. */
842 	*image_ptr = &hdr->image[start];
843 
844 	return hdr;
845 }
846 
847 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
848 {
849 	u32 pages = hdr->pages;
850 
851 	bpf_jit_free_exec(hdr);
852 	bpf_jit_uncharge_modmem(pages);
853 }
854 
855 /* This symbol is only overridden by archs that have different
856  * requirements than the usual eBPF JITs, f.e. when they only
857  * implement cBPF JIT, do not set images read-only, etc.
858  */
859 void __weak bpf_jit_free(struct bpf_prog *fp)
860 {
861 	if (fp->jited) {
862 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
863 
864 		bpf_jit_binary_free(hdr);
865 
866 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
867 	}
868 
869 	bpf_prog_unlock_free(fp);
870 }
871 
872 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
873 			  const struct bpf_insn *insn, bool extra_pass,
874 			  u64 *func_addr, bool *func_addr_fixed)
875 {
876 	s16 off = insn->off;
877 	s32 imm = insn->imm;
878 	u8 *addr;
879 
880 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
881 	if (!*func_addr_fixed) {
882 		/* Place-holder address till the last pass has collected
883 		 * all addresses for JITed subprograms in which case we
884 		 * can pick them up from prog->aux.
885 		 */
886 		if (!extra_pass)
887 			addr = NULL;
888 		else if (prog->aux->func &&
889 			 off >= 0 && off < prog->aux->func_cnt)
890 			addr = (u8 *)prog->aux->func[off]->bpf_func;
891 		else
892 			return -EINVAL;
893 	} else {
894 		/* Address of a BPF helper call. Since part of the core
895 		 * kernel, it's always at a fixed location. __bpf_call_base
896 		 * and the helper with imm relative to it are both in core
897 		 * kernel.
898 		 */
899 		addr = (u8 *)__bpf_call_base + imm;
900 	}
901 
902 	*func_addr = (unsigned long)addr;
903 	return 0;
904 }
905 
906 static int bpf_jit_blind_insn(const struct bpf_insn *from,
907 			      const struct bpf_insn *aux,
908 			      struct bpf_insn *to_buff,
909 			      bool emit_zext)
910 {
911 	struct bpf_insn *to = to_buff;
912 	u32 imm_rnd = get_random_int();
913 	s16 off;
914 
915 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
916 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
917 
918 	/* Constraints on AX register:
919 	 *
920 	 * AX register is inaccessible from user space. It is mapped in
921 	 * all JITs, and used here for constant blinding rewrites. It is
922 	 * typically "stateless" meaning its contents are only valid within
923 	 * the executed instruction, but not across several instructions.
924 	 * There are a few exceptions however which are further detailed
925 	 * below.
926 	 *
927 	 * Constant blinding is only used by JITs, not in the interpreter.
928 	 * The interpreter uses AX in some occasions as a local temporary
929 	 * register e.g. in DIV or MOD instructions.
930 	 *
931 	 * In restricted circumstances, the verifier can also use the AX
932 	 * register for rewrites as long as they do not interfere with
933 	 * the above cases!
934 	 */
935 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
936 		goto out;
937 
938 	if (from->imm == 0 &&
939 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
940 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
941 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
942 		goto out;
943 	}
944 
945 	switch (from->code) {
946 	case BPF_ALU | BPF_ADD | BPF_K:
947 	case BPF_ALU | BPF_SUB | BPF_K:
948 	case BPF_ALU | BPF_AND | BPF_K:
949 	case BPF_ALU | BPF_OR  | BPF_K:
950 	case BPF_ALU | BPF_XOR | BPF_K:
951 	case BPF_ALU | BPF_MUL | BPF_K:
952 	case BPF_ALU | BPF_MOV | BPF_K:
953 	case BPF_ALU | BPF_DIV | BPF_K:
954 	case BPF_ALU | BPF_MOD | BPF_K:
955 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
956 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
957 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
958 		break;
959 
960 	case BPF_ALU64 | BPF_ADD | BPF_K:
961 	case BPF_ALU64 | BPF_SUB | BPF_K:
962 	case BPF_ALU64 | BPF_AND | BPF_K:
963 	case BPF_ALU64 | BPF_OR  | BPF_K:
964 	case BPF_ALU64 | BPF_XOR | BPF_K:
965 	case BPF_ALU64 | BPF_MUL | BPF_K:
966 	case BPF_ALU64 | BPF_MOV | BPF_K:
967 	case BPF_ALU64 | BPF_DIV | BPF_K:
968 	case BPF_ALU64 | BPF_MOD | BPF_K:
969 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
970 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
971 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
972 		break;
973 
974 	case BPF_JMP | BPF_JEQ  | BPF_K:
975 	case BPF_JMP | BPF_JNE  | BPF_K:
976 	case BPF_JMP | BPF_JGT  | BPF_K:
977 	case BPF_JMP | BPF_JLT  | BPF_K:
978 	case BPF_JMP | BPF_JGE  | BPF_K:
979 	case BPF_JMP | BPF_JLE  | BPF_K:
980 	case BPF_JMP | BPF_JSGT | BPF_K:
981 	case BPF_JMP | BPF_JSLT | BPF_K:
982 	case BPF_JMP | BPF_JSGE | BPF_K:
983 	case BPF_JMP | BPF_JSLE | BPF_K:
984 	case BPF_JMP | BPF_JSET | BPF_K:
985 		/* Accommodate for extra offset in case of a backjump. */
986 		off = from->off;
987 		if (off < 0)
988 			off -= 2;
989 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
990 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
991 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
992 		break;
993 
994 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
995 	case BPF_JMP32 | BPF_JNE  | BPF_K:
996 	case BPF_JMP32 | BPF_JGT  | BPF_K:
997 	case BPF_JMP32 | BPF_JLT  | BPF_K:
998 	case BPF_JMP32 | BPF_JGE  | BPF_K:
999 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1000 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1001 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1002 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1003 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1004 	case BPF_JMP32 | BPF_JSET | BPF_K:
1005 		/* Accommodate for extra offset in case of a backjump. */
1006 		off = from->off;
1007 		if (off < 0)
1008 			off -= 2;
1009 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1010 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1011 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1012 				      off);
1013 		break;
1014 
1015 	case BPF_LD | BPF_IMM | BPF_DW:
1016 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1017 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1019 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1020 		break;
1021 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1022 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1023 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1024 		if (emit_zext)
1025 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1026 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1027 		break;
1028 
1029 	case BPF_ST | BPF_MEM | BPF_DW:
1030 	case BPF_ST | BPF_MEM | BPF_W:
1031 	case BPF_ST | BPF_MEM | BPF_H:
1032 	case BPF_ST | BPF_MEM | BPF_B:
1033 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1034 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1035 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1036 		break;
1037 	}
1038 out:
1039 	return to - to_buff;
1040 }
1041 
1042 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1043 					      gfp_t gfp_extra_flags)
1044 {
1045 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1046 	struct bpf_prog *fp;
1047 
1048 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1049 	if (fp != NULL) {
1050 		/* aux->prog still points to the fp_other one, so
1051 		 * when promoting the clone to the real program,
1052 		 * this still needs to be adapted.
1053 		 */
1054 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1055 	}
1056 
1057 	return fp;
1058 }
1059 
1060 static void bpf_prog_clone_free(struct bpf_prog *fp)
1061 {
1062 	/* aux was stolen by the other clone, so we cannot free
1063 	 * it from this path! It will be freed eventually by the
1064 	 * other program on release.
1065 	 *
1066 	 * At this point, we don't need a deferred release since
1067 	 * clone is guaranteed to not be locked.
1068 	 */
1069 	fp->aux = NULL;
1070 	__bpf_prog_free(fp);
1071 }
1072 
1073 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1074 {
1075 	/* We have to repoint aux->prog to self, as we don't
1076 	 * know whether fp here is the clone or the original.
1077 	 */
1078 	fp->aux->prog = fp;
1079 	bpf_prog_clone_free(fp_other);
1080 }
1081 
1082 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1083 {
1084 	struct bpf_insn insn_buff[16], aux[2];
1085 	struct bpf_prog *clone, *tmp;
1086 	int insn_delta, insn_cnt;
1087 	struct bpf_insn *insn;
1088 	int i, rewritten;
1089 
1090 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1091 		return prog;
1092 
1093 	clone = bpf_prog_clone_create(prog, GFP_USER);
1094 	if (!clone)
1095 		return ERR_PTR(-ENOMEM);
1096 
1097 	insn_cnt = clone->len;
1098 	insn = clone->insnsi;
1099 
1100 	for (i = 0; i < insn_cnt; i++, insn++) {
1101 		/* We temporarily need to hold the original ld64 insn
1102 		 * so that we can still access the first part in the
1103 		 * second blinding run.
1104 		 */
1105 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1106 		    insn[1].code == 0)
1107 			memcpy(aux, insn, sizeof(aux));
1108 
1109 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1110 						clone->aux->verifier_zext);
1111 		if (!rewritten)
1112 			continue;
1113 
1114 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1115 		if (IS_ERR(tmp)) {
1116 			/* Patching may have repointed aux->prog during
1117 			 * realloc from the original one, so we need to
1118 			 * fix it up here on error.
1119 			 */
1120 			bpf_jit_prog_release_other(prog, clone);
1121 			return tmp;
1122 		}
1123 
1124 		clone = tmp;
1125 		insn_delta = rewritten - 1;
1126 
1127 		/* Walk new program and skip insns we just inserted. */
1128 		insn = clone->insnsi + i + insn_delta;
1129 		insn_cnt += insn_delta;
1130 		i        += insn_delta;
1131 	}
1132 
1133 	clone->blinded = 1;
1134 	return clone;
1135 }
1136 #endif /* CONFIG_BPF_JIT */
1137 
1138 /* Base function for offset calculation. Needs to go into .text section,
1139  * therefore keeping it non-static as well; will also be used by JITs
1140  * anyway later on, so do not let the compiler omit it. This also needs
1141  * to go into kallsyms for correlation from e.g. bpftool, so naming
1142  * must not change.
1143  */
1144 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1145 {
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(__bpf_call_base);
1149 
1150 /* All UAPI available opcodes. */
1151 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1152 	/* 32 bit ALU operations. */		\
1153 	/*   Register based. */			\
1154 	INSN_3(ALU, ADD,  X),			\
1155 	INSN_3(ALU, SUB,  X),			\
1156 	INSN_3(ALU, AND,  X),			\
1157 	INSN_3(ALU, OR,   X),			\
1158 	INSN_3(ALU, LSH,  X),			\
1159 	INSN_3(ALU, RSH,  X),			\
1160 	INSN_3(ALU, XOR,  X),			\
1161 	INSN_3(ALU, MUL,  X),			\
1162 	INSN_3(ALU, MOV,  X),			\
1163 	INSN_3(ALU, ARSH, X),			\
1164 	INSN_3(ALU, DIV,  X),			\
1165 	INSN_3(ALU, MOD,  X),			\
1166 	INSN_2(ALU, NEG),			\
1167 	INSN_3(ALU, END, TO_BE),		\
1168 	INSN_3(ALU, END, TO_LE),		\
1169 	/*   Immediate based. */		\
1170 	INSN_3(ALU, ADD,  K),			\
1171 	INSN_3(ALU, SUB,  K),			\
1172 	INSN_3(ALU, AND,  K),			\
1173 	INSN_3(ALU, OR,   K),			\
1174 	INSN_3(ALU, LSH,  K),			\
1175 	INSN_3(ALU, RSH,  K),			\
1176 	INSN_3(ALU, XOR,  K),			\
1177 	INSN_3(ALU, MUL,  K),			\
1178 	INSN_3(ALU, MOV,  K),			\
1179 	INSN_3(ALU, ARSH, K),			\
1180 	INSN_3(ALU, DIV,  K),			\
1181 	INSN_3(ALU, MOD,  K),			\
1182 	/* 64 bit ALU operations. */		\
1183 	/*   Register based. */			\
1184 	INSN_3(ALU64, ADD,  X),			\
1185 	INSN_3(ALU64, SUB,  X),			\
1186 	INSN_3(ALU64, AND,  X),			\
1187 	INSN_3(ALU64, OR,   X),			\
1188 	INSN_3(ALU64, LSH,  X),			\
1189 	INSN_3(ALU64, RSH,  X),			\
1190 	INSN_3(ALU64, XOR,  X),			\
1191 	INSN_3(ALU64, MUL,  X),			\
1192 	INSN_3(ALU64, MOV,  X),			\
1193 	INSN_3(ALU64, ARSH, X),			\
1194 	INSN_3(ALU64, DIV,  X),			\
1195 	INSN_3(ALU64, MOD,  X),			\
1196 	INSN_2(ALU64, NEG),			\
1197 	/*   Immediate based. */		\
1198 	INSN_3(ALU64, ADD,  K),			\
1199 	INSN_3(ALU64, SUB,  K),			\
1200 	INSN_3(ALU64, AND,  K),			\
1201 	INSN_3(ALU64, OR,   K),			\
1202 	INSN_3(ALU64, LSH,  K),			\
1203 	INSN_3(ALU64, RSH,  K),			\
1204 	INSN_3(ALU64, XOR,  K),			\
1205 	INSN_3(ALU64, MUL,  K),			\
1206 	INSN_3(ALU64, MOV,  K),			\
1207 	INSN_3(ALU64, ARSH, K),			\
1208 	INSN_3(ALU64, DIV,  K),			\
1209 	INSN_3(ALU64, MOD,  K),			\
1210 	/* Call instruction. */			\
1211 	INSN_2(JMP, CALL),			\
1212 	/* Exit instruction. */			\
1213 	INSN_2(JMP, EXIT),			\
1214 	/* 32-bit Jump instructions. */		\
1215 	/*   Register based. */			\
1216 	INSN_3(JMP32, JEQ,  X),			\
1217 	INSN_3(JMP32, JNE,  X),			\
1218 	INSN_3(JMP32, JGT,  X),			\
1219 	INSN_3(JMP32, JLT,  X),			\
1220 	INSN_3(JMP32, JGE,  X),			\
1221 	INSN_3(JMP32, JLE,  X),			\
1222 	INSN_3(JMP32, JSGT, X),			\
1223 	INSN_3(JMP32, JSLT, X),			\
1224 	INSN_3(JMP32, JSGE, X),			\
1225 	INSN_3(JMP32, JSLE, X),			\
1226 	INSN_3(JMP32, JSET, X),			\
1227 	/*   Immediate based. */		\
1228 	INSN_3(JMP32, JEQ,  K),			\
1229 	INSN_3(JMP32, JNE,  K),			\
1230 	INSN_3(JMP32, JGT,  K),			\
1231 	INSN_3(JMP32, JLT,  K),			\
1232 	INSN_3(JMP32, JGE,  K),			\
1233 	INSN_3(JMP32, JLE,  K),			\
1234 	INSN_3(JMP32, JSGT, K),			\
1235 	INSN_3(JMP32, JSLT, K),			\
1236 	INSN_3(JMP32, JSGE, K),			\
1237 	INSN_3(JMP32, JSLE, K),			\
1238 	INSN_3(JMP32, JSET, K),			\
1239 	/* Jump instructions. */		\
1240 	/*   Register based. */			\
1241 	INSN_3(JMP, JEQ,  X),			\
1242 	INSN_3(JMP, JNE,  X),			\
1243 	INSN_3(JMP, JGT,  X),			\
1244 	INSN_3(JMP, JLT,  X),			\
1245 	INSN_3(JMP, JGE,  X),			\
1246 	INSN_3(JMP, JLE,  X),			\
1247 	INSN_3(JMP, JSGT, X),			\
1248 	INSN_3(JMP, JSLT, X),			\
1249 	INSN_3(JMP, JSGE, X),			\
1250 	INSN_3(JMP, JSLE, X),			\
1251 	INSN_3(JMP, JSET, X),			\
1252 	/*   Immediate based. */		\
1253 	INSN_3(JMP, JEQ,  K),			\
1254 	INSN_3(JMP, JNE,  K),			\
1255 	INSN_3(JMP, JGT,  K),			\
1256 	INSN_3(JMP, JLT,  K),			\
1257 	INSN_3(JMP, JGE,  K),			\
1258 	INSN_3(JMP, JLE,  K),			\
1259 	INSN_3(JMP, JSGT, K),			\
1260 	INSN_3(JMP, JSLT, K),			\
1261 	INSN_3(JMP, JSGE, K),			\
1262 	INSN_3(JMP, JSLE, K),			\
1263 	INSN_3(JMP, JSET, K),			\
1264 	INSN_2(JMP, JA),			\
1265 	/* Store instructions. */		\
1266 	/*   Register based. */			\
1267 	INSN_3(STX, MEM,  B),			\
1268 	INSN_3(STX, MEM,  H),			\
1269 	INSN_3(STX, MEM,  W),			\
1270 	INSN_3(STX, MEM,  DW),			\
1271 	INSN_3(STX, XADD, W),			\
1272 	INSN_3(STX, XADD, DW),			\
1273 	/*   Immediate based. */		\
1274 	INSN_3(ST, MEM, B),			\
1275 	INSN_3(ST, MEM, H),			\
1276 	INSN_3(ST, MEM, W),			\
1277 	INSN_3(ST, MEM, DW),			\
1278 	/* Load instructions. */		\
1279 	/*   Register based. */			\
1280 	INSN_3(LDX, MEM, B),			\
1281 	INSN_3(LDX, MEM, H),			\
1282 	INSN_3(LDX, MEM, W),			\
1283 	INSN_3(LDX, MEM, DW),			\
1284 	/*   Immediate based. */		\
1285 	INSN_3(LD, IMM, DW)
1286 
1287 bool bpf_opcode_in_insntable(u8 code)
1288 {
1289 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1290 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1291 	static const bool public_insntable[256] = {
1292 		[0 ... 255] = false,
1293 		/* Now overwrite non-defaults ... */
1294 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1295 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1296 		[BPF_LD | BPF_ABS | BPF_B] = true,
1297 		[BPF_LD | BPF_ABS | BPF_H] = true,
1298 		[BPF_LD | BPF_ABS | BPF_W] = true,
1299 		[BPF_LD | BPF_IND | BPF_B] = true,
1300 		[BPF_LD | BPF_IND | BPF_H] = true,
1301 		[BPF_LD | BPF_IND | BPF_W] = true,
1302 	};
1303 #undef BPF_INSN_3_TBL
1304 #undef BPF_INSN_2_TBL
1305 	return public_insntable[code];
1306 }
1307 
1308 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1309 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1310 {
1311 	memset(dst, 0, size);
1312 	return -EFAULT;
1313 }
1314 
1315 /**
1316  *	__bpf_prog_run - run eBPF program on a given context
1317  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1318  *	@insn: is the array of eBPF instructions
1319  *	@stack: is the eBPF storage stack
1320  *
1321  * Decode and execute eBPF instructions.
1322  */
1323 static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1324 {
1325 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1326 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1327 	static const void * const jumptable[256] __annotate_jump_table = {
1328 		[0 ... 255] = &&default_label,
1329 		/* Now overwrite non-defaults ... */
1330 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1331 		/* Non-UAPI available opcodes. */
1332 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1333 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1334 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1335 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1336 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1337 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1338 	};
1339 #undef BPF_INSN_3_LBL
1340 #undef BPF_INSN_2_LBL
1341 	u32 tail_call_cnt = 0;
1342 
1343 #define CONT	 ({ insn++; goto select_insn; })
1344 #define CONT_JMP ({ insn++; goto select_insn; })
1345 
1346 select_insn:
1347 	goto *jumptable[insn->code];
1348 
1349 	/* ALU */
1350 #define ALU(OPCODE, OP)			\
1351 	ALU64_##OPCODE##_X:		\
1352 		DST = DST OP SRC;	\
1353 		CONT;			\
1354 	ALU_##OPCODE##_X:		\
1355 		DST = (u32) DST OP (u32) SRC;	\
1356 		CONT;			\
1357 	ALU64_##OPCODE##_K:		\
1358 		DST = DST OP IMM;		\
1359 		CONT;			\
1360 	ALU_##OPCODE##_K:		\
1361 		DST = (u32) DST OP (u32) IMM;	\
1362 		CONT;
1363 
1364 	ALU(ADD,  +)
1365 	ALU(SUB,  -)
1366 	ALU(AND,  &)
1367 	ALU(OR,   |)
1368 	ALU(LSH, <<)
1369 	ALU(RSH, >>)
1370 	ALU(XOR,  ^)
1371 	ALU(MUL,  *)
1372 #undef ALU
1373 	ALU_NEG:
1374 		DST = (u32) -DST;
1375 		CONT;
1376 	ALU64_NEG:
1377 		DST = -DST;
1378 		CONT;
1379 	ALU_MOV_X:
1380 		DST = (u32) SRC;
1381 		CONT;
1382 	ALU_MOV_K:
1383 		DST = (u32) IMM;
1384 		CONT;
1385 	ALU64_MOV_X:
1386 		DST = SRC;
1387 		CONT;
1388 	ALU64_MOV_K:
1389 		DST = IMM;
1390 		CONT;
1391 	LD_IMM_DW:
1392 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1393 		insn++;
1394 		CONT;
1395 	ALU_ARSH_X:
1396 		DST = (u64) (u32) (((s32) DST) >> SRC);
1397 		CONT;
1398 	ALU_ARSH_K:
1399 		DST = (u64) (u32) (((s32) DST) >> IMM);
1400 		CONT;
1401 	ALU64_ARSH_X:
1402 		(*(s64 *) &DST) >>= SRC;
1403 		CONT;
1404 	ALU64_ARSH_K:
1405 		(*(s64 *) &DST) >>= IMM;
1406 		CONT;
1407 	ALU64_MOD_X:
1408 		div64_u64_rem(DST, SRC, &AX);
1409 		DST = AX;
1410 		CONT;
1411 	ALU_MOD_X:
1412 		AX = (u32) DST;
1413 		DST = do_div(AX, (u32) SRC);
1414 		CONT;
1415 	ALU64_MOD_K:
1416 		div64_u64_rem(DST, IMM, &AX);
1417 		DST = AX;
1418 		CONT;
1419 	ALU_MOD_K:
1420 		AX = (u32) DST;
1421 		DST = do_div(AX, (u32) IMM);
1422 		CONT;
1423 	ALU64_DIV_X:
1424 		DST = div64_u64(DST, SRC);
1425 		CONT;
1426 	ALU_DIV_X:
1427 		AX = (u32) DST;
1428 		do_div(AX, (u32) SRC);
1429 		DST = (u32) AX;
1430 		CONT;
1431 	ALU64_DIV_K:
1432 		DST = div64_u64(DST, IMM);
1433 		CONT;
1434 	ALU_DIV_K:
1435 		AX = (u32) DST;
1436 		do_div(AX, (u32) IMM);
1437 		DST = (u32) AX;
1438 		CONT;
1439 	ALU_END_TO_BE:
1440 		switch (IMM) {
1441 		case 16:
1442 			DST = (__force u16) cpu_to_be16(DST);
1443 			break;
1444 		case 32:
1445 			DST = (__force u32) cpu_to_be32(DST);
1446 			break;
1447 		case 64:
1448 			DST = (__force u64) cpu_to_be64(DST);
1449 			break;
1450 		}
1451 		CONT;
1452 	ALU_END_TO_LE:
1453 		switch (IMM) {
1454 		case 16:
1455 			DST = (__force u16) cpu_to_le16(DST);
1456 			break;
1457 		case 32:
1458 			DST = (__force u32) cpu_to_le32(DST);
1459 			break;
1460 		case 64:
1461 			DST = (__force u64) cpu_to_le64(DST);
1462 			break;
1463 		}
1464 		CONT;
1465 
1466 	/* CALL */
1467 	JMP_CALL:
1468 		/* Function call scratches BPF_R1-BPF_R5 registers,
1469 		 * preserves BPF_R6-BPF_R9, and stores return value
1470 		 * into BPF_R0.
1471 		 */
1472 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1473 						       BPF_R4, BPF_R5);
1474 		CONT;
1475 
1476 	JMP_CALL_ARGS:
1477 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1478 							    BPF_R3, BPF_R4,
1479 							    BPF_R5,
1480 							    insn + insn->off + 1);
1481 		CONT;
1482 
1483 	JMP_TAIL_CALL: {
1484 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1485 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1486 		struct bpf_prog *prog;
1487 		u32 index = BPF_R3;
1488 
1489 		if (unlikely(index >= array->map.max_entries))
1490 			goto out;
1491 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1492 			goto out;
1493 
1494 		tail_call_cnt++;
1495 
1496 		prog = READ_ONCE(array->ptrs[index]);
1497 		if (!prog)
1498 			goto out;
1499 
1500 		/* ARG1 at this point is guaranteed to point to CTX from
1501 		 * the verifier side due to the fact that the tail call is
1502 		 * handeled like a helper, that is, bpf_tail_call_proto,
1503 		 * where arg1_type is ARG_PTR_TO_CTX.
1504 		 */
1505 		insn = prog->insnsi;
1506 		goto select_insn;
1507 out:
1508 		CONT;
1509 	}
1510 	JMP_JA:
1511 		insn += insn->off;
1512 		CONT;
1513 	JMP_EXIT:
1514 		return BPF_R0;
1515 	/* JMP */
1516 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1517 	JMP_##OPCODE##_X:					\
1518 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1519 			insn += insn->off;			\
1520 			CONT_JMP;				\
1521 		}						\
1522 		CONT;						\
1523 	JMP32_##OPCODE##_X:					\
1524 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1525 			insn += insn->off;			\
1526 			CONT_JMP;				\
1527 		}						\
1528 		CONT;						\
1529 	JMP_##OPCODE##_K:					\
1530 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1531 			insn += insn->off;			\
1532 			CONT_JMP;				\
1533 		}						\
1534 		CONT;						\
1535 	JMP32_##OPCODE##_K:					\
1536 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1537 			insn += insn->off;			\
1538 			CONT_JMP;				\
1539 		}						\
1540 		CONT;
1541 	COND_JMP(u, JEQ, ==)
1542 	COND_JMP(u, JNE, !=)
1543 	COND_JMP(u, JGT, >)
1544 	COND_JMP(u, JLT, <)
1545 	COND_JMP(u, JGE, >=)
1546 	COND_JMP(u, JLE, <=)
1547 	COND_JMP(u, JSET, &)
1548 	COND_JMP(s, JSGT, >)
1549 	COND_JMP(s, JSLT, <)
1550 	COND_JMP(s, JSGE, >=)
1551 	COND_JMP(s, JSLE, <=)
1552 #undef COND_JMP
1553 	/* STX and ST and LDX*/
1554 #define LDST(SIZEOP, SIZE)						\
1555 	STX_MEM_##SIZEOP:						\
1556 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1557 		CONT;							\
1558 	ST_MEM_##SIZEOP:						\
1559 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1560 		CONT;							\
1561 	LDX_MEM_##SIZEOP:						\
1562 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1563 		CONT;
1564 
1565 	LDST(B,   u8)
1566 	LDST(H,  u16)
1567 	LDST(W,  u32)
1568 	LDST(DW, u64)
1569 #undef LDST
1570 #define LDX_PROBE(SIZEOP, SIZE)							\
1571 	LDX_PROBE_MEM_##SIZEOP:							\
1572 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) SRC);	\
1573 		CONT;
1574 	LDX_PROBE(B,  1)
1575 	LDX_PROBE(H,  2)
1576 	LDX_PROBE(W,  4)
1577 	LDX_PROBE(DW, 8)
1578 #undef LDX_PROBE
1579 
1580 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1581 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1582 			   (DST + insn->off));
1583 		CONT;
1584 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1585 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1586 			     (DST + insn->off));
1587 		CONT;
1588 
1589 	default_label:
1590 		/* If we ever reach this, we have a bug somewhere. Die hard here
1591 		 * instead of just returning 0; we could be somewhere in a subprog,
1592 		 * so execution could continue otherwise which we do /not/ want.
1593 		 *
1594 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1595 		 */
1596 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1597 		BUG_ON(1);
1598 		return 0;
1599 }
1600 
1601 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1602 #define DEFINE_BPF_PROG_RUN(stack_size) \
1603 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1604 { \
1605 	u64 stack[stack_size / sizeof(u64)]; \
1606 	u64 regs[MAX_BPF_EXT_REG]; \
1607 \
1608 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1609 	ARG1 = (u64) (unsigned long) ctx; \
1610 	return ___bpf_prog_run(regs, insn, stack); \
1611 }
1612 
1613 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1614 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1615 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1616 				      const struct bpf_insn *insn) \
1617 { \
1618 	u64 stack[stack_size / sizeof(u64)]; \
1619 	u64 regs[MAX_BPF_EXT_REG]; \
1620 \
1621 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1622 	BPF_R1 = r1; \
1623 	BPF_R2 = r2; \
1624 	BPF_R3 = r3; \
1625 	BPF_R4 = r4; \
1626 	BPF_R5 = r5; \
1627 	return ___bpf_prog_run(regs, insn, stack); \
1628 }
1629 
1630 #define EVAL1(FN, X) FN(X)
1631 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1632 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1633 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1634 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1635 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1636 
1637 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1638 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1639 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1640 
1641 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1642 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1643 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1644 
1645 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1646 
1647 static unsigned int (*interpreters[])(const void *ctx,
1648 				      const struct bpf_insn *insn) = {
1649 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1650 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1651 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1652 };
1653 #undef PROG_NAME_LIST
1654 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1655 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1656 				  const struct bpf_insn *insn) = {
1657 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1658 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1659 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1660 };
1661 #undef PROG_NAME_LIST
1662 
1663 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1664 {
1665 	stack_depth = max_t(u32, stack_depth, 1);
1666 	insn->off = (s16) insn->imm;
1667 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1668 		__bpf_call_base_args;
1669 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1670 }
1671 
1672 #else
1673 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1674 					 const struct bpf_insn *insn)
1675 {
1676 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1677 	 * is not working properly, so warn about it!
1678 	 */
1679 	WARN_ON_ONCE(1);
1680 	return 0;
1681 }
1682 #endif
1683 
1684 bool bpf_prog_array_compatible(struct bpf_array *array,
1685 			       const struct bpf_prog *fp)
1686 {
1687 	if (fp->kprobe_override)
1688 		return false;
1689 
1690 	if (!array->owner_prog_type) {
1691 		/* There's no owner yet where we could check for
1692 		 * compatibility.
1693 		 */
1694 		array->owner_prog_type = fp->type;
1695 		array->owner_jited = fp->jited;
1696 
1697 		return true;
1698 	}
1699 
1700 	return array->owner_prog_type == fp->type &&
1701 	       array->owner_jited == fp->jited;
1702 }
1703 
1704 static int bpf_check_tail_call(const struct bpf_prog *fp)
1705 {
1706 	struct bpf_prog_aux *aux = fp->aux;
1707 	int i;
1708 
1709 	for (i = 0; i < aux->used_map_cnt; i++) {
1710 		struct bpf_map *map = aux->used_maps[i];
1711 		struct bpf_array *array;
1712 
1713 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1714 			continue;
1715 
1716 		array = container_of(map, struct bpf_array, map);
1717 		if (!bpf_prog_array_compatible(array, fp))
1718 			return -EINVAL;
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static void bpf_prog_select_func(struct bpf_prog *fp)
1725 {
1726 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1727 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1728 
1729 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1730 #else
1731 	fp->bpf_func = __bpf_prog_ret0_warn;
1732 #endif
1733 }
1734 
1735 /**
1736  *	bpf_prog_select_runtime - select exec runtime for BPF program
1737  *	@fp: bpf_prog populated with internal BPF program
1738  *	@err: pointer to error variable
1739  *
1740  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1741  * The BPF program will be executed via BPF_PROG_RUN() macro.
1742  */
1743 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1744 {
1745 	/* In case of BPF to BPF calls, verifier did all the prep
1746 	 * work with regards to JITing, etc.
1747 	 */
1748 	if (fp->bpf_func)
1749 		goto finalize;
1750 
1751 	bpf_prog_select_func(fp);
1752 
1753 	/* eBPF JITs can rewrite the program in case constant
1754 	 * blinding is active. However, in case of error during
1755 	 * blinding, bpf_int_jit_compile() must always return a
1756 	 * valid program, which in this case would simply not
1757 	 * be JITed, but falls back to the interpreter.
1758 	 */
1759 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1760 		*err = bpf_prog_alloc_jited_linfo(fp);
1761 		if (*err)
1762 			return fp;
1763 
1764 		fp = bpf_int_jit_compile(fp);
1765 		if (!fp->jited) {
1766 			bpf_prog_free_jited_linfo(fp);
1767 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1768 			*err = -ENOTSUPP;
1769 			return fp;
1770 #endif
1771 		} else {
1772 			bpf_prog_free_unused_jited_linfo(fp);
1773 		}
1774 	} else {
1775 		*err = bpf_prog_offload_compile(fp);
1776 		if (*err)
1777 			return fp;
1778 	}
1779 
1780 finalize:
1781 	bpf_prog_lock_ro(fp);
1782 
1783 	/* The tail call compatibility check can only be done at
1784 	 * this late stage as we need to determine, if we deal
1785 	 * with JITed or non JITed program concatenations and not
1786 	 * all eBPF JITs might immediately support all features.
1787 	 */
1788 	*err = bpf_check_tail_call(fp);
1789 
1790 	return fp;
1791 }
1792 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1793 
1794 static unsigned int __bpf_prog_ret1(const void *ctx,
1795 				    const struct bpf_insn *insn)
1796 {
1797 	return 1;
1798 }
1799 
1800 static struct bpf_prog_dummy {
1801 	struct bpf_prog prog;
1802 } dummy_bpf_prog = {
1803 	.prog = {
1804 		.bpf_func = __bpf_prog_ret1,
1805 	},
1806 };
1807 
1808 /* to avoid allocating empty bpf_prog_array for cgroups that
1809  * don't have bpf program attached use one global 'empty_prog_array'
1810  * It will not be modified the caller of bpf_prog_array_alloc()
1811  * (since caller requested prog_cnt == 0)
1812  * that pointer should be 'freed' by bpf_prog_array_free()
1813  */
1814 static struct {
1815 	struct bpf_prog_array hdr;
1816 	struct bpf_prog *null_prog;
1817 } empty_prog_array = {
1818 	.null_prog = NULL,
1819 };
1820 
1821 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1822 {
1823 	if (prog_cnt)
1824 		return kzalloc(sizeof(struct bpf_prog_array) +
1825 			       sizeof(struct bpf_prog_array_item) *
1826 			       (prog_cnt + 1),
1827 			       flags);
1828 
1829 	return &empty_prog_array.hdr;
1830 }
1831 
1832 void bpf_prog_array_free(struct bpf_prog_array *progs)
1833 {
1834 	if (!progs || progs == &empty_prog_array.hdr)
1835 		return;
1836 	kfree_rcu(progs, rcu);
1837 }
1838 
1839 int bpf_prog_array_length(struct bpf_prog_array *array)
1840 {
1841 	struct bpf_prog_array_item *item;
1842 	u32 cnt = 0;
1843 
1844 	for (item = array->items; item->prog; item++)
1845 		if (item->prog != &dummy_bpf_prog.prog)
1846 			cnt++;
1847 	return cnt;
1848 }
1849 
1850 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1851 {
1852 	struct bpf_prog_array_item *item;
1853 
1854 	for (item = array->items; item->prog; item++)
1855 		if (item->prog != &dummy_bpf_prog.prog)
1856 			return false;
1857 	return true;
1858 }
1859 
1860 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1861 				     u32 *prog_ids,
1862 				     u32 request_cnt)
1863 {
1864 	struct bpf_prog_array_item *item;
1865 	int i = 0;
1866 
1867 	for (item = array->items; item->prog; item++) {
1868 		if (item->prog == &dummy_bpf_prog.prog)
1869 			continue;
1870 		prog_ids[i] = item->prog->aux->id;
1871 		if (++i == request_cnt) {
1872 			item++;
1873 			break;
1874 		}
1875 	}
1876 
1877 	return !!(item->prog);
1878 }
1879 
1880 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1881 				__u32 __user *prog_ids, u32 cnt)
1882 {
1883 	unsigned long err = 0;
1884 	bool nospc;
1885 	u32 *ids;
1886 
1887 	/* users of this function are doing:
1888 	 * cnt = bpf_prog_array_length();
1889 	 * if (cnt > 0)
1890 	 *     bpf_prog_array_copy_to_user(..., cnt);
1891 	 * so below kcalloc doesn't need extra cnt > 0 check.
1892 	 */
1893 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1894 	if (!ids)
1895 		return -ENOMEM;
1896 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1897 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1898 	kfree(ids);
1899 	if (err)
1900 		return -EFAULT;
1901 	if (nospc)
1902 		return -ENOSPC;
1903 	return 0;
1904 }
1905 
1906 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1907 				struct bpf_prog *old_prog)
1908 {
1909 	struct bpf_prog_array_item *item;
1910 
1911 	for (item = array->items; item->prog; item++)
1912 		if (item->prog == old_prog) {
1913 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1914 			break;
1915 		}
1916 }
1917 
1918 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1919 			struct bpf_prog *exclude_prog,
1920 			struct bpf_prog *include_prog,
1921 			struct bpf_prog_array **new_array)
1922 {
1923 	int new_prog_cnt, carry_prog_cnt = 0;
1924 	struct bpf_prog_array_item *existing;
1925 	struct bpf_prog_array *array;
1926 	bool found_exclude = false;
1927 	int new_prog_idx = 0;
1928 
1929 	/* Figure out how many existing progs we need to carry over to
1930 	 * the new array.
1931 	 */
1932 	if (old_array) {
1933 		existing = old_array->items;
1934 		for (; existing->prog; existing++) {
1935 			if (existing->prog == exclude_prog) {
1936 				found_exclude = true;
1937 				continue;
1938 			}
1939 			if (existing->prog != &dummy_bpf_prog.prog)
1940 				carry_prog_cnt++;
1941 			if (existing->prog == include_prog)
1942 				return -EEXIST;
1943 		}
1944 	}
1945 
1946 	if (exclude_prog && !found_exclude)
1947 		return -ENOENT;
1948 
1949 	/* How many progs (not NULL) will be in the new array? */
1950 	new_prog_cnt = carry_prog_cnt;
1951 	if (include_prog)
1952 		new_prog_cnt += 1;
1953 
1954 	/* Do we have any prog (not NULL) in the new array? */
1955 	if (!new_prog_cnt) {
1956 		*new_array = NULL;
1957 		return 0;
1958 	}
1959 
1960 	/* +1 as the end of prog_array is marked with NULL */
1961 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1962 	if (!array)
1963 		return -ENOMEM;
1964 
1965 	/* Fill in the new prog array */
1966 	if (carry_prog_cnt) {
1967 		existing = old_array->items;
1968 		for (; existing->prog; existing++)
1969 			if (existing->prog != exclude_prog &&
1970 			    existing->prog != &dummy_bpf_prog.prog) {
1971 				array->items[new_prog_idx++].prog =
1972 					existing->prog;
1973 			}
1974 	}
1975 	if (include_prog)
1976 		array->items[new_prog_idx++].prog = include_prog;
1977 	array->items[new_prog_idx].prog = NULL;
1978 	*new_array = array;
1979 	return 0;
1980 }
1981 
1982 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1983 			     u32 *prog_ids, u32 request_cnt,
1984 			     u32 *prog_cnt)
1985 {
1986 	u32 cnt = 0;
1987 
1988 	if (array)
1989 		cnt = bpf_prog_array_length(array);
1990 
1991 	*prog_cnt = cnt;
1992 
1993 	/* return early if user requested only program count or nothing to copy */
1994 	if (!request_cnt || !cnt)
1995 		return 0;
1996 
1997 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1998 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1999 								     : 0;
2000 }
2001 
2002 static void bpf_prog_free_deferred(struct work_struct *work)
2003 {
2004 	struct bpf_prog_aux *aux;
2005 	int i;
2006 
2007 	aux = container_of(work, struct bpf_prog_aux, work);
2008 	if (bpf_prog_is_dev_bound(aux))
2009 		bpf_prog_offload_destroy(aux->prog);
2010 #ifdef CONFIG_PERF_EVENTS
2011 	if (aux->prog->has_callchain_buf)
2012 		put_callchain_buffers();
2013 #endif
2014 	for (i = 0; i < aux->func_cnt; i++)
2015 		bpf_jit_free(aux->func[i]);
2016 	if (aux->func_cnt) {
2017 		kfree(aux->func);
2018 		bpf_prog_unlock_free(aux->prog);
2019 	} else {
2020 		bpf_jit_free(aux->prog);
2021 	}
2022 }
2023 
2024 /* Free internal BPF program */
2025 void bpf_prog_free(struct bpf_prog *fp)
2026 {
2027 	struct bpf_prog_aux *aux = fp->aux;
2028 
2029 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2030 	schedule_work(&aux->work);
2031 }
2032 EXPORT_SYMBOL_GPL(bpf_prog_free);
2033 
2034 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2035 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2036 
2037 void bpf_user_rnd_init_once(void)
2038 {
2039 	prandom_init_once(&bpf_user_rnd_state);
2040 }
2041 
2042 BPF_CALL_0(bpf_user_rnd_u32)
2043 {
2044 	/* Should someone ever have the rather unwise idea to use some
2045 	 * of the registers passed into this function, then note that
2046 	 * this function is called from native eBPF and classic-to-eBPF
2047 	 * transformations. Register assignments from both sides are
2048 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2049 	 */
2050 	struct rnd_state *state;
2051 	u32 res;
2052 
2053 	state = &get_cpu_var(bpf_user_rnd_state);
2054 	res = prandom_u32_state(state);
2055 	put_cpu_var(bpf_user_rnd_state);
2056 
2057 	return res;
2058 }
2059 
2060 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2061 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2062 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2063 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2064 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2065 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2066 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2067 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2068 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2069 
2070 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2071 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2072 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2073 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2074 
2075 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2076 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2077 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2078 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2079 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2080 
2081 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2082 {
2083 	return NULL;
2084 }
2085 
2086 u64 __weak
2087 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2088 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2089 {
2090 	return -ENOTSUPP;
2091 }
2092 EXPORT_SYMBOL_GPL(bpf_event_output);
2093 
2094 /* Always built-in helper functions. */
2095 const struct bpf_func_proto bpf_tail_call_proto = {
2096 	.func		= NULL,
2097 	.gpl_only	= false,
2098 	.ret_type	= RET_VOID,
2099 	.arg1_type	= ARG_PTR_TO_CTX,
2100 	.arg2_type	= ARG_CONST_MAP_PTR,
2101 	.arg3_type	= ARG_ANYTHING,
2102 };
2103 
2104 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2105  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2106  * eBPF and implicitly also cBPF can get JITed!
2107  */
2108 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2109 {
2110 	return prog;
2111 }
2112 
2113 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2114  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2115  */
2116 void __weak bpf_jit_compile(struct bpf_prog *prog)
2117 {
2118 }
2119 
2120 bool __weak bpf_helper_changes_pkt_data(void *func)
2121 {
2122 	return false;
2123 }
2124 
2125 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2126  * analysis code and wants explicit zero extension inserted by verifier.
2127  * Otherwise, return FALSE.
2128  */
2129 bool __weak bpf_jit_needs_zext(void)
2130 {
2131 	return false;
2132 }
2133 
2134 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2135  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2136  */
2137 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2138 			 int len)
2139 {
2140 	return -EFAULT;
2141 }
2142 
2143 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2144 EXPORT_SYMBOL(bpf_stats_enabled_key);
2145 
2146 /* All definitions of tracepoints related to BPF. */
2147 #define CREATE_TRACE_POINTS
2148 #include <linux/bpf_trace.h>
2149 
2150 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2151 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2152